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CLASSIFICATION OF CRITICAL STATIONARY POINTS IN
UNCONSTRAINED OPTIMIZATION*

STEFAN SCHFFLER"

Abstract A stationary point of an unconstrained optimization problem is called critical if the Hessian
matrix at this point is positive semidefinite. Such a point cannot be classified using second-order optimality
conditions. In this paper the problem of classifying a critical stationary point of a given objective function
is reduced to the application of higher-order optimality conditions for a special auxiliary function.
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1. Introduction. We consider the following unconstrained minimization problem:

(1.1) min {f(x)}, f"E" --->, f C p, p > 2.

It is assumed that we have computed a critical stationary point x* of problem (1.1),
which is defined as follows.

DEFINITION 1.1. For problem (1.1) a point x* is called a critical stationary point
if

(a) Vf(x*) 0,
(b) V2f(x*) is positive semidefinite.
Using the second-order optimality conditions (see, e.g., [6]) it is not possible to

decide whether x* is an (isolated) minimizer of f or not.
In this paper we use a catastrophe theoretical approach for analyzing critical

stationary points. The main results are given in the next section. In 3 the applications
of these results in combination with higher-order optimality conditions are shown.
Finally, examples are discussed.

2. Main results. Let x* be a critical stationary point off. Without loss of generality
we introduce the following simplification:

(2.1) V2f(x*)

and we define

1 }1

0 0 }n-r

X :._. X :___

(0-<r<n)

where r is called the rank off. The following theorem is the main theoretical instrument
for analyzing f at the critical stationary point x*.

* Received by the editors June 25, 1990; accepted for publication November 29, 1990.
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THEOREM 2.1. Consider problem (1.1). Let x* be a critical stationary point offand
let r > 0 be the rank off. Then there exist functions

g" U(x*n-r) cRn-r--Rr g Cp-l, g unique,

where U(x*"-r) is an open neighbourhood of x*"-r, and

," U(x*) U(x*"-q " --> , 4, C-3,

where U(x*r) is an open neighbourhood of x*r, and the following statements hold"
(a)

f(xr, x-’) t(x + x*r- g(x"-’), x-r) +f(g(x"--r), X"-)
for all (xr, Xn-r) U(x*r) x U(x*n-r).

(b) For each fixed x-r U(x*"-’), the following inequality is valid for all
x U(x*r)

f(xr, X-r) >--f(g(x-r), X-r),

where equality holds if and only if xr= g(x-r).
(c) Using f U(X*"-r)-, y(xn-r)=f(g(xn-r), Xn-r), we obtain

VY(X:n-r) 0, V2j(X*n-r) --0.

Proof. (a) This part of the proof is based on a proof of the splitting lemma given
by Castrigiano and Hayes-Widmann [1]. From the assumptions, we know that
Vx’f(x*r,x*"-’)=O and V2x.f(x*r,x*"-r)=Er, where E, denotes the r-dimensional
identity matrix. Using the implicit function theorem we obtain the existence of the
open neighbourhood U(x*"-r) and the unique function g" U(x*"-r) _$r, with

(2.2) Vxrf(g(xn-r), Xn-r)0 on U(x*"-r).

This equation shows that g C P-1.
Now we consider the CP-a function

h(y, x"-):=/(yr- x* +g(x"-r),x"-)--f(x"-r), y.
For all x"-r U(x*"-) we obtain

h(x*r, xn-r) O, Vy,h(x:gr, x n-r) O.

Hence, using Taylor expansion the function h is given by

h(yr, xn--r) (yr__ x,r) TK(yr xn-r)(yr x,r),

where K(yr, x "-r) is a C "-3 function with

(2.3) K(x*r,x*n-r)---1/2Er

Thus, we have the following representation of h for all (yr, X,-r) U x U(x*"-r), where
U is some open neighbourhood of x*:

h(y’, x"-r) ]]4(y’, x"-)ll

with some C p-3 function b" U U(x*"-r)-->R". Now we use the variable trans-

formation x’U U(x*"-) --> U(x*) U(x*"-),

(Xr, xn-r) ___/(yr, xn-r) (yr x,r dC" g(x"-’), x"-r),
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where U(x*r) is some open neighbourhood of x*r and X is a diffeomorphism (U and
U(x*r) are chosen sufficiently small). Furthermore, there exists an open neighbourhood
V= V1 x V2 of (x*r, X’n-r), V1 c U(x*r), V2 c U(x*n-r), with

b(yr, x "-r) 0 :> yr x.r for all (yr, x.-r) X-I( V1 x V2),

and thus

(2.4) t(x + x*r- g(xn-r), Xn-r) 0 <=> (Xr, Xn-r) (g(xn-r), Xn-r)

for all (xr, x"-r) V (see (2.3)).
Finally, we obtain for all (xr, x "-r) U(x*r) x U(X*"-r)"

h(x d-x*r-- g(xn-r), xn-r) f(xr, xn-r) y(xn-r) q(X + x*r-- g(xn-r), xn-r)ll2.
(b) If V # U(x*r) and V2 # U(x*n-r), then we redefine U(x*r) and U(x*"-r) as

follows: U(x*) V1 and U(x*"-r) V2. Hence, the proof is finished with (2.4).
(c) We obtain, by differentiation of identity (2.2) with respect to x "-r,

x-g(x*n-r) --0.

Using this result, the rest of the proof is obvious, t-i

Now we prove an important corollary of Theorem 2.1.
COROLLARY 2.2. Consider the function f defined in Theorem 2.1(c); then

(x*r, x*"-r) is an (isolated) local minimizer off if and only if x*n-r is an (isolated)
local minimizer off.

Proofi Under the assumption that (x*r, x*"-r) is an (isolated) minimizer off, we
obtain an open neighbourhood N of (x*r, x*"-r), N U(x*r) x U(x*n-r), with

f(xr, xn-r) _->f(x*r, x*"-r) for all (xr, x "-r) N.

(If (x*r, x*"-r) is an isolated local minimizer off, then we obtain the above inequality
Xwith ">" instead of ">" for all (xr, xn-r) N\{(x*r, -r)}.) Now consider the

function r" U(x*"-r) -+

71.(xn-r) (g(xn-r), xn-r).

r is a continuous function and therefore W:= r-(N) is an open neighbourhood of
x*"-r. Hence, we obtain for all x"-r W U(X*n-r)"

f(x f 7r(x"-r)) _>f(x*r, x*’-r) f(x*-r).

(If (x*r, x*"-r) is an isolated local minimizer off, then we obtain the above inequality
with ">" instead of "=>" for all x"-r W\{x*n-r}.)

NOW let x*-r be an (isolated) minimizer off; then there exists an open neighbour-
hood ff’c U(x*"-r) of x*"-r, with:

f (x"-r) => f (x*"-r) for all x fir.

(If x*"-r is an isolated local minimizer of f, then we obtain the above inequality with
">" instead of ">-" for all x"-r ff’\{X*"-}.)

With Theorem 2.1 we obtain for all (xr, x "-r) U(x*r) W:

f(xr, xn-r) q(x d-x*r-- g(xn-r), xn-r)ll2 d- y(xn-r) >--f(x*r, x*n-r).

(If x*"-r is an isolated local minimizer of f, then we obtain for all

(Xr, Xn-r) U(x*r) )< /r)\{(x:gr, x’n-r)}

the above inequality with ">" instead of "-> ".)
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The results of Corollary 2.2 allow us the classification of the critical stationary
point x*"-r of f (with V2f(x*n-’) =0) instead of (x*r, x’n--r). If rank f=0, then we
define f-=f Hence, higher-order optimality conditions are available.

3. Higher-order optimality conditions. Consider a function h’R", he Ck,
k> 2m, m. Let the kth derivative of h at any point be given by the tensor
vkh() (ti,,...,ik), ij= 1..., n for j= 1,’’’ k, where

okh
(3.1) ti,, ik (Y).

(gXi1 OXik
The computation of this tensor at each fixed but arbitrary chosen point is possible
using automatic differentiation (see, e.g. [3], [4]). For each fixed s we define

(3.2)
i,= ik=

Now we are able to prove the following higher-order optimality conditions.
THEOREM 3.1 (necessary condition). Let x* be a local minimizer ofh C k, k > 2m,

m such that

V’h(x*)=0 for all i= l, ,2m,

then

V2"+lh(x*) =0.

Proof. From (3.2) we know that V2"+1 h(x*) x is a polynomial function in x Rn.
Using the special symmetry of the tensor V2"/h(x*) (see (3.1)) and the fact that a
polynomial function in several variables is the zero function if and only if all coefficients
are zero, we obtain:

V2"+lh(x*) * x-=0 for all x iff 72m+l h (x*) 0.

Now we consider the Ck function ’: -, ’(cr)= h(x*-ors), s R", s0. We obtain:

-., (0) 0 for all i= 1,. ., 2m,

d2"+1" (0)=-V2"+lh(x*) * s.
do.2m+l

Hence, if v2m+lh(x*) y0, then there exists an s", s0 with

d-+ (0) < o.

Thus, the function h decreases starting from x* along the direction of s. This is a
contradiction to the assumption of Theorem 3.1.

Now we come back to the problem of classifying the critical stationary point x*
off (see (1.1)). We know that x* is an (isolated) local minimizer off if and only if
x*"- is an (isolated) local minimizer of f, with

Vf(x =o,
V2f(x*"-) 0 (see Theorem 2.1 and Corollary 2.2).

Iff C, then f e C -1. The derivatives of f at x*"- can be computed using (2.2)
and implicit automatic differentiation (see [5]). Hence, for p=>4, Theorem 3.1 is
applicable for classifying x*"- and consequently x*. If f C="*+, m, and
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Vif (x*"-r) 0 for all 1,. ., 2m + 1, then the following two optimality conditions
are applicable.

THEOREM 3.2 (necessary condition). Let x* be a local minimizer of he Ck,
k > 2m + l, m 6 N such that

Vih(x*)=0 for all i= l, ,2m+ l,

then

v2m+2h(x*) . x>0 for all xn.
Proofi Letus consider the C2m+2 function ’: --> R, ’(r) h(x*-o’s), s n,s 0.

We obtain:

-o(0)-0 for all i-1,...,2m+l,

d2-,+2sr
dtr2m+2 (0)= V2"+Zh(x*) * s.

If there exists any s ", s 0 with V2"+2h(x*) s < O, then h decreases starting from
x* along the direction of s. This contradicts the assumption of Theorem 3.2.

THEOREM 3.3 (sufficient condition). Let h C k, k > 2m + 1, m, and x* be a
point such that

Vh(x*)=0 for all l, 2m + l

and

V2+2h(x*)*x>0 for allx, x0;

then x* is an isolated minimizer of h.
Proof From the assumptions we obtain the existence of some a > 0 with

V2+2h(x*) s=> a for all s", IIsll -- 1.

Since ’2m+2h(x) is continuous, there exists some e > 0 and an open neighbourhood
U(x*) := {x R"; I[x x* 2 < e}, with

(3.3) V2+2h(x)*s>0 forallxU(x*), s",
Using Taylor expansion of "->, ’(tr)= h(x*- trs), sn, ]lsl[2= 1, we obtain:

1
h(x* o’s) h(x*) + v2m+2h(:) , s. cr2m+2

(2m+2)!
where X--x*-t. r.s, O<-_t<=l. For 0<or<e, it follows from (3.3) that h(x*-rs)>
h(x*) for all s ", I]sll22 1.

4. Examples. First we investigate the functionf" R2-> ,f(x) 1/2(xl x)(xl 2x22).
The point (0, 0) is a critical stationary point off with rank 1. An interesting property
off can be observed: f is increasing along each direction starting from (0, 0), but (0, 0)
is a saddlepoint of f. We obtain"

X Xl,

xn--r X2,

(x*r, x*"-) (o, o),
3

g(x2)=- x,
1

f x2)=-- x’.
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Thus, the function f decreases along the curve (3/2x22, x2), x2 R. A point (gl,
with f(gl,/)<0 can be computed numerically by computation of g2 such that
f (g2) < 0. In this case the fixed-point theorem of Banach, for the computation of the
function values of g and f (see (2.2)), and implicit automatic differentiation, for the
computation of a descent direction for f in x2 =0, are necessary. The relationship
between the implicit function theorem and the fixed-point theorem of Banach for
numerical analysis is given in [2].

Now we consider the function f: 2 ...) R,

f(x) 1,1" 2 2
tgtXl -- Xl) -" Xl)

The point (0, O) is a critical stationary point off with rank 1. We obtain:

X Xl,

xn-r X2,

(x*r, x*"-") (0, 0),

g(x2) -2 + (4- x)/, for all x2 e ]-2, 2[,

f (x2)=-O.

Thus, the function f has not isolated minimizers along the curve

(-2 + (4- x)’/2, x2), x2 e ]-2, 2[.

This can be investigated numerically only by evaluating the function f in a neighbour-
hood of zero.
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A POTENTIAL REDUCTION ALGORITHM ALLOWING
COLUMN GENERATION*

YINYU YE"

Abstract. Using the Dantzig-Wolfe decomposition technique, a potential reduction algorithm allowing
column generation for the linear feasibility (LF) problem is developed. The point of departure is a simple
containing polytope and its analytic center. In each iteration, an inequality violated at the current center is
selected, used to cut the polytope, and then used to find the new center for the shrunken polytope. The
potential value associated with the containing polytope is reduced by a constant at each step, and the
algorithm is terminated in a polynomial time that depends only on the number and data length of the
inequalities generated in the iterative process.

Key words, linear inequality, linear programming, analytic center, potential function, column generation
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Introduction. While various interior point algorithms (for example, Karmarkar
[7] and Renegar [11]) have been developed for linear programming, they have a
common drawback: they need the complete knowledge of the linear system, and their
computational complexity depends on all of the constraints in the full system, although
some of them are merely useless for defining the solution.

On the other hand, the decomposition algorithm (Dantzig and Wolfe 1 ]) and the
ellipsoid method (Khachiyan [8]) do not need knowledge of the full system in
advancemthey allow column generation: if a constraint (or column) is needed during
their course, it is then called and added to the process. This column generation technique
permits a great deal of flexibility for solving linear programs, such as semi-infinite
programming and combinatorial optimization problems, in which the number of
inequalities is very large or some constraints are not explicitly known.

Based on the theorem developed in [18] for the analytic center and its associated
potential function (Huard and Lieu [6] and Sonnevend [14]), we develop a decomposi-
tion and potential reduction algorithm allowing column generation for the linear
feasibility (LF) problem that is equivalent to linear programming (LP). We start with
a simple containing polytope and its known center. In each iteration, we select an
inequality violated at the center, use it to cut the polytope, and then find the new
(approximate) center for the shrunken but containing polytope. The potential value
associated with the polytope is reduced by a constant at each iteration, and the algorithm
is terminated in a polynomial time that depends only on the number and data length
of the inequalities generated during the iterative process. The algorithm either finds a
feasible point or detects the infeasibility of the problem. It does not need knowledge
of the full linear system.

In the context of LP, this approach sounds much like a generalized simplex-like
method. We select a column with negative reduced cost to enter the basis, but we never
delete a column from the basis (one may do so in practice). The iterative progress is
measured by a potential function that somehow represents the volume of the containing
polytope, and it is monotonically reduced by a constant as the containing polytope
shrinks.

* Received by the editors November 6, 1989; accepted for publication (in revised form) February 11,
1991. This research was supported in part by National Science Foundation grant DDM-8922636 and the
College Summer Grant of College of Business Administration, University of Iowa, Iowa City, Iowa.

f Department of Management Sciences, University of Iowa, Iowa City, Iowa 52242.
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In fact, several authors (Goffin and Vial [2] and Mitchell [9]) have proposed
using Karmarkar’s projective algorithm as the LP solver in the column generation
method. They have reported encouraging computational results. In their approaches,
no special efforts were devoted to adding a cut through the analytic center. Sonnevend
[14] suggested doing so but gave no algorithmic analysis. Recently, we have learned
that Gotiin, Haurie, and Vial [3] also proposed a decomposition algorithm by adding
cuts through the centers. They reported good performance of their algorithm. None
of the above authors give complexity results for their approaches. Obviously, the
number of sub-LP problems solved here is q, the number of cuts added to the system.
Therefore, the complexity of the general decomposition algorithm is O(qg), where X
is the complexity of a linear program with O(q) inequalities. Since the best-known
complexity X is O(x/L) iterations, their approaches yield O(qx/L) iterations for
solving a linear program.

In this paper, we show that our decomposition potential reduction algorithm needs
only O(qL) iterations. This reduces the above complexity by a factor x/. (This result
was pointed out by one of the referees.) Although q in the decomposition algorithm
(regardless of which LP solver is being used) is generally small for solving most
practical problems, it can very well be exponential in number. Thus we emphasize that
the complexity of our approach remains worse than the ellipsoid method for some LP
problems with large numbers of inequalities. At the end of this paper, we will discuss
some directions which might resolve this problem. In fact, Vaidya [17] recently
developed another decomposition method using a "volumetric center" and obtained
a better theoretical result than ours.

1. A combinatorial property of analytic centers. Denote by y the analytic center
of a polytope

f {y R": s=c-Ay>=O},

where c e R" and A e Rm, and define the potential value of as the potential function
value at ya, which is the logarithmic product of the inequality slacks (distances)
s c-AT"y, i.e.,

(1) P(f) . In (s)= In (c-afy),
j=l j=l

where a# is the jth column of A. In fact, y is the point that maximizes the potential
function among all y f, and P(fl) is related to the volume of the largest ellipsoid
inscribing 12 in terms of the slacks of the inequality system (see related topics in Todd
[16] and Ye [20]).

Now one of the inequalities, say the last one, of c Ary _>_ 0 needs to be updated:
change c, a,y _-> 0 to ay ay _-> 0, i.e., a hyperplane parallel to the last inequality
that cuts through the center y and divides 1 into two bodies. Let

f+={yRm’cj-ay>-0, j=l,2,...,n-l, ar,y-ar,y>-0}
and let 37 be the analytic center of 1+. Then the potential value for the new polytope
f+ is

P(f/+) Y In (c-aya)+ln (ary’-ar.y’).
j=l

In [18], we showed that

(2) P(n+) <_- P(n)- 1.
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Inequality (2) resembles properties that hold for the center of gravity (Griinbaum
[5] and Mityagin [10]) and the center of the maximum-volume inscribing ellipsoid
(Tarasov, Khachiyan, and lrlikh [15]). In fact, a more general inequality can be
developed. Let the hyperplane cut the polytope not necessarily through the center ya,
i.e., let

f-= {y g’. cj-ay>_O,j= l,2, n- l, fls + aya-ay>=O},
+ Then we have Theorem 1where/3 _-> 0. Denote by )7 the analytic center of f.

THEOREM 1.
+(3) P()-< P(f) (1 -/3).

Proof The proof is similar to the one in [18]. Since y is the analytic center of
1, there exists x> 0 such that

(4) X"s X(c-Ary) e and Ax =0,

where e is the vector (with varying dimensions) of all ones, and X designates the
diagonal matrix of x. Since j=c) for j=l,-..,n-1, ,=fls’/ay, and ga--AT, we have

erX2a erX Afi eX’

Thus,

=erXc-(1 )x’s n- 1 + .
expP() fi s fi--- ,. X
expP(l) =lS j=l

<
n-l+

sx Nexp (fl-1).
j=l

When an additional hyperplane (say the (n + 1)th) is added to the system, the new
convex body is defined by

+ R rO={y "c-a y0,j=l,2,...,n, fl+a,+ly-a,+ly0},

where fl 0 and

(5) a,l(A(X)EAr)-i an+
Then we have the second inequality, in Theorem 2.

THEOREM 2.

P() P(O) +In (4)- (1.5- fl).
r g AfiProo Again, x and y satisfy (4). Note C,+l fl+ a,+ly. Let c- > 0

be the first n slacks at the new center . Then we have
Ts+=a+(y )+
r (A(X)2Ar -1 T

=an+l (A(X)2A )(y- )+fl

(A(X)2Ar -1 ry=a.+l A(X)2(A -a )+ fl
(A(X.)Ar -1

=a.+l A(X )2(-c+ary+c-arfi)+fl
(6) =a.+lr(A(X)Ar)-IA(X")2(2-s)+fl

(a(x)2ar)-i=a.+l AX(X2 e) + fl
I(A(X)2Ar)-IAX][ ]]X2-e]]+fl

ell
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We also have

(7)

Thus, from (6),

eTX,, eTX,(c_Ary,)= erXac= n.

+
Sn+ Sj Sn+

"- SjXjexp P() r j=lSj r =1

(8) (llx""-ell+) leI .xT.
j=l

Let a xag > O. Then, to evaluate the right side of (8) together with (7), we face the
problem

maximize 6(a) ([[ a e +)
j=l

subject to era n and a > 0.

Let [la- ell be fixed at some/x. Then we have a related problem"

maximize (/ +/3) II a
j=l

subject to ea n, a e 2=/x2 and a > 0.

This maximum is achieved, without loss of generality, at a 6 > and

O2 O ’ O.
n-1

This can be directly derived from the lemma of Schrijver ([13, p. 192]), where he
considers the minimum of the problem. Hence,

(a)<_- (6-1t
n

n_l+fl 6

6 -1+ v/ n -1)/ n -26 ( )
<--4nn-l(n-’5+x/(n-1)/nfl)"+an+l

From (8),

4 4
=exp (1.5 v/(n 1)/nfl)

<
exp (1.5 fl)

exp P(D,) < 4f

exp P(a) -exp (1.5-)

2. The potential algorithm allowing column generation. Now consider finding a
feasible point in the region

O={yRm. c-ATyOandO<=y<=e},

where the components of A and c are rationals.
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We assume that Ila[[--1, i.e., cj- afy represents the real distance from y to the
hyperplane {y’cj- afy =0}. We also assume that O has a nonempty interior. More
specifically, for any subsystem,

ff {y Rm" --,iTy O and O <= y <= e},

where 6 (or A) is a subvector (or a submatrix) of c (or A) and there exists a point
such that

?.- dry >= 2-Le and 2-Le <= y <-- (1 2-L)e
for some fixed L > 1. Thus,

(9) P(O)>--qL,

where q is the number of inequalities in O.
The latter assumption is not critical since any nonempty integral linear inequality

system can be equivalently represented by a linear strict-inequality system with a
nonempty interior. The inequalities 0 <_-y <_-e are also without loss of generality since
a feasible point, if it exists, must be bounded. Thus we can explicitly add lower and
upper bounds for the variables, then transform and scale them to 0 and 1, respectively.

We now describe an algorithm using perfect center pairs.

ALGORITHM USING PERFECT CENTERS
Initialization.

Let

A (i,-I)Rmx2m, c-(S) R2m,

and

y= O.5e R’, so co_ (Ao)Tyo 0.5e R2m and x 2e R2m.

Obviously,

ax=O and [[xs-ell-O;
in other words, yO and x are the center pair of

ok {y Rr,,. c k (Ak) ry >_ O} for k O.

The kth Iteration.
At the kth iteration, we check to see if the current center yk satisfies all inequalities

of O. If yk does, then we terminate the algorithm with a feasible point; otherwise,
there exists one f such that cy-ayk< O. Two cases may occur:

1. af is already included in Ak, or
2. ay is not.
In case 1, we update

k+l k )+ajC; fl(Cf-- aTyk yk flS+ afyk,
k+l k for j jCj Cj

and

Ak+l Ak.
Let the center of Ok+l be yk+l. Then, from Theorem 1, we have

(10) P(Ok+’) <- P(I’k) -(1 -/3).
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In case 2, we update

ck+l
Tyk and Ak+l (Ak, af),

where =x/ay(Ak(xk)2(Ak)T)-laf. Since O< yk < e,

Ak(xk)2(Ak)T= Ak(sk)-2(Ak)T >= yk)-+(i_ yk)-2>__ 81,

i.e., Ak(sk)-(Ak)T--8I is positive semidefinite. Hence,

= af(Ak(xk)(Ak)T)-laf<_ a -II=_ 1.
8 8

Let the center of -k+l be yk+l. Then, from Theorem 2, we have

(11) P(flk+l)<--P(fk)+ln (x/) (1.5 fl).

Center Updating.
Compute the center pair yk+l and xk+l of fk+l, using Newton’s method from yk

and as described below and go to the (k / 1)th iteration.

In both cases of the algorithm the potential function is reduced by a constant (for
example, 0.15) for an appropriate fixed fl(fl 1/2 in case 1 and/3 1 in case 2). Next,
we show that the new center pair yk+l and xk+ of -k+l can be "easily" computed.
In fact, we show that yk is still in the "quadratic convergence" region of -k+l, i.e.,
yk+l can be updated from yk using Newton’s method with a quadratic convergence
order.

LEMMA 1. In both cases of the algorithm there exists an . > 0 such that

Ak+l 0 and

where g= ck+l--(Ak+)Tyk R".
k for j f and gf s Let g xk > 0. Then,Proof. In case 1, we have gj sj

Ak+l, Akxk O,

and for 0 </3 < 1,

In case 2, we have

Let a ill(1 + f12) < 1 and

Then

Now let

Ax= ___a xk(Ak)T(Ak(xk)2(Ak)T)_laf.

Ax e < 1.

k(e+Ax)= a/ />o.
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Then

Ak+l AkxkAx 4--- af O
r

and

1
ell IIAxll = / (1 cfl )2 c2 4- (1 cfl)2

(14-/32--------- v1

It has been shown by Roos and Vial [12] that if the starting and g are in the
"quadratic convergence" region described in Lemma 1, the new center pair yk+l and
X
k+l of ’k+l can be generated in O(ln L) Newton’s steps. In particular, we can

repeatedly solve the following system of linear equations for Ax and Ay"

XAs + SAx e Xg,

Ak+I Ax=O and As=ck+I--(Ak+I)T Ay,

and let

-4-Ax and g-g4-As.

Note that a new solution generated from the system always has

(12) (ff)r n.

We now derive the following convergence theorem.
THEOREM 3. In O(qL) iterations and O(qL In L) Newton’s steps, the perfect center

algorithm generates a feasible point in , where q is the number of inequalities in the
final system of {[-k}.

Proof. Note that P(I-I) -_< O. In each iteration, we either update an inequality or
add an inequality. The potential function is reduced by a constant due to (10) and
(11). Let l) be the subsystem of [l corresponding to the final l-I k, i.e.,

1) {y" c(ck)--(Ak)Ty>--O},

where c(ck) is the subvector of c having the same indices as e k. Then, we must have

c(ck)ck and fiC’k,
which leads from (9) to

(13) _qL< p(() <__ p(k).

However, after O(qL) iterations,

P(k)-qL,

which contradicts (13). ]

3. An algorithm using approximate centers. In this section, we show that using the
perfect center is unnecessary. This issue has been discussed by Renegar [11] and
Sonnevend [14] in a path-following algorithm for linear programming. Similarly, we
now use approximate centers instead of perfect centers in our potential algorithm. In
fact, the step in case 1 of our algorithm is similar to the step in Renegar’s algorithm
in which only the objective hyperplane is updated iteratively.

Without involving too many error analyses, we prove the following basic theorem
to show that an approximate center suffices to terminate the algorithm.
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LEMMA 2. Let f {y R S Ary >_ 0 R "}, and let an interior pair X
k and

y (s=c--ATy) of f satisfy

(14) Axk=O, (sk)rxk= n, and [[Xs-ellN %
where < 1. en,

P() In (s.) P()-2(1- 7)"

Proo From Lemma 1 of Ye 19],

k k ksk y2 y2
(x;s;)eTX -n-2(1- )-- 2(1j=l

Denote by x and y (s c--ATy) the center pair of ft. Noting that Xs e, we have

2(15) ln(xs)- ln(x; 2(1 )= =1

The left-hand side of (15) can be written as

In (x’)- In (x)+ In (s.)- In (s).
j=l j=l j=l j=l

Since ya maximizes the potential function over the interior of f, we have

In (s)- In (s) -> O.
j=l j=l

On the other hand, one can verify that x is the maximizer of

maximize In (xj)
j=l

subject to xe{x" Ax=O, crx=n,x>O}.

Thus,

In (x)- In (x) >= O.
j=l j=l

Due to (15), we have the desired result. H
Lemma 2 indicates that the potential value at an approximate center of f,

characterized by the condition (14), differs from the exact potential value by a small
constant. Therefore, for an approximate center yk at the kth iteration of the algorithm,
we replace (13) with

Y In (ssk.) _-> p(-k)_ 7
2

> 3/2
2(1- 7)

=-qL
2(1- y)

which can be used to terminate the algorithm after k- O(qL) iterations.

ALGORITHM USING APPROXIMATE CENTERS
The kth iteration of the algorithm can be modified as follows. In case 1, we update

k+l k k T kcy sy-(1- fl)/xf + a fy
k+l

cj =c forj#j,
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and

In case 2, we update

Ak+l Ak.

( ck )ck+l and Ak+l (Ak, ay),
[3+ ayk

where =x/a(Ak(xk)2(Ak)r)-laf. Since O< yk < e,

Ak(xk)E(Ak)r= Ak(sk)-I(skxk)2(sk)-I(Ak) r

>" (min k k yk-2x)sj)2(( +(I- yk)-2)

=(1 7)((Y)-2+ (I- Y)-) >= 8(1- 7)L
i.e., Ak(sk)-2(Ak) T 8(1 )2i is positive semidefinite. Hence,

(16) = a(A(Xk)EA)-la; 8(1 )2 8(1 V)2"

We now show that Lemma 1 is still valid.
LEMMA 3. Let xk and s k be given in (14). en, in both cases of the modified

algorithm, there exists an > 0 such that

Ak+l 0 and I1- 1 A for some constant A < 1,

Where g= ck+I--(Ak+I)yk R.
k k

X
kkforjfandgy=sy-(1-fl)/xy Let= >0.Proo In case 1, we have g s

Then,

Ak+l Akxk 0

and

In case 2, we have

Let a < 1 and

I1:-ell- IIx- e+

llXs ell + I1-xs
--<_/+ (1 -/3).

Then, again,

a Ak T -1AX=----xk(Ak)r( (x)E(Ak) af.

IIAxll == e < 1.

Now let

k(e+Ax)2=
a/ />0.
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Then,

Ak+l AkxkAx +-- a)- 0,
r

and

ell )‘ IIxs( + ax) ell = + (1 ceil)-

-<(llxs ell + IIXSAxlI)= +(1 ceil)2

(llxs ell + [[xs[[ liaxl[)2 +(1 afl)

(r+ ( + r))+ (-)

+))
_

1 + 7
2 (fl(l+y-7()12 + f12

for

/3-(+)
(1+7)2+fl2"

Letting/3 1/2 in case 1 and/3 1 in case 2, and letting y be small enough but a constant,
we then have the desired result. F1

Lemma 3 shows that, even though it is not perfectly centered, yk is still in the
"quadratic convergence" region of fk+. An approximate center pair yk/l and xk+

can be updated fr,om yk and in a constant number of Newton’s steps. We nov, verify
that the potential function is still reduced by a constant for a small y.

LEMMA 4. Let xk and S
k be given in (14) and let ’ and ga (,,) be the center pair

for fk+ defined in the modified algorithm. Then, in both cases of the modified algorithm,

p(glk+l) __<__ p(fk) i for some constant > O.

Proof. The proof for case 1 is similar to Theorem 1. Note that we still have

erXkg erXksk--(1 --) n 1 + .
Since p(fk) __> y.j__ In (s),

exp p(flk+l) Sj k k k(sx) /
exp p(ok) =1 s2 2=1 2=

sx

1 n-l+sx) (1/sx)2 sx (1/
j= j=

_--<exp (/3 1) II (1/sx).
j=l

Thus, from (15),

p(l)k+,) p(fk)=(fl 1) In(..kk< SX
j=l

<_--(fl-1)+2(1-3,)"
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In case 2, let go= C
k _(Ak)Tfia> 0 be the first n slacks at the new center rio. Then we

have
T k yasn+l=af(Y )+fl

=ay(Ak(Xk)2(Ak) T)-(Ak(Xk)E(Ak T)(yk _fia) / fl
-a(Ak(Xk)2(Ak) T)-IAk(xk)2((Ak) Tyk (Ak) Trio) + fl
--a (Ak(xk)2(Ak) T)-IAk(X)2(--ck / (Ak) Tyk + C

k (Ak) Tyo) / fl
--a .(Ak(xk)(Ak) T)-IAk(xk)(g Sk) + fl
=ay(Ak(xk)2(Ak)T)-Akxk(xkg Xksk) + fl

T 1Akxk ka Xkska f(Ak(Xk)2(Ak) T)- [IX + fl
(lx Xs +)

(llx- ell + IIxs- ell +)
(llx- ell + +).

Thus,

2(1-3,)

Note that we still have

e rXkO e rXkck n.

From (15), (16), and Theorem 2,

p(k+l) p(lk) <__ In (4) (1.5 y --/3+

_-<ln (x/) -In (1- y)- (1.5-y-)+
,)/2

2(-7)"

Let 1/2 in case 1 and fl 1 in case 2, and let y be small enough but a constant. Then,
the potential value is reduced by a constant 6.

Now Theorem 3 can be modified as Theorem 4.
THEOREM 4. 111 O(qL) iterations and O(qL) Newton’s steps, the approximate center

algorithm generates a feasible point i11 , where q is the number of inequalities in the

final system of {k}.
4. Further remarks. Theoretically, the complexity result of our algorithm is worse

than the best result for linear programming. However, if the full linear system is known,
we can also reduce the complexity of the algorithm to the best one using Corollary 1
of Ye [18]. More precisely, we use multiple cuts to shrink the polytope. For example,
if we update 0(11) inequalities in +, Theorem 1 becomes

P(12+) _-< P(a)- O(n)(1 -/3).
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Let fl 1/x/-. Then,

P(/) <- P()- O(v/),
and it can be verified that yk is still in the "quadratic convergence" region of fl/. This
also explains why a factor ofv/ is saved from Karmarkar’s original potential reduction
algorithm.

Like Todd 16] and Ye [20], we can analyze a primal potential function. At the
kth iteration, we have a center pair s k (yk) and X

k Rq. Thus,

q ln ((xk)Tsk) In (I k k)(xjsj) -qlnq.
j=l

Noting that (xk) Tsk Ck) Txk, we have

ck(xk)=q In ((ck)Txk)--ln ( I (X)/ q ln q/ p(k),
j----1 /

where ck(xk) relates to the volume of an ellipsoid containing the feasible region.
Therefore, ck(xk) is reduced as p(-k) is decreased, i.e., the containing ellipsoid shrinks
like it does in the ellipsoid method.

At this moment, we only update or add inequalities to the working system of
In fact, we can also eliminate inequalities from the working system using the criteria
developed in Todd [16] and Ye [21]. By doing this, we delete some columns from the
working matrix, i.e., the current basis-candidate-set, like the simplex method in the
context of LP. Further research is needed to determine how deleting inequalities will
affect the potenti,al function that is used to measure the iterative progress, and new
potential functions may have to be invented to characterize this process.

Additionally, the techniques developed in this paper can be applied to solve linear
programming problems of the form

LD maximize bTy

subject to y {y R"" ATy <_ C, 0 y e}.

A dual-form of the algorithm can be described as follows. Assuming b II- 1, we
add one more inequality,

bTy>--z,

to the inequality system. We start from yO and z, a lower bound for the optimal
objective value z*, where yO is the approximate center for a subset of the inequalities

F-{y R". bTy>_z,O<_y<_e}.

If yO is feasible for LD we increase z; otherwise we add one violated inequality.
Again, the potential value associated with the polytope

k {y R"" b Tyk Z, (Ak) Ty <_ C
k}

is reduced by a constant. In O(qL) steps we can terminate the algorithm" either report
that the problem is infeasible or generate a feasible solution with

bTyk--z*<2-L,
where q is the number of cuts added to the system. Note that in each step we generate
a positive primal feasible solution which satisfies Akx b, where Ak is only a submatrix
of the constraint matrix. It is our hope that many inequalities (or columns) can be
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ignored during the algorithm. As we mentioned before, Goffin, Haurie, and Vial [3]
and Mitchell [9] have reported encouraging computational results in their primal-form
approaches. Recently, Goldstein [4] also reported similar behavior of the algorithm
in solving a min-max problem, where q is virtually independent of the total number
of inequalities in the system.

The following is a nonrigorous probabilistic argument on why this behavior may
be anticipated. From Theorem 2, when a hyperplane cuts through the analytic center
(i.e., fl 0), the potential reduction in one iteration of the algorithm of 2 is

In ((a))--ln (ll-ell)+ In
j=l

with eTa n and a > O. Let aj be independently drawn from a probability distribution,
say the uniform distribution [0, 1], and let

na

j

Then, the expected value of In ((a)) is at most -O(n) (this is also confirmed by
many simulation runs). If this reduction holds for each iteration, then after k iterations
the total potential reduction is

, O(2m+i-1)=O(2mk+k(k-1)/2).
i=1

Thus, the terminating condition in Theorem 3 indicates that we need

O(2mk+ k(k- 1)/2) (2m + k)L

to stop the iterative process. Here, we see that k depends on L and rn only.
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Abstract. This paper explores the convergence of nonlinear conjugate gradient methods without
restarts, and with practical line searches. The analysis covers two classes of methods that are globally
convergent on smooth, nonconvex functions. Some properties of the Fletcher-Reeves method play
an important role in the first family, whereas the second family shares an important property with
the Polak-Ribire method. Numerical experiments are presented.
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scale optimization
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1. Introduction. The object of this paper is to study the convergence properties
of several conjugate gradient methods for nonlinear optimization. We consider only
the case where the methods are implemented without regular restarts, and ask under
what conditions they are globally convergent for general smooth nonlinear functions.
The analysis will allow us to highlight differences among various conjugate gradient
methods, and will suggest new implementations.

Our problem is to minimize a function of n variables,

(1.1) rain f(x),

where f is smooth and its gradient g is available. We consider iterations of the form

dk --gk for k 1,(1.2)
--gk -+-kdk-1 for k _> 2,

(1.3) Xk+l xk + akdk,

where/k is a scalar, and ck is a steplength obtained by means of a one-dimensional
search. We call this iteration a conjugate gradient method if/k is such that (1.2)-(1.3)
reduces to the linear conjugate gradient method in the case when f is a strictly convex
quadratic and ck is the exact one-dimensional minimizer. Some of the results of this
paper, however, also apply to methods of the form (1.2)-(1.3) that do not reduce to
the linear conjugate gradient method.

The best-known formulas for k are called the Fletcher-Reeves (FR), Polak-
Ribire (PR), and Hestenes-Stiefel (HS) formulas, and are given by

(1.4)

(1.5)
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Here, (.,.) is the scalar product used to compute the gradient and II" denotes its
associated norm. The numerical performance of the Fletcher-Reeves [6] method is
somewhat erratic: it is sometimes as efficient as the Polak-Ribire and Hestenes-
Stiefel methods, but it is often much slower. Powell [18] gives an argument showing
that, under some circumstances, the Fletcher-Reeves method with exact line searches
will produce very small displacements, and will normally not recover unless a restart
along the gradient direction is performed. In spite of these drawbacks, Zoutendijk
[27] has shown that the method cannot fail. He proved that the Fletcher-Reeves
method with exact line searches is globally convergent on general functions. Al-Baali
[1] extended this result to inexact line searches.

The Hestenes-Stiefel and Polak-Ribire methods appear to perform very similarly
in practice, and are to be preferred over the Fletcher-Reeves method. Nevertheless,
in a remarkably laborious paper, Powell [19] was able to show that the Polak-Ribire
method with exact line searches can cycle infinitely without approaching a solution
point. The same result applies to the Hestenes-Stiefel method, since the two methods
are identical when (gk, dk-1) 0, which holds when line searches are exact. Since
the steplength of Powell’s example would probably be accepted by any practical line
search, it appears unlikely that a satisfactory global convergence result can be found
for the Polak-Ribire and Hestenes-Stiefel methods. In contrast, A1-Baali’s conver-
gence result for the less efficient Fletcher-Reeves method is very satisfactory. This
disconcerting state of affairs motivated the present study.

In this paper we will consider various choices of k and various line search strate-
gies that result, in globally convergent methods. In 2 we describe the approach
used in our analysis, and summarize some of the previous work in the area. Sec-
tion 3 establishes global convergence for the class of methods with Ikl --< R/k and
describes a modification of the Polak-Ribire formula. In 4 we consider methods
that use only nonnegative values for k, and which are, in some sense, related to the
Polak-Ribire method. In particular, we show that a suggestion of Powell [20] to
set k max{/R, 0} results in global convergence, even for inexact line searches.
Further remarks on the convergence results are made in 5, and the results of some
numerical experiments are presented in 6.

We note that this paper does not study the rate of convergence of conjugate
gradient methods. For some results on this subject, see Crowder and Wolfe [5], Cohen
[4], Powell [17], Baptist and Stoer [2], and Stoer [22].

2. Preliminaries. Some important global convergence results for conjugate gra-
dient methods have been given by Polak and Ribire [16], Zoutendijk [27], Powell [19],
and A1-Baali [1]. In this section we will see that the underlying approach used for
these analyses is essentially the same, and we will describe it in detail, since it is also
the basis for the results presented in this paper. Before doing so, we describe our
notation, state the assumptions we make about the objective function, and consider
the line search strategy.

Notation and definitions. We denote the starting point by xl, and define
Sk := Xk+l- Xk and Yk :-- gk+l- gk. We say that dk is a descent direction if
(gk, dk) < O. We will also make use of the angle 0 between --gk and d:

(2.1) cos Ok := --(gk, dk}/llgklllldkll.

The Fletcher-Reeves, Polak-Ribire, and Hestenes-Stiefel methods will be abbrevi-
ated as FR, PR, and HS, respectively. For a derivation of these methods and a
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discussion of some of their properties, see Gill, Murray, and Wright [11] and Fletcher

ASSUMPTIONS 2.1. (i) The level set . :- {x: f(x)

_
f(Xl)} is bounded.

(ii) In some neighborhood Af of, the objective function f is continuously differ-
entiable, and its gradient is Lipschitz continuous, i.e., there exists a constant L > 0
such that

(2.2)

for all x, Af.
Note that these assumptions imply that there is a constant , such that

(2.3) I1()11 < , for all x e .
Let us now turn our attention to the line search. An efficient strategy, studied

by Wolfe [25], consists in accepting a positive steplength ak if it satisfies the two
conditions:

(2.4)
(2.5)

f(Xk + akdk) <_ f(Xk) + alak(gk, dk)
(g(xk + akdk), dk >_ a2 (gk, dk ),

where 0 < al < a2 < 1. We will sometimes also refer to more ideal line search
conditions. To this end let us define the following strategy: a positive steplength ak
is accepted if

(2.6) f(Xk + akdk) <_ f(Xk + &kdk),

where & is the smallest positive stationary point of the function k(a) := f(x+ad).
Assumptions 2.1 ensure that &k exists. Note that both the first local minimizer and
the global minimizer of f along the search direction satisfy (2.6).

Any of these line search strategies is sufficient to establish the following very
useful result.

THEOREM 2.1. Suppose that Assumptions 2.1 hold, and consider any iteration of
the form (1.3), where dk is a descent direction and ak satisfies one of the following
line search conditions:

(i) the Wolfe conditions (2.4)-(2.5), or

(ii) the ideal line search condition (2.6).
Then

cos2 Ok I1  11 <
k>l

This result was essentially proved by Zoutendijk [271 and Wolfe [25], [26]. We shall
call (2.7) the Zoutendijk condition.

We can now describe the basic ideas used for the convergence analysis. The first
results, by Polak and Ribire [16] and Zoutendijk [27], assume exact line searches.
The term exact line search can be ambiguous. Sometimes, it implies that a one-
dimensional minimizer is found, but often it simply means that the orthogonality
condition

(2.8) (gk,dk-) =0
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is satisfied. Throughout the paper we will indicate in detail the conditions required
of the line search. Let us suppose that dk-1 is a descent direction and that the line
search satisfies Zoutendijk’s condition and condition (2.8). From (1.2) and (2.8) we
have that

IIgll(2.9) cos0k IIdll’
which shows that dk is a descent direction. Substituting this relation in Zoutendijk’s
condition (2.7) we obtain

IIgll 4
< .(2.10) E iidllk>l

If one can show that {lldll/llgll} is bounded, which means that {cos 0} is bounded
away from zero, then (2.10) immediately gives

O.(z.) g

This is done by Polak and Ribire [16] for their method, assuming that f is strongly
convex, i.e., (g(x)- g(&), x- 5c) >_ c [Ix- &ll 2, for some positive constant c and for all
x and in .

For general functions, however, it is usually impossible to bound {l[dkll/llgkll} a
priori, and only a weaker result than (2.11) can be obtained, namely,

(2.12) liminf Ilall o.

To obtain this result one proceeds by contradiction. Suppose that (2.12) does not
hold, which means that the gradients remain bounded away from zero" there exists
"y > 0 such that

(2.13) IIgll > "
for all k >_ 1. Then (2.10) implies that

1
(2.14) E iidll

< "
k>l

We conclude that the iteration can fail only if IIdll --* c sufficiently rapidly. The
method of proof used by Zoutendijk for the FR method consists in showing that, if
(2.13) holds, then Ildkll 2 can grow at most linearly, i.e.,

for some constant c. This contradicts (2.14), proving (2.12).
The analysis for inexact line searches that satisfy Zoutendijk’s condition can

proceed along the same lines if one can show that the iteration satisfies

(2.15) COS0k

_
C Ilgkll/lldkll,

for some positive constant c. Then, this relation can be used instead of (2.9) to give
(2.10), and the rest of the analysis is as in the case of exact line searches.
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A1-Baali [1] shows that the FR method gives (2.15) if the steplength satisfies the
strong Wolfe conditions"

(2.16) f(xk +
(2.17) I(g(xk + akdk), dk)l <_ --a2(gk, dk),

where 0 < al < if2 < 1. In fact, it is necessary to require that a2 < for the result
to hold. He thus shows that (2.12) holds for the FR method.

A1-Baali’s result is also remarble in another respect. By establishing (2.15),
which by (2.1) is equivalent to

(2.18) (gk, dk) --c []gk] 2,

he proved that the FR method using the strong Wolfe conditions (with 2 < ) always
generates descent directions. Prior to this result it was believed that it was necessary
to enforce the descent condition while doing the line search.

In this paper we use the approach described above to establish the global conver-
gence of various algorithms with inexact line searches. As we do so, we will repeatedly
encounter (2.18), which appears to be a natural way of guaranteeing descent for con-
jugate gradient methods. We call (2.18) the sucient descent condition. The first
class of methods we consider, in 3, is related to the FR method. We show that any
method of the form (1.2)-(]..3) is globally convergent if k satisfies k . The
result readily suggests a new implementation of the PR method that preserves its
efficiency and assures its convergence.

In 4, we study methods with k 0 that are, in some sense, related to the
PR method. A particular case is the following adaptation of the PR method, which
consists in restricting k to positive values: we let

(2.19) k max(, 0}.

The motivation for this strategy arises from Powell’s analysis of the PR method.
Powell [19] assumes that the line search always finds the first stationary point, and
shows that there is a twice continuously differentiable function and a starting point
such that the sequence of gradients generated by the PR method stays bounded away
from zero. Since Powell’s example requires that some consecutive search directions
become almost contrary, and since this can only be achieved (in the case of exact line

searches) when k < 0, Powell [20] suggests modifying the PR method as in (2.19).
In 4 we show that this choice of k does indeed result in global convergence, both
for exact and inexact line searches. Moreover, we show that the analysis also applies
to a family of methods with k 0 that share a common property with the PR
methodwe call this Property (.).

3. Iterations constrained by the FR method. In this section we will see
that it is possible to obtain global convergence if the parameter k is appropriately
bounded in magnitude. We consider a method of the form (1.2)-(1.3), where k is
any scalar such that

(3.1) _<

for all k >_ 2, and where the steplength satisfies the strong Wolfe conditions (2.16)-
(2.17) with a2 < . Note that Zoutendijk’s result, Theorem 2.1, holds in this case,
since the strong Wolfe conditions imply the Wolfe conditions (2.4)-(2.5). The next
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two results are based upon the work of A1-Baali [1] for the FR method, and are slightly
stronger than those given by Touati-Ahmed and Storey [24].

LEMMA 3.1. Suppose that Assumptions 2.1 hold. Consider any method of the
form (1.2)-(1.3), where k satisfies (3.1), and where the steplength satisfies the Wolfe
condition (2.17) with 0 < a2 < 1/2. Then, the method generates descent directions dk
satisfying

1 < (gk, dk) < 2a2--1 k-l,(3.2)
l-a2 Ilgkll 2 l-a2

Proof. The proof is by induction. The result clearly holds for k 1 since the
middle term equals -1 and 0 _< a2 < 1. Assume that (3.2) holds for some k _> 1.
This implies that (g,d < 0, since

(3.3) 2a2 1
< 0,

1 a2

by the condition 0 < a2 < 3" From (1.2) and (1.4) we have

(gk+1, dk(3.4)
(gk+l, dk+)

--1 / k+l --1 k+ (gk+, dk)

Using the line search condition (2.17) we have

which, together ith (3.4), gives

-1+a2
1 Ilgkll 2

From the left-hand side of the induction hypothesis (3.2), we obtain

-1 Ik+ll (72 < (gk+,dk+l)
<--1-t I/k+ll (72

k+ 1 (72

Using the bound (3.1), we conclude that (3.2) holds for k + 1. [:]

Lemma 3.1 achieves three objectives: (i) it shows that all search directions are
descent directions, and the upper bound in (3.2) shows that the sufficient descent
condition (2.18) holds; (ii) the bounds on (g,d) impose a limit on how fast IIdll
can grow when the gradients are not small, as we will see in the next theorem; (iii)
from (2.1) and (3.2) we see that there are positive constants cl and c2 such that

< cos < I1  11
ildkll ildkll.

Therefore, for the FR method or any method with I/kl _< flR, we have that cos 0k is
proportional to Ilgkll/lldkll. We will make good use of this fact later on.

THEOREM 3.2. Suppose that Assumptions 2.1 hold. Consider any method of the

form (1.2)-(1.3), where k satisfies (3.1), and where the steplength satisfies the strong
ThenWolfe conditions (2.16)-(2.17), with 0 < (71 < (72 < 3"

lim inf 119 II o.
k----- cx:)



CONVERGENCE OF CONJUGATE GRADIENT METHODS 27

Proof. From (2.17) and Lemma 3.1 we have

(3.6) I(gk, dk-1)l < --(T2(gk-1, dk-i) <
1-a2

Thus from (1.2) and (3.1),

IIdkll 2 -- Ilgkll 2 -}- 21kl I(gk, dk-1}l + l]dk-lII 2

IIg - ll + Zlld-lll e

1

Applying this relation repeatedly, defining (1 / a2)/(1 a2) >_ 1, and using the
condition I/kl _< /R, we have

2 2

k

j=l

Let us now assume that IIgll k > 0 for all k. This implies, by (2.3), that

4(3.7) IIdkll 2 _< k.

We now follow tim reasoning described in 2. From the left inequality in (3.5) and
Zoutendijk’s result (2.7), we obtain (2.10). If the gradients are bounded away from
zero, (2.10) implies (2.14). We conclude the proof by noting that (3.7) and (2.14) are
incompatible, cl

This theorem suggests the following globally convergent modification of the PR
method. It differs from that considered by Touati-Ahmed and Storey [24] in that it
allows for negative values of/k. For all k _> 2 let

This strategy avoids one of the main disadvantages of the FR method, as we will now
discuss.

We have observed in numerical tests that the FR method with inexact line searches
sometimes slows down away from the solution: the steps become very small and this
behavior can continue for a very large number of iterations, unless the method is
restarted. This behavior was observed earlier by Powell [18], who provides an expla-
nation, under the assumption of exact line searches. It turns out that his argument
can be extended to the case of inexact line searches, due to (3.5). The argument is
as follows. Suppose that at iteration k an unfortunate search direction is generated,
such that cos0k 0, and that xk+l xk. Thus 119k+lll 1[9kl[, and

FR(3.9) k+l " 1.

Moreover, by (3.5),

[Igk+l Ilgk << JJdk JJ.
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From this relation, (3.9), and (1.2), we see that Ildk+lll Ildkll >> Ilgk+lll, which by
(3.5) implies that cosOk+l - 0. The argument can therefore start all over again. In
6 we give a numerical example demonstrating this behavior.

The PR method would behave quite differently from the FR method in this sit-
uation. If gk+l " gk, then #1 0, SO that by (1.2) and (3.5), COSk+l >> COS0k.
Thus the PR method would recover from that situation. Let us now consider the
behavior of method (3.8) in these circumstances. We have seen that fi/l " 1, and
PR PR#Ig+l " O, in this case. The method (3.8) will thus set #k+l ilk+i’ as desired. It is

reassuring that the modification (3.8), which falls back on the FR method to ensure
global convergence, avoids the inefficiencies of this method.

The previous discussion highlights a property of the PR method that is not shared
by the FR method: when the step is small, R will be small. This property is essential
for the analysis given in the next section, where a method that possesses it will be
said to have Property (,).

It is natural to ask if the bound Iflkl -< can be replaced by

(3.10)

where c > 1 is some suitable constant. We have not been able to establish global
convergence in this case (although, by modifying Lemma 3.1, one can show that the
descent property of the search directions can still be obtained provided r2 < 1/(2c)).
In fact, one can prove the following negative result.

PROPOSITION a.a. Consider the method (1.2)-(1.3), with a line search that always
chooses the first positive stationary point ofk(c) f(xk +cdk). There exists a twice
continuously differentiable objective function of three variables, a starting point, and
a choice of flk satisfying (3.10) for some constant c > 1, such that the sequence of
gradients { [Igk II } is bounded away from zero.

Proof. The objective function is taken from the fourth example of Powell [19]. It
is twice continuously differentiable. For this function, there is a starting point from
which the PR method with a line search providing the first stationary point fails to
converge, in the sense that IIgll >- "Y > 0 for all k. Therefore, using (1.5) and (2.3),
we have for all k >_ 2,

2PR I<_

Now, suppose that we computed (but did not use) #/R. We would see that for all
k>_2,

FR ,),2

Combining the two inequalities we obtain

<

Therefore, if the constant c in (3.10) is chosen larger than 2"4//4, the PR parameter
# in Powell’s example would always satisfy (3.10). n

We end this section by making an observation about the restart criterion of Powell
[18]. Even though this criterion was designed to ensure the convergence of Beale’s
method, we will apply it to the PR method, and see that it has some of the flavor
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of the modifications described in this section. Powell [18] suggests restarting if the
following inequality is violated

where u is a small positive constant. (Powell actually uses gk instead of gk-1 in the
right-hand side, but one can argue for either choice.) From (1.4) and (1.5),

Applying the restart criterion to the PR method we see that a restart is not necessary
as long as

Once more, /R appears as a measure of the adequacy of R, but this measure is
quite different from (3.1). In the next section we will view Powell’s restart criterion
from a somewhat different angle.

4. Methods related to the PR method with nonnegative /k. We now
turn our attention to methods with /k >_ 0 for all k. In 2 we mentioned that a
motivation for placing this restriction comes from the example of Powell, in which the
PR method cycles without obtaining the solution. Another reason for keeping/k >_ 0
is that it allows us to easily enforce the descent property of the algorithm, as we will
now discuss.

Let us consider the iteration (1.2)-(1.3) with any /k >_ 0. We will require the
su]ficient descent condition

(4.1) (gk, dk) <_ --a311gkll 2,

for some 0 < 0"3

__
1 and for all k _> 1. In contrast to the FR method, the strong

Wolfe conditions (2.16)-(2.17) no longer ensure (4.1). Note, from (1.2), that

(gk, dk) --Ilgkll 2 + k(gk, dk-).

Therefore, to obtain descent for an inexact line search algorithm, one needs to ensure
that the last term is not too large. Suppose that we perform a line search along dk-,
enforcing the Wolfe (or strong Wolfe) conditions, to obtain xk. If (gk, dk-) <_ O, the
nonnegativity of/k implies that the sufficient descent condition (4.1) holds. Moreover,
if (4.1) is not satisfied, then (gk,dk-1) > 0, which means that a one-dimensional
minimizer has been bracketed. In this case it is easy to apply a line search algorithm,
such as that given by Lemardchal [12], Fletcher [7], or Mord and Thuente [15], to
reduce I(gk, dk-)l sufficiently and obtain (4.1). This will be discussed in detail in 6.

We now prove a global convergence result for methods that are related to the
PR method, but that allow only nonnegative values of/k. The idea of our analysis
is simple, but is somewhat concealed in the proofs. We establish the results by
contradiction, assuming that the gradients are bounded away from zero:

(4.3) for some - > O, Ilgkll >-- ")’ for all k >_ 1.

Lemma 4.1 shows that in this case the direction of search changes slowly, asymp-
totically, and Lemma 4.2 proves that a certain fraction of the steps are not too small.
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In Theorem 4.3 we show that these two results contradict the assumption that the it-
erates stay in the bounded level set . We conclude that a subsequence of the iterates
converges to a stationary point.

For the results that follow, we do not specify a particular line search strategy. We
only assume that the line search satisfies the following three properties:

(i) all iterates remain in the level set defined in Assumptions 2.1:

(4.4) {xk} C ;
(ii) the Zoutendijk condition (2.7) holds; and
(iii) the sufficient descent condition (4.1) holds.

We mentioned in 2 that the Wolfe line search, as well as the ideal line search (2.6),
ensure Zoutendijk’s condition and reduce f at each step, which implies (4.4). An
exact line search satisfies the sufficient descent condition (4.1), because in this case
(gk, dk) --Ilgkll 2, and in 6 we describe an inexact line search procedure that satisfies
the Wolfe conditions and (4.1) when k >_ 0. Therefore the results of this section apply
to both ideal and practical line searches.

For the rest of the section, we assume that convergence does not occur in a finite
number of steps, i.e., gk 7 0 for all k.

LEMMA 4.1. Suppose that Assumptions 2.1 hold. Consider the method (1.2)-
(1.3), with k >_ O, and with any line search satisfying both the Zoutendijk condition
(2.7) and the sufficient descent condition (4.1). If (4.3) holds, then d 7 0 and

where uk :-- dk/lldkll.
Proof. First, note that dk 7 0, for otherwise (4.1) would imply gk O. Therefore,

Uk is well defined. Now, let us define

--gk
and 6k(4.6) rk "-ildkll ildkll

From (1.2), we have for k _> 2:

(4.7) Uk rk q- 5kUk-1.

Using the identity IlUkll link-ill and (4.7), we have

(4.8)

(the last equality can be verified by squaring both sides). Using the condition 5k _> 0,
the triangle inequality, and (4.8), we obtain

(4.9)

I1(1

Now, by (2.1) and (4.1), we have

cos Ok >_ a3 ildk I1"
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This relation, Zoutendijk’s condition (2.7), and (4.6) imply

Using (4.3), we obtain

and

which together with (4.9) completes the proof.
Of course, condition (4.5) does not imply the convergence of the sequence {Uk },

but shows that thesearch directions uk change slowly, asymptotically.
Lemma 4.1 applies to any choice of/k >_ 0. To proceed, we need to require, in

addition, that k be small when the step sk-1 Xk-Xk- is small. We saw in 3 that
the PR method possesses this property and that it prevents the inefficient behavior
of the FR method from occurring. We now state this property formally.

PIOPERTY (,). Consider a method of the form (1.2)-(1.3), and suppose that

(4.0) 0 < < I111 < ,
for all k >_ 1. Under this assumption we say that the method has Property (,) if there
exist constants b > 1 and > 0 such that for all k"

1
(4.12) I1-11-< === I1-< .
It is easy to see that under Assumptions 2.1 the PR and HS methods have Property
(,). For the PR method, using the constants and in (4.10), we can choose
b := 22//2 and A :- 2/(2Lb). Then we have, from (1.5) and (4.10),

i1
(llg + IIg-ll)llg < 2

i1_11
,

I1-111111 m

Fo be HS ebod, eebbe dece codUo (.) ad be ecod ole

(dk-, Yk-) (dk-, gk) (dk-, gk-}
_> --(1 --a2)(gk-,dk-)
> (1 .)11_11
>_ (1 a2)a3/2

Using this in (1.6) we obtain

22

k>2
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Now define A (1 -a2)a3"/2/(2Lb). Using (2.2) we see that if I]Sk_ll] <_ A, then

LA 1
I FI < (1 0-2)0-3,-)/2 2--"

It is clear that many other choices of k give rise to algorithms with Property (,).
For example, if k has Property (,), so do I/kl and/- max{/k, 0}.

The next lemma shows that if the gradients are bounded away from zero, and if
the method has Property (,), then a fraction of the steps cannot be too small. We
let N* denote the set of positive integers, and for A > 0 we define

/E {i N*" > 2, I1  -111 >

i.e., the set of integers corresponding to steps that are larger than . We will need to
consider groups of A consecutive iterates, and for this purpose we define

x {ieN*"/Ck,h := k _< <_ k + A- 1, I1  - 11 >

Let IK:k,hl denote the number of elements of Kk,h and let [.J and .] denote, re-

spectively, the floor and ceiling operators.
LEMMA 4.2. Suppose that Assumptions 2.1 hold. Consider the method (1.2)-

(1.3), with any line search satisfying (4.4), the Zoutendijk condition (2.7), and the

sufficient descent condition (4.1), and assume that the method has Property (,). Sup-
pose also that (4.3) holds. Then there exists )t > 0 such that, for any A E N* and
any index ko, there is a greater index k > ko such that

AK:,I > 2"

Proof. We proceed by contradiction. Suppose that

(4.13)
for any X > 0, there exists A E N* and k0 such that
for any k >_ ko, we have A

Assumptions 2.1 and equations (4.4) and (4.3) imply that (4.10) holds. Since the
method has Property (,), there exists A > 0 and b > 1 such that (4.11) and (4.12)
hold for all k. For this , let A and ko be given by (4.13).

For any given index > k0 + 1, we have

IIdll 2 <- (llgl[ + Itl IId-llI) 2

<_ 211gll + 2lld_lll 2

< 2,2 + 2/lld,-xll =,
where the second inequality follows from the fact that, for any scalars a and b, we

have 2ab <_ a2 + b2, and hence (a + b)2 < 2a2 + 2b2. By induction, we obtain

(4.14) Iid[I < c(1+ 2 +2 2 2 2 22i 2/1_ 2ko2/-1 "}-"""-[-

where c depends on [Ideo-ll, but not on the index 1. Let us consider a typical term
in (4.14)"

(4.15) 2n22n2 ..2
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where

(4.16) k0

_
k _< 1.

We now divide the 2(/- k + 1) factors of (4.15) into groups of 2A elements, i.e., if
N :- [(/- k + 1)/AJ, then (4.15) can be divided into N or N + 1 groups, as follows:

(4.17)

and possibly

(4.18) (2/3tu+2 2/3),

where li (i 1)A, for 1,..., N + 1, and ki li+l + 1, for 1,..., N. Note
from (4.16) that k _> ko, for 1,..., N, so that we can apply (4.13) for k k. We
thus have

(4.19) Pi := IKk,A] < A
i-- 1,.’’ N.

This means that in the range [ki, ki +- 1] there are exactly pi indices j such that
]sj_l] > A, and thus there are (A- Pi) indices with ]sj_] . Using this fact,
(4.11), and (4.12), we examine a typical factor in (4.17),

2-2+2pi b2pi-2+2p

51,

since by (4.19), 2p A 0 and 2b2 > 1. Therefore each of the factors in (4.17) is
less than or equal to 1, and so is their product. For the last group of factors, given in
(4.18), we simply use (4.11)"

<

We conclude that each term on the right-hand side of (4.14) is bounded by (2b2)A,
and as a result we have

(4.20) Ildtll 2 <_ c (1- k0 + 2),

for a certain positive constant c independent of l. In other words, we have shown that
I[dlll 2 grows at most linearly, and we now obtain a contradiction as described in 2.
Recalling that (4.1) implies condition (2.15) and using the Zoutendijk condition (2.7),
we obtain that

This contradicts (4.20), concluding the proof. D
THEOREM 4.3. Suppose that Assumptions 2.1 hold. Consider the method (1.2)-

(1.3) with the following three properties:
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(i) k >_ O for all k;
(ii) the line search satisfies (4.4), the Zoutendijk condition (2.7), and the sufficient

descent condition (4.1);
(iii) Property (,) holds.

Then lim inf Ilgk II O.
Proof. We proceed by contradiction, assuming (4.3). Therefore, the conditions

of Lemmas 4.1 and 4.2 hold. Defining ui := di/lldill, as before, we have for any two
indices l, k, with _> k"

xl Xk-1 E
i-k

E 1[si-1]lUk-1 + E 118i-lll(Ui-1- Uk-1).
i--k i--k

Taking norms,

i-k i--k

By (4.4) and Assumptions 2.1 we have that the sequence {xk} is bounded, and thus
there exists a positive constant B such that llxkll _< B, for all k _> 1. Thus

i--k i-k

Let A > 0 be given by Lemma 4.2. Following the notation of this lemma, we
define A [8BlAb. By Lemma 4.1, we can find an index ko such that

1
(4.22) E IIi lti--1]12 - 4A"

i>_ko

With this A and k0, Lemma 4.2 gives an index k >_ k0 such that

A
(4.23) ,xI :k,al > 2"

Next, for any index E [k, k + A- 1], we have, by the Cauchy-Schwarz inequality
and (4.22),
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Using this relation and (4.23) in (4.21), with k + A- 1, we have

k+A--11

i=k
--(.

Thus A < 8B/A, which contradicts the definition of A. El
Since the PR and HS methods have Property (,), the.previous theorem applies to

them provided we restrict/3k to be nonnegative. This suggests, among other things,
the following formulae:

(4.24) /3k max(/3, 0),

PR I,

and the corresponding formulae for the HS method. Of particular interest are inexact
line searches, such as the Wolfe search. We formally state the convergence result for
(4.24)--a choice of/3k suggested by Powell [20].

COROLLARY 4.4. Suppose that Assumptions 2.1 hold. Consider the method (1.2)-
(1.3) with/3k max{/3R, 0}, and with a line search satisfying the Wolfe conditions
(2.4)-(2.5) and the sufficient descent condition (4.1). Then liminf Ilgkll O.

We conclude this section by noting the relationship between (4.24), which can be
viewed as an automatic restarting procedure, and Powell’s restarting criterion. The
latter states that a restart is not needed as long as

(4.26) [(gk, gk-)[

_
u]lgk][ 2,

where we now use gk and not gk-1 in the right-hand side, and where u is a small
positive constant. By (1.5) the condition/3R > 0 is equivalent to

Thus (4.24) can be viewed as a less restrictive restarting test than (4.26). It follows
that the global convergence result of Corollary 4.4 also applies to the PR method with
Powell’s restart (4.26), provided u < 1.

5. Discussion. In 3 we saw that global convergence is obtained for any/3k in
the interval 271 [--/3a,/3k ], and in 4 we proved global convergence for any
with Property (,) contained in the interval :2 [0, cx). We now ask whether these
results can be combined to obtain larger intervals of admissible/3k. In particular, since
the PR method has Property (,), we ask whether global convergence is obtained by
restricting/3 to the larger interval 2"1 U 22, i.e., by letting

f/3 >-/3
--/4k otherwise.

Interestingly enough, global convergence cannot be guaranteed, and this is shown
by the fourth example of Powell [19]. In this example, the sequence {/3R//3} has
exactly three accumulation points:

1
3’ 1, and 10.
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Therefore, there exists an index k0 such that flk /R _> _flR, for all k _> k0. Now
the function can be modified and the starting point can be changed so that the PR
method generates, from the new initial point &l, a sequence {&k} with 2k x+o-2,
for k >_ 2. In this modified example, we have/’a _> -fl[:a, for all k _> 2, but the
sequence of gradients is bounded away from zero.

There is another example in which intervals of admissible k cannot be combined.
Any method of the form (1.2)-(1.3) with a line search giving (gk, dk-ll 0 for all k,
and with flk E /73 [--1, 1], is globally convergent. This is easy to see, since in this
case

where is an upper bound on IIg(x)ll. Therefore Ildkll 2 grows at most linearly, and
global convergence follows by the arguments given in 2. On the other hand, Corollary
4.4 shows that the PR method is convergent if restricted to/72 [0, c). However, the
PR method may not converge if fl is restricted to/73 U/72 [-1, oc). The argument
is again based on the counterexample of Powell and on the fact that fl _> -1/4 for
all k (this is proved by means of the Cauchy-Schwarz inequality; see Powell [19]).
Therefore, in this example/R E [-1, c), but convergence is not obtained.

Therefore we are not able to generalize the results of 3 and 4, and instead look
more closely at the conditions used in these sections. We ask under what conditions
is Z > 0, or/ > --ilk For strictly convex quadratic functions and exact line
searches, the PR method coincides with the FR method. Since/a is always positive,
so is flk Let us now consider strongly convex functions. It turns out that in this

FRcase/ can be negative, and in fact can be less than --ilk
PROPOSITION 5.1. There exists a C strongly convex function of two variables

and a starting point xl for which the PR method with exact line searches gives <- < O.
Proof. Let us introduce the following strictly convex quadratic function ] of two

variables x (x(),x(2)):
1](x) .= +

with gradient and Hessian (the Euclidean scalar product is assumed)

Starting from the point xl (-3, 3), the PR method with exact line searches gives

(7)
Next, it finds

5
The third point is the solution point x. (0, 0).

and

10( )d2=-- and 2=-.

We now perturb the function f inside the ball B(0, 1):= {x" XI -]- X2 < 1),
defining

f(x) f(x) +
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where the function will be such that

(5.1) (x) 0 Vx B(0, 1),

and e will be a small positive number. As the line joining xl and 2 does not intersect
the closure of B(0, 1), we see that the PR method on this new function f, starting
from the same point xl, will give x2 :2 and d2 d2. We now show how to choose
the function and the number e > 0 so that f is strongly convex and/R is negative.

We take for a function of the form

(x) :=

where / is the linear function

I(x) 4x() x(2),

and y is a C function satisfying

r(x)= 0 ifxB(0,

Clearly, satisfies (15.1), and has bounded second-order derivatives. Therefore, by
choosing e sufficiently small, say 0 < e < e, the Hessian of f will be uniformly
positive definite and f will be a C strongly convex function.

Now, when the function f is determined in this manner, there is a unique mini-
mum of f from x2 in the direction d.. As

Vf(0)= V](0)+ V(0)= (_41 )
is orthogonal to d2 2, the one-dimensional minimum is still obtained at x3 (0, 0)
(but this is no longer the solution point). Therefore,

Z + lVf(0)l <Vf(0), Vf(x)> /
iV](x)l 20/9

We see that/R < -a < 0, if 0 < e < e2 := 2/51. By taking e e (0, min(el,e2)),
we obtain the desired result. D

This proposition shows that the convergence result given by Polak and Ribire
[16], which was obtained for strongly convex functions and exact line searches, is not a
consequence of Theorem 4.3, since the latter requires k _> 0. Nor is it a consequence
of Theorem 3.2, because Proposition 5.1 shows that/ can lie outside the interval

FR].
6. Numerical experiments. We have tested several of the algorithms sug-

gested by the convergence analysis of this paper, on the collection of large test prob-
lems given in Table 1.

The starting points used are those given in the references. For the problems of
Mor, Garbow, and Hillstrom [14], we set the parameter factor equal to 1; for test
problems 8, 9 and 10, starting point 3 from the reference was used. We verified that, in
each run, all the methods converged to the same solution point; otherwise the problem
was not included in the test set. The problems are not numbered consecutively because
they belong to a larger test set. Since conjugate gradient methods are mainly useful
for large problems, our test problems have at least 100 variables.

The following are the methods tested; they differ only in the choice of k and,
possibly, in the line search.
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TABLE 1
List of test functions.

Problem Name Reference n
2
3
6
8
9
10
28
31
38
39
40
41
42
43
45
4(1)
46(2)
47
48
49
5O
51
52
53
54
55

Calculus of variations 2
Calculus of variations 3
Generalized Rosenbrock
Penalty 1
Penalty 2
Penalty 3
Extended Powell singular
Brown almost linear
Tridiagonal 1
Linear minimal surface
Boundary-value problem
Broyden tridiagonal nonlinear
Extended ENGVL1
Extended Freudenstein and Roth

Gill and Murray [9]
Gill and Murray [9]
Mor6 et al. [14]
Gill and Murray [9]
Gill and Murray [9]
Gill and Murray [9]
Mord et al. [14]
More et al. [14]
Buckley and LeNir [3]
Woint [23]
Toint [23]
Toint [23]
Woint [23]
Woint [23]

Wrong extended Wood
Matrix square root (ns-1)
Matrix square root (ns-2)
Sparse matrix square root
Extended Rosenbrock
Extended Powell
Tridiagonal 2
Trigonometric
Penalty 1 (2nd version)
INRIA ults0.4 (u0--0.95)
INRIA ulcrl.2
INRIA ulcrl.3

Toint [23]
Liu and Nocedal [13]
Liu and Nocedal [13]
Liu and Nocedal [13]
Mor et al. [14]
Mor et al. [14]
Woint [23]
Mor et al. [14]
Mor et al. [14]
Gilbert and Lemarchal [8]
Gilbert and Lemarchal [8]
Gilbert and Lemarchal [8]

100, 200
100, 200
100, 500
100, 1000
100
100, 1000
100, 1000
100, 20O
100, 1000
121,961
100
100
1000, 10000
100, 1000
100
100
100
100, 1000
1000, 10000
100, 1000
100, 1000
100, 1000
1000, 10000
403
455
1559

1. FR: The Fletcher-Reeves method.
2. PR-FR: The Polak-Ribire method constrained by the FR method, as in

(.S).
3. PR: The Polak-Ribire method.
4. PR+: The Polak-Ribire method allowing only positive values of/R, as in

For the line search we used the algorithm of Mor and Thuente [15]. This algo-
rithm finds a point satisfying the strong Wolfe conditions (2.16)-(2.17). We used the
values al 10-4 and a2 0.1, which, by Theorem 3.2, ensure that methods FR and
PR-FR are globally convergent. The line search for the PR and PR+ methods was
performed as follows. We first found a point satisfying the strong Wolfe conditions,
using the values of al and 62 mentioned above. If at this point the directional deriva-
tive of f is negative, we know that the sufficient descent condition (4.1) holds for the
PR+ method, and we terminate the line search (this was discussed at the beginning
of 4). On the other hand, if the directional derivative is positive, the algorithm of
Mor and Thuente has bracketed a one-dimensional minimizer, and if the line search
iteration is continued it will give, in the limit, a point Xk with (gk, dk-1} O. By
continuity and (4.2) it is clear that the line search will find a point satisfying the suf-
ficient descent condition (4.1) in a finite number of iterations. In the numerical tests
we set a3 10-e in (4.1). This line search can fail to produce a descent direction for
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P N

TABLE 2
Smaller problems.

it/f-g it/f-g mod

2 100 405/827 405/820
3 100 1313/2627 1313/2627
6 i00 261/547
8 100 10/36 15/49
9 100 7/20 8/22
10 100 116/236 93/191
28 100 1426/2855 1291/2584
31 100 2/3 2/3
38 100 70/142 70/142
39 121 59/122
40 100 175/351 175/351
41 100 29/60 24/50
42 1000 10/27 9/25
43 100 16/41 14/39
45 100 74/166
46(1) 100 617/1238 253/510
46(2) 100 886/1776 251/506
47 100 151/306 59/122
48 1000 79/185 71/172
49 100 1426/2855 1291/2584
50 100 72/146 72/146
51 100 202/409 42/94
52 1000 3/10 3/10

351
1313
95
12
6
91
1289

1
47
4
175
1
8
13
66
248
243
50
66
1289
52
12
2

pR+

it/g it/g

400/812 400/812
1299/2599 1299/2599
256/529 254/525
9/39 12/47
8/ 7/0

118/244 119/244
120/280 168/382

1/4 1/4
71/144 71/144

132/266 132/266
24/50 24/50
10/34 9/30
16/44 13/37
37/90 45/109
257/518 257/518
251/506 251/506
60/124 60/124
6/z /zo
117/281 168/382
72/146 72/146
45/103 45/103
4/12 4/12

mod

0
0
1
2
2
1
3
0
0
0
0
0
2
1
3
0
0
0
3
3
0
0
2

the PR method if it terminates at a point with negative directional derivative, and if

k < 0 (see the discussion in 4). We used it, nevertheless, because we know of no
line search algorithm that is guaranteed to satisfy the strong Wolfe conditions and
also provide the descent property for the PR method. Fortunately, in our tests the
line search strategy described above always succeeded for the PR method.

Our numerical experience with conjugate gradient methods indicates that it is
advantageous to perform a reasonably accurate line search. Therefore, in addition
to setting if2 to the small number 0.1, we ensured that the line search evaluated the
function at least twice. The choice of the initial trial value for the line search is also
important. For the first iteration we set it to 1/llglll, and for subsequent iterations we
used the formula recommended by Shanno and Phua [21], which is based on quadratic
interpolation.

The tests were performed on a SPARCstation 1, using FORTRAN in double
precision. All runs were stopped when

IIg(Xk)ll < 10-5(1 +

except for the INRIA problems for which the runs were stopped when the value
of the function had reached a given threshold (fstop 10-12 for ults0.4, fstop
-0.8876 10-2 for ulcrl.2 and fstop -0.10625 10-1 for ulcrl.3). The results in
Tables 2 and 3 are given in the form: (number of iterations) /(number of function
evaluations). The number given under the column "mod" for method PR-FR denotes
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P N

TABLE 3
Larger problems.

FR
it/f-g

FR-PRII it/f-g
2 200 703/1424 701/1420
3 200 2808/5617 2808/5617

oo o/
s ooo 1/ /4
10 1000 138/281 145/299
28 1000 533/1102 1369/2741
a 00 /4 /4
38 1000 264/531 263/529
39 961 143/290
4:10000 /: /
4a 000 0/:7 l/as
4 000 e/849 4/:aa
48 10000 61/143 130/283
49 1000 568/1175 1369/2741
50 1000 274/551 273/549
1 000 a/47 40/
5: 0000 4/ 4/1
53 403 ** 233/494
54 455 ** 44/91

:a/47 :a/4

596
2808
433
7

142
1366

1
217
5
5
15
92
123
1366
245
5
4
130
7
15

it/f-g it/f-g

701/1420 701/1420

1068/2151 1067/2149
6/28 10/42
16/8 16/8
212/473 97/229
/ /

/87 /87
7/28 6/26
10/33 9/29

113/231 113/231
24/73 19/62
212/473 97/229

40/92 40/92
/1 /

237/508 237/508
44/87 44/87
23/47 23/47

TABLE 4
Relative performance, in terms of function evaluations.

:;F4.R07 .55 11.o21 1.00

Imod
0
0
1
2
0
3
0
0
0
1
2
0
4
3
0
0
1
0
0
0

the number of iterations for which IRI > . For method PR+, "mod" denotes
the number of iterations for which/R < 0. If the limit of 9999 function evaluations
was exceeded the run was stopped; this is indicated by ",." The sign "**" means
that the run stopped because the line search procedure described above failed to find
a steplength. This occurred when the stopping criterion was very demanding.

It is interesting to note that /R was constrained in most of the iterations of
the method PR-FR, but was only rarely modified in the PR+ method. Many of the
problems were run again for a larger number of variables. The results are given in
Table 3.

In these runs the methods were implemented without restarting. We also per-
formed tests in which the methods were restarted along the steepest descent direction
every n iterations. (Since n is large, very few restarts were performed.) The FR
method improved substantially, but this method was still the least efficient of the
four. The other three methods performed similarly with and without restarts, and we
will not present the results here.

In Table 4 we summarize the results of Tables 2 and 3 by giving the relative
number of function evaluations required by the four methods. We have normalized
the numbers so that PR+ corresponds to 1. The symbol > means that FR requires
more function evaluations than the number given, since for some runs the method was



CONVERGENCE OF CONJUGATE GRADIENT METHODS 41

stopped prematurely; also, problems 53 and 54, in which FR failed, were not taken
into account.

The FR method is clearly the least efficient, requiring a very large number of
function evaluations in some problems. The performance of methods PR-FR, PR, and
PR+ appears to be comparable, but we would not like to draw any firm conclusions
from our experiments. PR-FR appears to be preferable to FR, but we have no
explanation for its poor performance on some problems. A close examination of
the runs provided no new insights about the behavior of the methods. The global
convergence analysis of this paper has not suggested a method that is clearly superior
to PR. For that it may be necessary to study the convergence rate or other measures
of efficiency of the methods. We leave this for a future study.

We conclude by giving an example that illustrates the inefficient behavior of the
FR method, as predicted in 3. For problem 45 with n 100, we observed that for
hundreds of iterations cos0k stays fairly constant, and is of order 10-2, while the
steps Ilxk Xk-lll are of order 10-2 to 10-3. This causes the algorithm to require a
very large number of iterations to approach the solution. A restart along the steepest
descent direction terminates this cycle of bad search directions and tiny steps. A
similar behavior was observed in several other problems.

Acknowledgment. We are grateful to Michael Powell for showing us how to
shorten the proof of Lemma 4.1, and for several other helpful comments.
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ERROR BOUND AND CONVERGENCE ANALYSIS OF MATRIX
SPLITTING ALGORITHMS FOR THE AFFINE VARIATIONAL

INEQUALITY PROBLEM*

ZHI-QUAN LUOt AND PAUL TSENG$

Abstract. Consider the affine variational inequality problem. It is shown that the distance to
the solution set from a feasible point near the solution set can be bounded by the norm of a natural
residual at that point. This bound is then used to prove linear convergence of a matrix splitting
algorithm for solving the symmetric case of the problem. This latter result improves upon a recent
result of Luo and Tseng that further assumes the problem to be monotone.

Key words, affine variational inequality, linear complementarity, error bound, matrix splitting,
linear convergence
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1. Introduction. Let M be an n n matrix and let q be a vector in n, the
n-dimensional Euclidean space. Let X be a polyhedral set in . We consider the
following afifine variational inequality problem associated with M, q, and X:

(1.1) find an x* 6X satisfying (x-x*,Mx*+q)>_O Vx6X.

The problem (1.1) is well known in optimization and contains as special cases linear
(and quadratic) programming, bimatrix games, etc. (see Cottle and Dantzig [COD68]).
When X is the nonnegative orthant in n, it is called the linear complementarity
problem (LCP). We will not attempt to survey the literature on this problem, which
is vast. Expository articles on the subject include [COD68], [nveT1], [CGL80], and
[Mur88]. For a discussion of variational inequality problems in general, see [Aus76],
[BeT89], [CGL80], and [KiS80].

Let X* denote the set of solutions of the affine variational inequality problem
(1.1), which we assume from here on to be nonempty. It is well known (and not
difficult to see from the convexity of X) that X* is precisely the set of fixed points of
the nonlinear mapping x - [x-Mx-q]+, where [.]+ denotes the orthogonal projection
onto X, i.e., Ix]+ arg minzex IIx- zll and I1" denotes the usual Euclidean norm
in n. In other words, we have

(1.2) X*-(x* en x,_[x,_Mx,_q]+ }.

(Our notation for the projection operator is nonstandard but has the advantage of
simplicity.) Although in general X* is not convex, it can be shown that X* is the
union of a finite collection of polyhedral sets (see (3.10)).

An important topic in the study of variational inequalities and complementarity
problems concerns error bounds for estimating the closeness of a point to X* (see
lean87], [MaD88], [MaS86]). Such error bounds can serve as termination criteria for
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iterative algorithms and can be used to estimate the amount of error allowable in
an inexact computation of the iterates (see [Pan86b]). Recently the authors [LuT90]
showed that one such bound, based on the norm of the natural residual function

(1.3) IIx- Ix- Mx-
is also useful for analyzing the rate of convergence of iterative algorithms for solving
(1.1). In particular, they showed that, for the problem of minimizing a certain convex
essentially smooth function over a polyhedral set, a bound analogous to the above
can be used as the basis for proving the linear convergence of a number of well-known
iterative algorithms (applied to solve this problem).

The contribution of this paper is twofold: (i) we show that the error bound
(1.3) holds locally for the affine variational inequality problem (1.1) for general M,
thus extending a result of [LuT90, 2] for the case where M is symmetric positive
semidefinite, (ii) we show, by using the above error bound, that if M is symmetric,
then any matrix splitting algorithm using regular Q-splitting, applied to solve (1.1),
is linearly convergent. (Here, by linear convergence, we mean linear convergence in
the root sense of [Ora70].) This latter result extends the one in [LuT90, 5], which
proved linear convergence for the same algorithm under the additional assumption
that M is positive semidefinite. It also improves upon the results of Pang [Pan84, 4],
[Pan86a, 2], which showed convergence (respectively, weak convergence) for a special
case of the algorithm, i.e., one that solves LCP, under the additional assumption that
M is nondegenerate (respectively, strictly copositive). Matrix splitting algorithms
using regular Q-splitting represent an important class of algorithms for solving affine
variational inequality problems and LCPs (see [LiP87]), so the resolution of their
convergence (and’their rate of convergence) is of great interest. (See 3 for a more
detailed discussion of the subject.)

This paper proceeds as follows. In 2, we prove that an error bound based on

(1.3) holds for all points in X near X*. In 3, we consider the special case of (1.1)
where M is symmetric and we use the bound of 2 to prove the linear convergence of
matrix splitting algorithms using regular Q-splitting, applied to solve this problem.
Finally, in 4, we give our conclusion and discuss possible extensions.

We adopt the following notations throughout. For any x E Rn and y E n, we
denote by Ix, y) the Euclidean inner product of x with y. For any x n, we denote
by Ilxll the usual Euclidean norm of x, i.e., Ilxll- v/ix, x>. For any two subsets
C2 of Rn, we denote by d(C, C2) the usual Euclidean distance between the sets C
and C2, that is,

d(C, C2) inf x
xC1 ,yC2

For any k matrix A, we denote by AT the transpose of A, by IIAII the matrix
norm of A induced by the vector norm I1" II (i.e., IIAII- maxllxll=x IIAxll), by Ai the
ith row of A and, for any subset I C_ (1,... ,k), by AI the submatrix of A obtained
by removing all rows I of A. Analogously, for any vector x k, we denote by
xi the ith coordinate of x and, for any subset I C_ (1,..., k}, by xi the vector with
components xi, I (with the xi’s arranged in the same order as in x).

2. A local error bound. In this section we show that d(x, X*) can be bounded
from above by the norm of x- Ix- Mx- q]+, the natural residual at x, whenever the
latter quantity is small. Our proof, like the proof of Theorem 2.3 in [LuT90], exploits
heavily the affine structure of the problem.
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Since X is a polyhedral set, we can for convenience express it as

X-{x lAx>_b},

for some m n matrix A and some b E m. Then, for any x E X, the vector

[x- Mx- q]+ is simply the unique vector z which, together with some multiplier
vector A m, satisfies the Kuhn-Tucker conditions

z x + Mx + q AT/ 0, Az > b, > 0,

(2.2) Aiz bi Vi e I(x), Ai O Vi I(x),

where we denote

I(x)={ ie{1,...,n} Ai[x-Mx-q]+=bi }.

We say that an I C_ {1,...,m} is active at a vector x e X if z Ix- Mx- q]+,
together with some A E m, satisfies (2.1) and

(2.3) Az b Viii, 0 Vi q I.

(Clearly, I(x) is active at x for all x X.)
The following lemma, due originally to Hoffman [Hof52] (also see [Rob73],

[MaS87]), will be used extensively in the analysis to follow.
LEMMA 2.1.. Let B be a k matrix, let C be an h matrix, and let d be a

vector in h. There exists a scalar T > 0 depending on B and C only such that, for
any satisfying CYc >_ d and any e k such that the linear system By e, Cy >_ d
is consistent, there is a point satisfying BI e, Ct >_ d with II2-lll <_ TIIB2--elI.

We next have the following lemma, which roughly says that if x G X is sufficiently
close to X* then those constraint indices that are active at x are also active at some
element of X*.

LEMMA 2.2. There exists a scalar > 0 such that, for any x X with IIx- Ix-
Mx- q]+ll < e, I(x) is active at some x* e X*.

Proof. We argue by contradiction. If the claim does not hold, then there would
exist an I C_ {1,..., m} and a sequence of vectors {xl, x2, .} in X satisfying I(xr)
I for all r and xr- zr -o 0, where we let zr Ixr- Mxr- q]+ for all r, and yet there
is no x* X* for which I is active at x*.

For each r, consider the following linear system in x, z, and A:

x- z- Mx + AT) q, Az >_ b, / >_ 0,

X Z X
r

Z
r

The above system is consistent since, by I(xr) I and (2.1)-(2.2), (xr, zr) together
with some Ar m is a solution of it. Then, by Lemma 2.1, it has a solution
(2r,r,r) whose size is bounded by some constant (depending on A and M only)
times the size of the right-hand side. Since the right-hand side of the above system is
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clearly bounded as r x, we have that {(}r, r, it)} is bounded. Moreover, every
one of its cluster points, say (x, z, A), satisfies (cf. xr z 0)

xO zO MxO + AT)o q, Az >_ b, o >_0,

Az b Viii, ) 0 Vie_I,

x Z "-0.

This shows that x Ix Mx -q]+ (cf. (2.1), (2.2)) and that I is active at x

(cf. (2.1), (2.3)), a contradiction of our earlier hypothesis on I. 0
By using Lemma 2.2, we can now establish the main result of this section.
THEOREM 2.3. There exist scalars > 0 and T > 0 such that

d(x, X*) <_ TIIx Ix Mx q]+

for all x e X with ]Ix -[x Mx q]+]l e.

Proof. Let e be the scalar given in Lemma 2.2. Consider any x E X satisfying
the hypothesis of Lemma 2.2, and let z [x Mx q]+. Then, by (2.1) and (2.2),
there exists some A E m satisfying, together with x and z,

x z Mx + AT) q, Az >_ b, >_ 0,

Aiz bi Vi e I(x), Ai O Vi I(x).

By Lemma 2.2, there exists an x* X* such that I(x) is active at x*, so the following
linear system in (x*, z*, *)

x* z* Mx* + ATA q, Az* >_ b, /k* >_0,

Aiz* bi Vi e I(x), 0 Viii(x), x* z* O,

is consistent. Moreover, every solution (x*, z*, A*) of this linear system satisfies x*
Ix* Mx* -q]+ (cf. (2.1), (2.2)) so, by (1.2), x* Z*. Upon comparing the above
two systems, we see that, by Lemma 2.1, there exists a solution (x*, z*, M) to the
second system such that

where T is some scalar constant depending on A and M only. Hence

Since x* e X*, so d(x,X*) <_ IIx* -xll; this then completes the proof.
Error bounds for estimating the distance from a point to the solution set, similar

to that given in Theorem 2.3, have been fairly well studied. In fact, the same bound
had been demonstrated by Pang [Pan87] and by Mathias and Pang [MaP90] to hold
globally on X for the special cases of an LCP where M is, respectively, positive

definite and a P-matrix. The bound has also been demonstrated by the authors
[LuT90] to hold locally on X for the special case where M is symmetric and positive
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semidefinite. (This bound also extends to strongly monotone variational inequality
problems [Pan87] and to problems of minimizing a certain convex, essentially smooth,
function over a polyhedral set [LuT90].)

Alternative bounds have also been proposed by Mangasarian and Shiau [MaS86]
for the special case of an LCP where M is positive semidefinite and for strongly
convex programs [MAD88]. These alternative error bounds have the advantage that
they hold globally everywhere (even for points outside X), whereas the bound of
Theorem 2.3 holds only locally on X. Might the latter bound hold globally also? For
general matrices M, the answer unfortunately is "no," as shown by an example of
a nonsymmetric LCP furnished in [MaS86] (see Example 2.10 therein). What if M
is symmetric? The answer is still "no," as shown by the following modification of
Example 2.10 in [MaS86].

Example 2.1. Let

x [0,

It is easily checked that X* ( (1, 1), (0,2) }. Let x(0) (0,1), where 0 e [0, ).
Then, as 0 --. o, we have d(x(O), X*) but ]]x(0)- [x(0)- Mx(O)-q]+]] remains
bounded.

Subsequent to the writing of this paper, we learned that Theorem 2.3 can also be
deduced from a result of Robinson [Rob81] on a locally upper Lipschitzian property
of polyhedral multifunctions. More precisely, let R n n be the natural residual
function given by

R(x) x- Ix- Mx- q]+.

Then, the inverse of R is a polyhedral multifunction and thus, by Robinson’s result
[Rob81, Prop. 1], is locally upper Lipschitzian at the origin, that is, there exist scalars
e > 0 and T > 0 such that

c_ +  llzllt ,

for all z with Ilzll _< e, where B denotes the unit Euclidean ball in . This statement
is entirely equivalent to Theorem 2.3.

3. Linear convergence of matrix splitting algorithm for the symmetric
case. In this section we further assume that M is symmetric, in which case the
variational inequality problem (1.1) may be formulated as a quadratic program of the
form

(3.1) minimize f(x)
subject to x E X,

where f is the quadratic function in Nn given by

(3.2) l(x Mx) + (q, x).f(x) -It is easily seen that the set of stationary points for (3.1) is precisely X* (cf. (1.2)),
which, by assumption, is nonempty. Note, however, that f may not be bounded from
below on X.
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Let (B, C) be a regular splitting of M (see, e.g., [OrR70], [Ke165], [LiP87]), i.e.,

(3.3) M B + C, B- C is positive definite.

Consider the following well-known iterative algorithm for solving (3.1), based on the
splitting (B, C).

MATRIX SPLITTING ALGORITHM. At the rth iteration we are given an xr E X
(with x E X chosen arbitrarily), and we compute a new iterate xr+l in X satisfying

(3.4) xr+l [xr+l Bxr+l Cxr q + hr]+,

where hr is some n-vector.
The problem of finding an xr+l satisfying (3.4) may be viewed as an affine varia-

tional inequality problem, whereby xr+ is the vector in X that satisfies the variational
inequality

(Bxr+l + Cxr + q hr,z xr+> > O Vz6X.

In general, such an xr+ need not exist, in which case the above algorithm would
break down. To ensure that this does not happen, we will, following [LiP87], assume
that

(3.6) (B, C) is a Q-splitting

or, equivalently, an x satisfying

x Ix- Bx- Cx q]+

exists for all r. (For example, (B, C) is a Q-splitting if B is positive definite (see
[BeT89], [KiS80]).)

The vector xr+l may be viewed as an inexact solution of (3.7) with h as the asso-
ciated "error" vector (so hr 0 corresponds to an exact solution of (3.7)). The idea of
introducing an error vector in this manner is adopted from Mangasarian [Man90]. Let
1’ denote the smallest eigenvalue of the symmetric part of B C (which by hypoth-
esis is positive) and let e be a fixed scalar in (0,1’/2]. We will consider the following
restriction on h governing how fast hr tends to zero:

IIh ll <  )llx x +lll Yr.

The above restriction on h provides a finite termination criterion for any iterative
method used to solve (3.7). To illustrate, fix r and suppose that we have a sequence
of points converging to a solution of (3.7). (If B is positive definite, then such a
sequence can be generated, for example, by applying the projection iteration y :=
[y- a(By + Cx + q)]+, with a a suitably chosen positive stepsize.) Suppose that the
limit is not xr (otherwise xr is already in X*) and let F Nn H N be the continuous
function given by F(y) [y- By- Cx -q]+. Then, for all points y sufficiently far
along in this sequence we have

I1(I B)(y F( ))II < (1’/2  )llx F(y)II.

(This is because the limit, say , is not equal to x and satisfies F().) Take any
such point y and set

hr (I- B)(y- F(y)), xTM F(y).
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Then, hr and xr+l satisfy (3.4) and (3.8).
The above matrix splitting algorithm was first proposed by Pang [Pan82], based

on the works of Hildreth [Hi157], Cryer [Cry71], Mangasarian [Man77], and others.
(Actually, Pang considered the somewhat simpler case of an LCP with no error vector,
i.e., X is the nonnegative orthant in n and hr 0 for all r.) This algorithm has
been studied extensively (see [LiP87], [LuT90], [LuT91], [Man77], [Man90], [Pan82],
[Pan84], [Pan86a], and references therein), but, owing to the possible unbounded-
ness of the set of stationary points, its convergence was very difficult to establish
and was typically shown under restrictive assumptions on the problem (such as that
the stationary point is unique). It was shown only recently that, if M is positive
semidefinite (in addition to being symmetric) and f given by (3.2) is bounded from
below on X, then the iterates generated by this algorithm converge to a stationary
point [LuT91] with a rate of convergence that is at least linear [LuT90, 5]. In this
section we show that the same linear convergence result holds for any symmetric M,
and thus we resolve the issue of convergence (and rate of convergence) for this al-
gorithm on symmetric problems. The convergence of this algorithm for the special
case of a symmetric LCP has been studied by Pang (see [Pan84, 4] and [Pan86a,
2]). However, Pang did not analyze the rate of convergence of the algorithm and his
convergence results require restrictive assumptions on the problem, such as that the
set of stationary points be finite.

The line of our analysis follows that outlined in [LuT90] (also see [LuT92] for a
similar analysis) and is based on using the error bound of Theorem 2.3 to show that,
asymptotically, the objective function value, evaluated at the new iterate xr+l and at
some stationary point, differ by only an order of IIxr+ -xrll 2 (see (3.19)). This then
enables us to show that the objective function values converge at least linearly, from
which one can deduce that the iterates converge at least linearly. (This is the main
motivation for considering the symmetric case, so that an objective function exists
and can be used to monitor the progress of the algorithm. The algorithm itself is well
defined whether M is symmetric or not.) On the other hand, because f is not convex
and the set of stationary points X* is not necessarily convex or even connected, a new
analysis, different from that in [LuT90], is needed to show the above relation.

We begin our analysis by giving, in the lemma below, a characterization of the
connected components of X* and the behaviour of f over these connected components.

LEMMA 3.1. Suppose that M is symmetric. Let C,C2,..., Ct denote the con-
nected components of X*, where t is some positive integer. Then,

and the following hold:
(a) Each Ci is the union of a finite collection of polyhedral sets.
(b) The Ci’s are properly separated from one another, that is, d(Ci, Cj) > 0 for

alliCj.
(c) f given by (3.2) is constant on each Ci.
Proof. Since X is a polyhedral set, we can express it as

for some m n matrix A and some b E m. For each I C_ {1,2,..., m}, let
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XI ( x Ax >_ b, Aix bx, Mx + q AT
(3.9)

for some E [0, cx)m with hi 0 Vi I }.

Then, each Xx simply comprises those elements of X* at which I is active (see (2.1)
and (2.2)), so it readily follows that

(.0) x* [_J x,.
x{,...,m}

Moreover, each XI, if nonempty, is a polyhedral set. We claim that f is constant on
each nonempty XI. To see this, fix any I (1,.-.,m} for which Xx is nonempty.
Let x and y be any two elements of XI (possibly equal). Since x Xx and y XI,
we have from (3.9) that Ai(x- y) 0 and there exists some e [0, )m with
My + q (AI)TAI. Then we have from (3.2) that

f(x) f(y) (My + q,x y) + y,

I(X M(x y))((Ax)TAI,x y) + y,

(x M(x y))(x,Ax(x y)) + y,

(x- y,M(x- y))

By symmetry, we also have

(x y,M(x y))I(u)- f(x)

and thus f(x) f(y). Since the above choice of x and y was arbitrary, then f(y)
f(x) for all x X, y XI.

Since each X is connected, it follows from (3.10) that each Ci is the union of a
finite collection of nonempty Xi’s. Since the nonempty Xi’s are polyhedral and the
C’s are, by definition, mutually disjoint, this then proves parts (a) and (b). Since f
is constant on each XI, this also proves part (c).

(Lemma 3.1(c) is quite remarble, since the gradient of f does not need to be
constant on each Ci, as can be seen from an example.)

By using Theorem 2.3 and Lemma 3.1, we can now prove the main result of this
section. (The first third of our proof follows closely that of Theorem 5.1 in [LuT90].)

THEOREM 3.2. Suppose that M is symmetric and that f given by (3.2) is bounded
from below on X. Let {xr} be iterates generated by the matrix splitting algorithm
(3.3), (3.4), (3.6), (3.8). Then {xr} converges at least linearly (in the root sense) to
an element of X*.

Proof. First we claim that

(a.11) I(xTM) I() -]x+1 xl: w.
To see this, fix any r. Since the variational inequality (3.5) holds, then, by plugging
in xr for z in (3.5), we obtain

(BxTM + Cxr + q hr, xr+ xr) O.

Also, from M B + C (cf. (3.3)) and the definition of f (cf. (3.2)), we have that

i(x+) I(x) (Bx+ +C +, x+l ) + (x+ x (C B)(+ ))/.
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Combining the above two relations then gives

f(xr+l) f(xr) _< {hr, xr+l xr} +/xr+l xr, (C B)(xr+

< IIh"llllx"+ x"ll- llxTM x"lll
<_ -11"+ ,. .,

-x))le

where the last inequality follows from (3.8). Thus, (3.11) holds.
Next we claim that there exists a scalar constant l > 0 for which

To see this, fix any r. From (3.4) we have that

II xr xT Mxr q]+ll x xr Mx q]+ xr+l
+ xr+l Bx+l Cxr q + h]+

<- II xr xr+ll + II xr Mx q]+
Ix"+ Bx+ Cx + ’]+11

< 211x x+ll + IIMx Bx,+ Cx + hrll
_< 21Ixr xr+lll + IIB(x xr+l)l + IIhll
_< ( + IIBII + /)llx" -x"+ll,

where the second inequality follows from the nonexpansive property of the projection
operator [.]+, the third inequality follows from M B / C, and the last inequality
follows from (3.8). This shows that (3.12) holds with 1 2 + IIBll +-),/2.

Since f is bounded from below on X, (3.11) implies

(3.13) II x’+l x"ll --+ o.

Then we have from (3.12) that IIx"- Ix- Mx- q]+ll-> 0, so, by Theorem 2.3 (and
using (3.12)), there exist a scalar constant t2 > 0 and an index rl such that

d(xr, X*) <_ llx+- xll w _> .
For each r, let yr be any element of X* attaining Ilu -xll d(x,X*). Then the
above relation implies

which, when combined with (3.13), yields

(3.15) yr x 0.

Let C1, C2,..., Ct denote the connected components of X*, where t is some pos-
itive integer. By Lemma 3.1 (b), the Ci’s are properly separated from one another.
Since yr E X* for all r and, by (3.13) and (3.15), yT-yr+l __, 0, this implies that the
sequence {yr} eventually settles down at one of the Ci’s. In other words, there exists
a k E {1,..., t} and a scalar r2

_
r such that

yr Ck /r >_r2.

By Lemma 3.1 (c), f is constant on Ck. Let us denote this constant by f.
the above relation implies

Then

(3.16) f(yr) f Vr >_ r2.
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For anyr_>r2 we have fromyr EX* andxr EXthat IMyr+q,xr-yr >_0
and from the Mean Value Theorem (also using (3.2)) that f(yT)_ f(xr) {M +
q, y -xr/, for some n-vector lying on the line segment joining yT with x. Upon
summing these two relations and using (3.16), we obtain

f f(xr) <_ (Met Myr, yr xr}
Mr yr yr xr

[M[] [yr xr 2.
This, together with (3.15), yields

(3.17) lim inf f(x f.
We now show that f(xr) f and estimate the speed at which this convergence

takes place. Fix any r r2. Since r r (cf. r2 r) so that (3.14) holds, this
implies

(My +q,x+-yr} (My +q,xr+-yr}+(Bx+ +Cx +q-hr,yr-x+}
((+ ) + M(x ) h,
(Bl]x+ xl + IMx + lh) x+l

( + 1)lx+ x
(3.18) (][B[ + ][M[2 + 7/2)(2 + 1)[xr+ -x[2,

where the first inequality follows from (3.5) with z set to yr, the equality follows
from C M- B (cf. (3.3)), the third inequality follows from (3.14), and the last
inequality follows from (3.8). For convenience, let 3 denote the scalar constant on
the right-hand side of (3.18). Then we obtain from (3.16) that

f(x+) f f(+)_ I()
{x+ y, (x+(My + q,xr+ y) + M

xr+l yr 23[x+- xr[[ 2 + [M][[
(.1) ( + MI( + 1)) lx+ xlt,
where the second equality follows from (3.2), the first inequality follows from (3.18),
and the last inequality follows from (3.14).

Let 4 denote the scalar constant on the right-hand side of (3.19). Then (3.11)
and (3.19) yield

f(x+) f llx+

A(f(x)- f(x+l)) w .
Upon rearranging terms, we find that

(1+-- (f(r+) __(f(r)_ f) Vr r.

On the other hand, we have from (a.17) and the Net that f() is monotonically
decreasing with r (el. (a.ll)) that I() R I for all r, so the above relation implies



ERROR BOUND AND MATRIX SPLITTING ALGORITHMS 53

that {f(xr)} converges at least linearly (in the root sense) to f. By (3.11), {xr}
also converges at least linearly (in the root sense). Since d(xr,X*) 0 (cf. (3.15)),
the point to which {xr } converges is an element of X*.

Note that we can allow the matrix splitting (B, C) to vary from iteration to
iteration, provided that the eigenvalues of the symmetric part of B C are bounded
away from zero and that IIBII is bounded.

Also note that because f is not convex, the point to which the iterates converge
need not be an optimal solution of (3.1). (Finding such an optimal solution is certainly
desirable.) On the other hand, it is easily seen from Lemma 3.1(c) and the fact that
the f value of the iterates are monotonically decreasing that local convergence to an
optimal solution holds. In other words, if the initial iterate (namely, x) is sufficiently
close to the optimal solution set of (3.1), then the point to which the iterates converge
is an optimal solution of (3.1).

4. Concluding remarks. In this paper, we have shown that a certain error
bound holds locally for the affine variational inequality problem. By using this bound,
we are able to prove the linear convergence of matrix splitting algorithms using regular
Q-splitting for the symmetric case of the problem.

There are a number of open questions raised by our work. The first question
concerns whether the error bound studied here holds globally. Example 2.1 shows
that it does not hold globally even when M is symmetric. But what if M, in addition,
is positive semidefinite? A "yes" answer to this question would allow us to show global
linear convergence for the matrix splitting algorithm of 3 on symmetric monotone
problems. Also, our convergence result (Theorem 3.2) asserts convergence only when f
given by (3.2) is bounded from below on X. If this were not the case, could something
meaningful about convergence still be said? Another question concerns whether other
error bounds, such as those proposed in [MAD88] and [MaS86], can be used to analyze
the convergence of an iterative algorithm, as is done here. Also, can the analysis of 3
be extended to the nonsymmetric case by finding an appropriate "objective function"
to work with? Or to the simpler case of a nonsymmetric LCP? (It is well known that
any LCP can be converted to a quadratic program. However, except under certain
conditions (see [CPV89]), the set of solutions for the former does not need to coincide
with the set of stationary points for the latter.)

It would also be worthwhile to find other problem classes for which the error
bound studied here holds. Then, we can be hopeful of proving linear convergence
results for these other problems.
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A LARGE-STEP ANALYTIC CENTER METHOD FOR A CLASS OF
SMOOTH CONVEX PROGRAMMING PROBLEMS*

D. DEN HERTOGt, C. ROOSt, AND T. TERLAKY$

Abstract. In this paper, a large-step analytic center method for smooth convex programming
is proposed. The method is a natural implementation of the classical method of centers. It is
assumed that the objective and constraint functions fulfil the so-called Relative Lipschitz Condition,
with Lipschitz constant M > 0. A great advantage of the method, over the existing path-following
methods, is that the steps can be made long by performing linesearches.

In this method linesearches are performed along the Newton direction with respect to a strictly
convex potential function when located far away from the central path. When sufficiently close
to this path a lower bound for the optimal value is updated. It is proven that the number of
iterations required by the algorithm to converge to an e-optimal solution is O((1 + M2)VI In el) or

O((1 + M2)nl ln el) depending on the updating scheme for the lower bound.

Key words, convex programming, analytic center method, Newton method
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1. Introduction. Since Karmarkar [6] presented his projective method for the
solution of the linear programming problem in 1984, many other variants have been
developed by researchers. Among them are the large-step path-following methods
such as those proposed by Roos and Vial [9]; Gonzaga [3]; and Den Hertog, Roos,
and Terlaky [1]; and the potential reduction methods such as those proposed by Ye
[12], Freund [2], and Gonzaga [4]. The advantages of these methods are that they
do not use projective transformations as the projective methods do, and that they
do not need to follow the so-called central path closely, contrary to the small-step
path-following methods.

In Jarre [5] and Mehrotra and Sun [8] small-step path-following algorithms are
proposed for smooth convex programming problems. Again, the great disadvantage of
these methods is that they are based on very small stepsizes to remain in the vicinity
of the central trajectory. This characteristic makes these methods unattractive for
practical use. To accelerate his method, Jarre proposed a (higher-order) extrapolation
scheme.

In this paper we propose a large-step path-following method for smooth convex
programming problems, which fulfil the so-called Relative Lipschitz Condition. Jarre
[5] also uses this condition. Our method is a generalization of the method for linear
programming presented in [1] and is also based on Jarre’s paper.

In our method we do a linesearch along the Newton direction with respect to a
certain strictly convex potential function. If we are close to the current analytic center
we update the lower bound somehow, whereafter we do linesearches aiming at getting
close to the analytic center associated with the new lower bound. We prove that after
a linesearch the potential value reduces with at least a certain constant. Using this
result, we prove that the number of iterations required by the algorithm to converge
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to an e-optimal solution is bounded by a polynomial in ln el, the dimension of the
problem, and the Lipschitz constant.

We note that Kojima, Mizuno, and Yoshise [7] already proposed a primal-dual
potential reduction algorithm for linear complementarity problems. To our knowledge
our algorithm is the first large-step algorithm for (a class of) smooth convex program-
ming. Our algorithm can also be viewed as a natural implementation of the classical
method of centers. In a coming report we will deal with a natural implementation of
the logarithmic barrier function method.

This paper is organized as follows. In 2 we will do some preliminary work. In
3 we describe our algorithm. Then in 4 we prove some lemmas needed for the
convergence analysis in 5.

2. Preliminaries. We consider the primal formulation of the smooth convex
programming problem,

(CP) max {f0(y) y E 9},

where " denotes the feasible region, which is given by

-.= {y E ][:m f/(y) _< O, 1 _< _< n};

the functions -fo(Y) and fi(Y), 1 <_ <_ n, are convex functions with continuous first-
and second-order derivatives in 9. We assume an additional smoothness condition,
namely, that the Hessian matrix of fi(Y), 0 <_ <_ n, fulfils the so-called Relative
Lipschitz Condition, which will be specified below. Moreover, we suppose that the
interior of the feasible region $’, denoted as $’, is nonempty and bounded. This
assumption is not essential.

Wolfe’s [11] formulation of the dual problem associated with this primal problem
is

min fo(Y)- Ein-_l uifi(Y),
(D) Ei= ui fi(y) Vf0(y),

u>0.

Note that there is no symmetry between the primal and dual problem, as in linear pro-
gramming, because the dual problem (D) contains both y and u variables. Moreover,
the dual problem is not necessarily convex!

However, it is a well-known result that if y is a feasible solution of (CP) and (y, u)
is a feasible solution of the dual problem (D), then

n

< ]0(y) u,],(y).
i--1

Due to the assumption that 9 is nonempty, the Slater condition is satisfied, and
hence (D) has a minimum solution and the extremum values are equal.

We associate the following potential function with (CP)"
n

(y, z) -q ln(f0(y) z) E ln(-fi(y)),
i--1

where z is a lower bound for the optimal value z*, and q is a positive integer value,
which will be discussed below. For q n this potential function is exactly the same
as the one used by Jarre [5].
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It can be proved that (y, z) is strictly convex on its domain " (see Jarre [5,
p. 8]). It also takes infinite values on the boundary of the feasible set. Hence this
potential function achieves the minimal value in its domain (for fixed z) at a unique
point, which is denoted by y(z). The necessary and sufficient Karush-Kuhn-Tucker
conditions for these minima are:

fi(y)

_
O, 1

_ _
n,

n
(1) Ei= uiVfi(y) Vfo(y), u _> O,

-f(y)u fo(y)-z 1 < < n.q

Using this it can easily be verified that y(z) lies on the so-called central path of the
problem, which is the set of analytic centers for {y " fo(y) }, where varies
from- to z*.

We can rewrite (y, z) as

n+q

(y, z) ln(-fi(y)),

where -(y) fo(y)-z for n+ 1 n+q. The first- and second-order derivatives
of (y, z) are given by

and

n+q

z) z)

H(y,z) := V2(y,z) [V2f(y) +
Vfi(y)Vfi(y)T ]

If no confusion is possible we will write, for shortness’ sake, g and H instead of g(y, z)
and H(y, z).

In the sequel to this paper we will also use the quadratic approximation qy(X, z)
for (y, z) when x is near the point y, defined as

(x )Tg(x y).qy(x,z)’=(y,z)+g(x--y)+ --y

We will use the H-norm ]].]H to measure closeness of points, and especially closeness
to the central trajectory. The definition of this norm is as follows:

 xrHx.
Because H is positive definite, .]]g defines a norm.

Having introduced this notation we are able to formulate the Relative Lipschitz
Condition:

3M > 0" Vv E ]Rm Vy, y + h E $’

IvT(V2fi(y + h) V2fi(y))vl <_ MIIhllHvTV2fi(y)v,

for all 1 < < n + 1.
This condition is also used by Jarre [5]. In general, the condition might be hard

to check for a given problem.



58 D. DEN HERTOG, C. ROOS, AND T. TERLAKY

3. The algorithm. In our algorithm we do not need to stay close to the central
path, as in Jarre [5]. If we are far away from the central path we do a linesearch along
the Newton direction with respect to (y, z). The Newton direction p(y, z) associated
with (y, z) at y is given by

p(y, z) -H(y, z)-lg(y, z) -H-lg.

If no confusion is possible we will write, for shortness’ sake, p instead of p(y, z).
This process is repeated until we are sufficiently close to the central path. More
precisely, we stop doing linesearches if IIPlIH <-- T, where T is a certain tolerance. This
proximity criterion is also used by Jarre [5]. In the algorithm we will use T S(I+2M),
which will appear to be appropriate later on. (Note that IIPlIH 0 if and only if
y y(z).) If the proximity criterion is satisfied, we update the lower bound z as
follows: z / (fo(Y) z), for some 0 < < 1, and the whole process is repeated
again and again until some stopping criterion is satisfied. Note that is really a lower
bound, because < fo(y) <_ z*.

We can now describe the algorithm.

Algorithm
Input"
0 is the updating factor, 0 < 0 < 1;
T 8(1-2M) is the proximity tolerance;
t is an accuracy parameter, t E IN;
y0 is a given interior feasible point and z < fo(y) is a lower bound for the
optimal value, such that IIp(y, z)[[H(yO,zO) <_ T and z* z _< -.
begin

y :_ y0; z :- z;
while fo(y)- z > e- do
begin (outer step)

while I[PlIH > 7" do
begin (inner step)

arg mina>0 {(y + ap, z)’y + ap e .T"}
y y +5p

end (end inner step)
z :-- z + O(fo(y)- z);

end (end outer step)
end.

For finding the initial point that satisfies the input assumptions of the algorithm
we refer the reader to Jarre [5] and Mehrotra and Sun [8]. Later on, the "centering
assumption" will be alleviated.

4. Preliminary lemmas. In 5 we will prove the complexity result on the Al-
gorithm. In this section we deal with some lemmas that will be needed to obtain an
upper bound for the total number of outer and inner iterations. The lemmas are built
up as follows:

Lemma 4.1 gives an upper bound for the error in the quadratic approximation
if the functions -fo(y) and fi(y), 1

_
<_ n, are linear or quadratic;

Lemma 4.2 states the same as Lemma 4.1, but now -fo(y) and fi(y), 1 <__
n, are general convex functions;
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Lemma 4.3 states that if the proximity criterion holds, then y lies close to
the exact center y(z) (with respect to the H-norm);
Lemma 4.4 states that if we do a linesearch along the Newton direction, then
a sufficient decrease in the potential value can be guaranteed;
Lemma 4.5 gives an upper bound for the difference in potential value of the
current iterate and the exact center;
Lemma 4.6 states that if the lower bound is updated, then the potential value
increases with a constant;
Lemma 4.7 gives a relation between the objective value in the exact center
and the current point;
Lemma 4.8 gives an upper bound for the gap between the optimal value and
the lower bound z;
Lemma 4.9 states that the gap fo(y(z)) z decreases monotonically if z
increases.

The following lemma improves Lemma 2.1 of Jarre [5].
LEMMA 4.1. If--fo(Y) and fi(Y), 1 <_ <_ n, are linear or quadratic functions

with positive semidefinite Hessian matrix, and if y E jz, and I]d]lH ( 1, then y+d
and

I(Y + d, z) qy(y + d, z)l < 3(1-

Proof. We expand (y + d, z) in a Taylor series about y:

(3) (y + d, z) qy(y + d, z) +
i--3

where ti is the ith-order Taylor term in the expansion. Note that only takes finite
values in $". Hence, if i3 ti can be shown to converge for d such that IldllH < 1,
then it follows that y + d $". It can be proved that

The proof of this inequality is quite technical. Therefore, it is omitted here (see
Appendix). From (4), and using the fact that IldllH < 1, we derive that

cx) c 3

Substituting this into (3) yields

I(Y / d, z) qy(y -t- d, z)l <_ Z Itil - 3(1 -IldllH)"
i--3

Thus the lemma has been proved, v1

LEMMA 4.2. If the functions fi(y) satisfy the Relative Lipschitz Condition with
Lipschitz constant M > O, and if

y .’ and IldllH < min
2’ 2M1/3



60 D. DEN HERTOG, C. ROOS, AND T. TERLAKY

then y + d E jz and

I(Y + d, z) qu(y + d, z)l < 3(1- IldllH) (1 + 2M).

Proof. Using Lemma 4.1, one can use the same reasoning as in the proof of Lemma
2.10 of Jarre [5] to obtain the result of the lemma.

The next lemma simplifies Lemma 2.16 of Jarre [5].
LEMMA 4.3. /f IIPlIH -- S(I+2M)’ then

5

Proof. Let h be arbitrary, such that IlhllH IIPlIH. We consider the values on
the ellipsoid {y + p + h IlhllH IIPlIH}. We have

5
IIh + PlIH IlhllH + IIPlIH- IIPlIH < 3(1 + 2M)"

With the help of Lemma 4.2, and using the fact that y / p argminx qy(x, z), we
obtain

1
(y + p + h, z) > qy(y + p + h, z) -------11P3(1 + hll-/(1 + 2M)

1 1> q(y + p, z) + llhll IIP + hll(1 + 2M)

> qy(y + p, z)+ gllpll --Ilpll(x + 2M)

qy(y + p,z) + 911pll(x + 2M) llpll(x + 2M)

> qy(y + p, z) + Ilpll(1 + 2M).

Using Lemma 4.2 once more, we also obtain that

1
(y + p, z) < qy(y + p,z) + llpll( + 2M).

Hence (y + p + h, z) > (y + p, z). Thus in the center, y + p, of the ellipsoid
the potential value is less than the value on its boundary. Therefore, by the strict
convexity of , the minimum of is in the interior of the ellipsoid, which means that

IlY- Y(z)IIH <-- liP + hllH. Now using (5), the lemma follows.
LEMMA 4.4. /f I[PlIH -- 8(1+2M), then the decrease A in the potential function

after a linesearch along the Newton direction p satisfies

140(1 + 2M)2"

Proof. Let A be a steplength such that

(6) {1 1 }IIAplI, <_ min 2,2M./3
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Then, as a consequence of Lemma 4.2, we have

(y + Ap, z) < qy(y + Ap, z) + 3(x- (1 + 2M).

Now using the definition of qy, we obtain

Replacing A by the value

9(1 + 2M)IIPlIH

which satisfies (6), yields the lemma. D
LEMMA 4.5. /f IlPlIH <- 8(1+2M), then

(7) (y, z)- (y(z) z) < 411pll 2.n"

Proof. Let d be defined as y(z) -y. Using Lemmas 4.2 and 4.3 we get

(y(z),z) > qy(y + d,z) 3(1 -IldllH)(1 + 2M)

1 dT Ildll 3H(y, z) -pTHd + - Hd-
3(1 -IldllH)

(1 + 2M).

Using the Cauchy-Schwarz inequality we may write

_pTHd >_ --IIPlIHIIdlIH"
Also using Lemma 4.3, we obtain

(y,z)- (y(z),z) IIPlIHIIdlIH lldllff-/+ 3(1- IldllH)

<_ IIPlIHIIdlIH + 24(1- IIdlIH)IIPlIH
5 12__5

2 24(1- ) H

< 41[P[[ H"

(1 + 2M)

LEMMA 4.6. Let be the new lower bound, i.e., z + O(fo(y)- z), where
0<0<1, then

(y, g) (y, z) -q ln(1 0).
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Proof. The proof is simple and straightforward. We have

fo(Y) fo(Y) z O(fo(y) z) (1 O)(fo(y) z).

Hence

(y, ) (y, z) -q In fo(Y)
fo(y) z

-q ln(1 0). D

LEMMA 4.7. If IlY Y(Z)IIH < , then

J’o((z))- z _< 1 + (fo()- z).

Proof. The lemma is trivial if J’o((z)) _< fo(). So let us assume that fo(y(z)) >
fo(Y). By definition we have

2 > Ily y(z)ll 2n

72fi(Y) )]_fi(y)
(y-y(z))

vY(u)vY(u)r (u u(z))> (u u(z))rq
(Yo(u) )

> q(f()_fo- Y(Y(Z)))2

where the last inequality follows from the convexity of-fo(y) and the assumption
that fo(y(z))> fo(y). Consequently,

Yo(())- o() < --- (Yo()- z).
/q

This means that

fo(y(z)) z < 1 + -- (fo(y) z).

LEMMA 4.8. If IIY Y(Z)lln < , then

z* z < 1+ - 1+ - (fo(y) z).

Proof. The exact center y(z) minimizes the potential function for z. The necessary
and sufficient conditions for these minima are (1). From these conditions we derive
that (u(z), y(z)) is dual-feasible. Moreover, using z* _< fo(y(z))- -ni=l ui(z)fi(y(z)),
it follows that

Consequently,

n

z* ]o((z)) < ,(z)f((z)) (fo(()) ).
i---1

n
(z* z)- (yo(u(z)) ) < (yo(u())- ).
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This means that

z*-< 1+ (0((zll-z)< 1+ 1+ (Io()-),

where the last inequality follows from Lemma 4.7. This proves the lemma. []

The next lemma generalizes an inequality of Vaidya [10] for the LP-case to the
present convex case.

LEMMA 4.9. The gap fo(y(z)) z decreases monotonically if z < z* increases.

Proof. We have that u(z) and y(z) satisfy the Karush-Kuhn-Tucker conditions
(1). Taking the derivative with respect to z of the last two equations in (1), we obtain

(8)
n n

uV,() + u,H,’ Ho’,
i----1 i--1

vI0(u)ru’-(9) uifi(y uiVfi(y)Ty 1,..., n,
q

where the prime denotes the derivative with respect to z and Hi denotes the Hessian
matrix of fi(Y). The Jacobian of this system of equations is clearly nonsingular for
z < z*, and hence, as a consequence of the implicit function theorem, we may conclude
that u’ and y’ exist for z < z*. Multiplying (9) with ui and using (1), we get

I0(u)- z vi,(u)ru, vf0(u)ru’-
U U

q q
Ui.

Multiplying this equation with Vfi(y), summing over i, and using (8) and (1) results
in

vf0(u)ru 1
rio(u).

Now, taking the inner product with y’, we obtain

Vf(y)Ty’--Ivf(y)Ty’=--f(Y)--Z(Y’)TIuiHi--H)y’qq
i=1

nui2(Vfi(y)Ty’)2 <_ O.
i--1

We conclude that 0 _< Vfo(y)Ty _< 1, which means that the derivative of fo(y(z))- z,
which is equal to Vfo(y)Ty’- 1, is not positive. This proves the lemma. [2

5. Convergence analysis. Based on the lemmas in the previous section, we
will give upper bounds for the total number of outer iterations and inner iterations.

5THEOREM 5.1. Let <_ 16(1+2M), then after at most

(1 + )(1 + )O(i lnel)K=
0

outer iterations, the algorithm finds an e-optimal solution for (CP).
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Proof. Let zk be the lower bound in the kth outer iteration. Then we have

Z* Zk-1 Z* Zk-1

1 0
f{yk-- zk-1

Z* Zk-1

<1--
(1 + )(1 + q)’

where yk-1 is the iterate at the end of the (k-1)th outer iteration. The last inequality
follows from Lemma 4.8. Hence after K outer iterations we have

z* fo(yK) <_ z* zg+l

(l+)(l+qq) (z*-zK)

o
(1 + )(1 + q)

(z* z).

This means that z* fo(yK) <_ e certainly holds if

1-
(1 + )(1 + q)

(z*-z) <

Taking logarithms, this inequality reduces to

-K In Ii n

__
> ln el + ln(z* z).

(1 + )(1 + vr4)
Since -ln(1- v) > v, this will certainly hold if

K>
_)( ++ q,,1 vr4" (I In el + ln(z* z)).

0

Now using the assumption on z i.e. z* z < 2, the theorem follows.
From Lemma 4.8 it follows that it suffices to take

t-ln
(i+ )(1+ )- 1

i.e., for such t the algorithm ends up with a solution y such that z* fo(Y) < .
Now we give an upper bound for the total number of inner iterations during an

arbitrary outer iteration.
THEOREM 5.2. The total number P of inner iterations during an arbitrary outer

iteration satisfies

Oq 02q
P6<l+

 q+4
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5where is the guaranteed decrease in each inner, iteration, and <_ 16(1/2M)"
Proof. We denote the used lower bound in an arbitrary outer iteration by 5, while

the lower bound in the previous outer iteration is denoted by . The iterate at the
beginning of the outer iteration is denoted by y. Hence y is centered with respect to
y() and 5 + O(fo(y) ). Because of Lemma 4.4 and definition of y(5) we have

(i0) P5 <_ (y, 5) (y(5), 5).

Let us call the right-hand side of (10) (I)(y, 5). According to the mean value theorem
there is a 2 E (, 5) such that

(11) (I)(y, 5) (I)(y,)+

Let us now look at d O(y,z) We havedz

d (y, z)
dz

and

d (I)(y, z) (5 ).
d z z=

fo(u)-z

d (y(z), z)
dz

Io((z)) z’

where the two last equations follow from (1). So

d O(y, z)
dz

1 1 <-q fo(Y)-5- fo(Y())-
q

I0() z I0(()) =
where the last inequality follows from the fact that 5 > and from Lemma 4.9.
Substituting this into (11) gives

( 1
O(y, 5) <_ O(y,) + q

fo(Y) 5

(1(I)(y,) + q0
1-0

(12)

1
) (-)Io(u())

Io(u) %
Io(u()) )

(1 1)
_
l+qO

1-0 l+q
l+qO

1-0 +
/+

where inequality (12) follows because O(y,) <_ 1 according to Lemma 4.5, and
fo(Y()) - <_ (1 + (/v/))(fo(y)- ) according to Lemma 4.7.

From Theorem 5.1 we know that the total number of outer iterations is at most

(1+)(1+ 4 0(I lnel).
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Hence the total number of inner iterations during the whole process is given by

( )(1 n 1 /3q
+(la) 1+ 1+ ++Z -0

This makes clear that if we take q n, then
if we take 0 V/v/- v > 0 and independent of n, M, and e, then the
algorithm has an O((1 + M)2vfl In el) iteration bound.
if we take 0 < < 1, independent of n, M, and e, then the algorithm has an

O((1 + M)2nl In el) iteration bound.
The first case corresponds to a small reduction factor 0. In this case we can return
to the vicinity of the central trajectory in O((1 / M)2) steps, while the lower bound
must be updated O(x/] In el) times. In the path-following algorithm of Jarre [5], the
same iteration bound is obtained for

200v(1 + M2)"

The second case corresponds to a large reduction factor 0. In this case we can
return to the vicinity of the central trajectory in O((1 + M)2n) linesearches, while the
lower bound must be updated O(I In el) times.

Remark 1. We note that the upper bound for the number of iterations is not
better than Jarre’s. However, while Jarre’s bound is more or less exact, our bound
can be very pessimistic, because of the linesearches involved in the inner iterations.
This can also be one of the reasons for the fact that a large reduction factor gives a
worse bound than a small reduction factor, while one would expect the contrary.

Remark 2. The "centering assumption" IIp(y,zO)llH(yO,zo) <_ T can be alleviated
to

(y0, 0) (y(z0), z0) < o(vl 1)

for the first case, and to

(y0, z0) (y(z0), z0) _< O(n[ In e{)

for the second case. This follows easily from Lemma 4.4.
Remark 3. Note that the updating factor 0 is independent from M, contrary to

Jarre’s [5] method.
Remark 4. For linear programming problems, i.e., M 0, we can find an exact

solution if we take e 2-L, where L denotes the input length of the problem. In this
case our results reduce to an O(v/-L iteration bound if we take 0 /v/, > 0 and
independent of n, M, and e; and to an O(nL) iteration bound if we take 0 < 0 < 1,
independent of n, M, and e. These results are also obtained by Den Hertog, Roos,
and Terlaky [1]; Gonzaga [3]; and Roos and Vial [9].

Appendix: Proof of the inequalities (4). Since each function fi is assumed
to be linear or quadratic, the kth-order term in its Taylor expansion has the following
form:

T k 2 T 21 (Vfj(y) d)- "(d V fj(y)d)(14) ta " :IE Ei:o a,i
.ljt, ))

k > 1,_-,.v,,_
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where ak,i has to be determined yet. For shortness’ sake we use the following notations:

Vfj(y)Td
:=

dTV2fj(y)d:=

D2 :-Ildll 2
H.

Using these notations (14) becomes

(15)
n+q[k/2J

1 k-2i

j=l i=0

We also have

n+q

D2 E(X + j).
j=l

Now we derive a recursive formula for ak,i. Using the chain rule for taking derivatives,
we obtain from (14) an expression for tk+l"

1 k-2i+l..itk+i (k + 1)! E (k i)ak,iXj -t- E (k 2z)ak,iX 2i-1

j=l i=0 i=0

This can be rewritten as

tk+l (k + 1)!
j=l L =0

Lk/2j+l- E (k 2i - 2)ak,i_l)-2i+l
i=1

From this the following recursive formula can be derived:

(16)
al,o=l, a,i=O, iO,

ak+l,i (k- i)ak,i + (k- 2i + 2)ak,i-, k>l.

From this recursive scheme we derive an explicit formula for ak,i"

k’(k-i-,)2, if0 < <i!(k-2i).(17) a,i 0 otherwise.

We prove this formula by using induction. For k 1, 2 our formula is certainly correct,
as follows by inspection. From (16) it readily follows that ak,o (k- 1)!, k _> 1. This
is in accordance with (17), since

(k- 1)!- k!(k- 1)!
0!k!2
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Now suppose that the formula is correct for some value of k, k >_ 1. Then, using (16)
and (17) one has, for _> 1,

ak+,i (k- i)ak,i + (k- 2i + 2)ak,i-

(k i)k!(k 1)! k!(k i)!
i!(k- 2i)!2 + (k- 2i / 2)(i- 1)!(k- 2i + 2)!2i-1

(k + 1)!(k- i)!
i!(k- 2i + 1)!2"

This proves that formula (17) is correct indeed.
We proceed by deriving an upper bound for tk. To this end we consider the

following optimization problem:

1
max -..E E ak,iXj ,j (X + j) 02, Xj0, Cj0, 15iNn

where the maximization is done over Xj and Cj. The nonnegativity of Cj is an
obvious consequence of its definition; the nonnegativity of Xj can be assumed, since the
constraints are sign independent as far as Xj is concerned, whereas positive values will
give a larger objective than negative values. The Kuhn-cker optimality conditions
for this problem are given by

(18) (k- 2i)ak,iX J +
2

ak’[k/2j[k/2J 2X,
i=O

(19)
Lk/2J

ia k-2i i-1, <_ a,

(20)
[k/2J-1

i=0

k 2i)ak,i-Xjk-2i-

k-2i i-1(21) CJ E zak,i)j Cj O,
i--1

where c is the multiplier.
From these conditions we will derive that either or X must be zero for each

j. Assume that neither Cj nor Xj is zero. From this we shall derive a contradiction.
By multiplying (20) by Cj and (21) by 2X and subtracting, we derive

[k/2J-1

E [(k 2i)ak,i 2(i + llak,i+]-Xjk-2i-"i+l’qaj
i=0

1 oo
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It is easy to see that [k+l k--V-J [J is 1 if k is odd, and 0 if k is even. Furthermore, let

k,i :-- (k- 2i)ak# 2(i + 1)ak#+l.

We easily obtain that ak,0 0 and ak,i > 0, for > 1, by using the general formula
(17) for ak,i:

k!(k i- 1)! k!(k i- 2)!
ak# (k 2i)

i!(k 2i)!2
2(i + 1)(i + 1)!(k 2i- 2)!2i+

k’(k-i-2)’ [k-i-1-1]i!(k-2i-2)!2 k-2i-1
>0.

Hence, we have obtained a contradiction. This means that either Xj or Cj is zero
in the maximum. Consequently, the objective function either consists of "pure" X
terms or "pure" Cj terms.

Now if k is even, it easily follows that the largest objective value is obtained if
0, since, using the general formula (17), we have

ak,o 2(k/2)-ak,k/2,
which means that the coefficient of the pure Xj term is greater than the coefficient of
the pure Cj term. Now assume that Cj > 0 if k is odd. Then (19) holds with equality.
By multiplying (19) by 2Xj and subtracting from (18), we derive

Lk/2J-1
k-2i-1 Lk/2J(22) y [(k 2i)ak,i 2(i + 1)ak,i+] Xj Cj + ak,lk/2] O.

i--0

Again, we have obtained a contradiction, since we assumed that Cj > 0. Consequently,
both for k even and k odd, the maximum is reached if Cj 0. So an upper bound
for the maximum of the function is

Hence the proof of (4) is complete.

(D2)k/2- Dk.
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A COMPLEXITY REDUCTION FOR THE LONG-STEP
PATH-FOLLOWING ALGORITHM FOR LINEAR PROGRAMMING*

D. DEN HEPTOG, C. P00S, AND J.-PH. VIALS

Abstract. A modification of previously published long-step path-following algorithms for the so-
lution of the linear programming problem is presented. This modification uses the simple Goldstein-
Armijo rule. A v reduction in the complexity bound is obtained, while a linesearch may still be
done. Depending on the updating scheme for the barrier parameter, the resulting complexity bounds
are O(n3L) or O(n3"hL).

Key words, linear programming, interior point method, logarithmic barrier function, polyno-
mial algorithm, Goldstein-Armijo rule
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1. Introduction. The original O(n3"hL) complexity bound of short-step path-
following methods was reduced to O(n3L) by Vaidya [15]; Gonzaga [6]; Kojima,
Mizuno, and Yoshise [9]; and Monteiro and Adler [11]. This reduction was achieved
by using Karmarkar’s [8] partial updating scheme. Their partial updating analysis is
based on steps of a fixed, short length, which fits into short-step methods in a natural
way. In Mizuno and Todd [10] a partial updating analysis for an "adaptive-step"
path-following algorithm is given.

In Roos and Vial [14] a long-step path-following algorithm is proposed, which is in
fact a natural implementation of the classical logarithmic barrier function approach.
The number of reductions of the barrier parameter is O(L). Each reduction is followed
by a series of inner steps, aiming at getting close to the analytic center associated with
the current value of the penalty parameter. It was proved that at most O(nL) inner
steps are needed. This means that the total complexity is O(n4L).

This result was also obtained independently by Gonzaga [7] in a more general
approach. He also showed that if the barrier parameter is reduced by a factor 1-
(/v/), > 0, then at most O(v/-dL) reductions and at most O(1) inner steps are
needed. So, the total complexity of this variant is O(n3"DL).

In this paper we show that, using a Goldstein-Armijo rule to safeguard the line-
searches of the barrier function, a x/ reduction in the complexity bounds can be
obtained for both versions. As mentioned above, the partial updating analysis in [15],
[6], [9], and [11] is based on steps of a short, fixed length, and so it cannot be used in
long-step algorithms. The Goldstein-Armijo rule was introduced in the complexity
analysis for Karmarkar’s [8] projective algorithm by Anstreicher [1]. Anstreicher and
Bosch [2] used the rule to improve the complexity bound for Ye [16] and Freund’s [4]
affine potential reduction algorithm.

Some new aspects are used in the analysis. We will use quadratic convergence
in the neighbourhood of the central path to prove some properties of nearly centered
points. This also enables us to improve Gonzaga’s [7] results. Also, the reduction in
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the barrier function value after an inner step is proved in a more natural way by using
a Taylor expansion.

The paper is organized as follows. In 2 we prove some properties of (nearly)
centered points. Then, in 3 we describe our algorithm and in 4 we prove that the
algorithm reduces the complexity bound by a factor x/-.

Notation. As far as notations are concerned, e shall denote the vector of all
ones. Given an n-dimensional vector x we denote by X the n n diagonal matrix
whose diagonal entries are the coordinates xj of x; xT is the transpose of the vector
x and the same notation holds for matrices. Finally Ilxll denotes the 12 norm.

2. Properties near the central path. We consider the linear programming
problem:

(P) min{cTx Ax b, x >_ 0}.
Here A is an m n matrix and b and c are m- and n-dimensional vectors, respectively;
the n-dimensional vector x is the variable in which the minimization is done. The
dual formulation for (P) is:

(D) max {bTy ATy + s c, s >_ 0}.
Without loss of generality, we assume that all the coefficients are integers. We shall
denote by L the length of the input data of (P).

We make the standard assumption that the feasible set of (P) is bounded and has
a nonempty relative interior. In order to simplify the analysis we shall also assume
that A has full rank, though this assumption is not essential.

We consider the primal logarithmic barrier

n

(1) f(x, #) "=
crx

lnx,
j--1

where # is a positive parameter. The first- and second-order derivatives of f are

vf(x, ) x-,
v"f(x, #) x-.

Consequently, f is strictly convex on the relative interior of the feasible set. It also
takes infinite values on the boundary of the feasible set. Thus it achieves a minimum
value at a unique point. The necessary and sufficient first-order optimality conditions
for this point are:

ATy+s=c, s >_ O,
(2) Ax b, x > O,

Xs #e,

where y and s are m- and n-dimensional vectors, respectively. It is well known that
the necessary and sufficient first-order optimality conditions for the minimum of the
dual logarithmic barrier function are also (2).

Let us denote the unique solution of this system by (x(#), y(#), s(#)). The primal
and dual central path is defined as the solution set x(#) and y(#), respectively, for
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V > 0. It is well known that the duality gap in (x(#), y(#), s(#)) satisfies x(#)Ts(#)
n#. Hence, if # 0, then x(#) and y(#) will converge to optimal primal and dual
solutions, respectively.

The following lemma states that the primal objective decreases along the primal
path and the dual objective increases along the dual path. These results also follow
from Fiacco and McCormick [3]. We will give another simple proof.

LEMMA 2.1. The objective cTx(#) of the primal problem (P) is monotonically de-
creasing and the objective bTy(#) of the dual problem (D) is monotonically increasing
if # decreases.

Proof. Using the fact that x(#) and y(#) satisfy (2) and taking derivatives with
respect to # we obtain

ATy + s O,
(3) Ax’ O,

Xs + Sx e,

where the prime denotes the derivative with respect to #. Now, using the relations of
(2) and (3), we find

cTx’ (x’)T(s + ATy) (x’)Ts eT(Sx’) (Xs’ + Sx’)TSx
(x’)r’ + (’)rS2’ (x’)rSx > O,

where the last equality follows because (xt)T8 --(Axt)Ty O. This proves the
first part of the lemma.

To prove the second part of the lemma, we multiply the last equality of (3) by
AS-.

AS-1Xs + Ax AS-Ie,

which reduces to AX2s b. Taking the inner product with yt results in

bTy’ (y’)TAX2s’ (ATy’)TX2s’= --(s’)TXs <_ O.

This proves the second part of the lemma.
Roos and Vial [13] introduced the following measure of the distance of an interior

feasible point to the central path:

6(x, #) min { ll Xs !1 AT
y,s --- -e y+ s-- c

The unique solution of the minimization problem in the definition of 5(x, #) is denoted
by (y(x, #), s(x, #)). It can easily be verified that

x(,) = (x,,) 0 (x,,) (,).

The next lemma states that there is a close relationship between this measure and
the projected Newton direction p(x, #), which is obtained from (cf., e.g., [5])

(5) ( X-A 0 0
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LEMMA 2.2. For giv{3n x and it, 6(x, it) --IIX-p(, )11.
Proof. From (5) we can derive that p(x, #) Xq, where

X8
(6)

with

(7) s c-- ATy

and

(8) y (AX2AT)-IAX(Xc- #{3).

It can easily be verified that s s(x, #). Thus the lemma is proved.
We note that a closed-form solution for p(x, #) is given by

-xn.x (
where PAX denotes the orthogonal projection on the null space of the matrix AX.
Consequently, the projected Newton direction and the scaled projected gradient di-
rection associated with f coincide. In the following we will write p instead of p(x, #).

Now we will prove some fundamental lemmas for nearly centered points.
LEMMA 2.3. /f 5 := 5(x, it) <_ 1, then y := y(x, it) is dual-feasible. Moreover,

it(n 5x/) <_ cTx bTy <_ it(n + 5X/).

Proof. By the definition of s(x, it) we have

--{3

This implies s(x, it) >_ O, so y(x, it) is dual-feasible. Moreover,

-n
X,(.,

--{3

Consequently, since xTS(x, it) aTx bTy,

it(n 5V/-) <_ cTx bTy <_ it(n + 5vf).

LEMMA 2.4. If 5(X, it) < 1, th{3n x* x + p is a strictly feasible point for (P).
Moreover,

< 6(x,

Proof. In the proof we make use of the vector t defined by



COMPLEXITY REDUCTION FOR THE PATH-FOLLOWING ALGORITHM 75

Note that

x* x + p x + X(e- t) 2x- Xt.

From 5(x, #) < 1 we deduce that lit- ell < 1. Hence

2e-t>0.

As a consequence one has, since x > 0,

x* 2x- Xt X(2e- t) > O.

So x* is strictly feasible, because Ax* Ax / Ap b.
The definition of s(x*, #) implies the following:

x*(x*,# #)_ X*s(x, )

Using that x* 2x- Xt we find

Hence

X’X-it e (2X XT)X-It e 2t Tt e (E T)(t e).

5(x*, it) <_ m.ax I1 tlllt ell <_ 5(x, )=.

(11) f(x, it)- f(x + p, it) <_ 52.

Now let x x and let x,x,x2, denote the sequence of points obtained by
repeating Newton steps, starting at x. By Lemma 2.4 we have

(12) 5(xi, it) < di(x0, it)2’ 52’.

or equivalently,

f(x -I- p, it) f(x, it) 52,

Proof. The barrier function f is convex in x, whence

f( + p, ) > f(x, ) +pVf(x, ).

Now using (9) and AXX-p Ap 0,

pTVf(x, it) (Z-lp)TZVf(x, it)
(X-p)TPAX(XVf(x, it))
-(X-p)TX-Ip

(10) -Se,

where the last equality follows from Lemma 2.2. Substitution gives

(2
f(x, it) f(x(#), it) <_

1 2"

LEMMA 2.5. If 5 := 5(x, it) < 1, then
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So, using (11), we may write

LEMMA 2.6. If 5 "--5(x,/*) < 1, then

IT Tx(,)I < ti(1 +
1_(5 #V"-.

Proof. From (10) we have pTTf(x,/*) --52. On the other hand,

PTVf(X’ /*) PT (c; x-le)
cTP eTX-ip.

So we have

cTp _52 + eTX-p
#

or

cTp- /,(--52 + eTX-p).

Using the Cauchy-Schwarz inequality, we obtain

where the last equality follows from Lemma 2.2. From this we deduce that

(13) IcTp{ <_/,(52 + byrd) 5 1 + /,vf _< 5(1 +

Again, let x "= x and let x,x,x2, denote the sequence of points obtained by
repeating Newton steps, starting at x. Then we have
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where the second inequality follows from (13) and the third inequality from (12). E]

In [7] results similar to those in Lemmas 2.5 and 2.6 have been obtained in a
different way for more centered x, namely, (x, #) < 0.1. Our results hold for (x, #) <
1. Moreover, for (x, #) < 0.1, our bounds are tighter.

3. The revised long-step algorithm. Long-step barrier methods work as fol-
lows: fix #, do linesearches along Newton directions until the iterate is in the neigh-
bourhood of the current center, then reduce the barrier parameter, and repeat this
process. Hence, at each iteration of these methods, one has to solve the linear system
(5). Essentially this means that the (re+n)x (m+n) coefficient matrix of this system,
denoted M,

has to be inverted. Hence, assuming that m O(n), at each iteration O(na) arith-
metic operations are needed. The matrices in two successive iterations differ only
due to changes in X. Now consider the hypothetical case when only one entry of
x changes. Then the new coefficient matrix M differs from M only by a rank-one
matrix. This makes it clear that we can write

M’ M + ltvT
where u and v are suitable vectors. With the help of the Sherman-Morrison formula,

(M + ltvT)-1 M-1 M-luvTM-1
1 + vTM-lu

the inverse of M’ can be calculated from the inverse of M in only O(n2) arithmetic
operations. If we require an exact solution of the system of equations we will generally
need to make n such rank-one modifications. Therefore, O(n3) arithmetic operations
will be needed at each iteration.

However, assume that instead of solving system (5) we solve

/(14)
X-= AT -fi 1 e 1Rm
A 0 u 0

where . is a working matrix closely related to X. Actually, the diagonal term ij of
is updated during the inner iteration only if 2j differs too much from x. If a limited
number of components of g: are updated at a given iteration, a reduced computational
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cost can be achieved using the Sherman-Morrison formula. Of course one does not
obtain the exact projected Newton direction p, but an approximation/5 of it.

The purpose of this paper is to show that by performing a safeguarded linesearch
along/5, one can achieve the double goal of enforcing a significant decrease of the
barrier function at each iteration, while maintaining a relatively small number of
updates in the components of , thereby achieving a computational saving in solving
(14).

In order to work out these ideas we introduce the diagonal matrix D, with diagonal
element dj, defined by

f=XD.

Let p > 1 be some fixed number. The algorithm is designed so as to maintain the
inequality

1
(15) <_ di <_ p, l <_ <_ n.

P

Karmarkar [8] already used approximate solutions and partial updating to reduce the
complexity bound for his algorithm. Using these approximate solutions for X, we
will show that on the average only v rank-one modifications are needed, without
increasing the complexity bound for the required number of iterations. This can be
reached by submitting the linesearch to a Goldstein-Armijo condition.

To measure the distance to the central path, we shall now use a slightly different
metric. We define

e "ATyWs=c
y,s p

Again, there is a close relationship between this measure and the approximate Newton
direction/5. It can easily be verified that

i1 -  11.
A closed-form solution for/5 is

PARD(Xc )
It is clear from the definition that 5(x, #) 0 if and only if x x(). In other words,
we will have

0 0.

It is easy to verify that

(7) (x, ,) 5 (x, ,) p(x, ,).
P

Consequently, if (x, ) < , then we have 5(x ) < 1, and then the lemmas proved
in the previous section hold.

The Goldstein-Armijo condition can be formulated as follows:

>

_
dI( + ,p,

a da
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where Af is the change in the barrier function value and 0 < < 1. This condition
is a well-known rule in nonlinear programming. It permits significant decreases of
f(x, #), but prevents excessively large steps. Note that we have

We will now describe the revised algorithm.

Revised long-step algorithm

Input:
#o is the initial barrier value, #o <_ 2L;
0 is the reduction parameter, 0 < 0 < 1;
p is the coordinate update parameter, p > 1;

is the Goldstein-Armijo factor, <_ ;
x is a given interior feasible point such that (x #0) _< ;
begin

x "= x; := x; # :=/to;
while xTs(x, #) > 2-L do
begin (ouster step)

while t(x, #)> do
begin (inner step)
D XX-1

::  rgmin >o + x + > 0, >_
x x +(
for j 1 to n do if (2j/xj) (-, p) then j := xj

end (inner step)
.= (1

end (outer step)
end.

For finding the initial point that satisfies the input assumptions of the algorithm, we
refer the reader to, e.g., Renegar [12].

4. Convergence analysis of the revised long-step algorithm. We first give
an upper bound for the total number of outer and inner iterations. Finally we derive
an upper bound for the total number of coordinate updates of 2.

Henceforth we shall denote {xJ}, j 0, 1, 2,..., the sequence of inner iterates and
{#k}, k 0, 1,2,..., the sequence of parameter values during the successive outer
iterations. Suppose that xJ is the current iterate when #k is calculated. Then set

Pk j. Take P0 0. Then for any j > 0 there is a k such that Pk < j <_ Pk+l, and
the value of # used in the calculation of xJ is #k (1- 0)k#0.

THEOREM 4.1 After at most K L0(-) outer iterations, the algorithm ends up
T Lwith a primal and a dual solution such that x s <_ 2-

Proof. Since 5(x, #) _< p implies 5(x, #) <_ , we can derive an upper bound for
the duality gap after K outer iterations from Lemma 2.3:

xT8 tK n-J--
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where K (1- 0)K#0. This means that xT8 <__ 2-L certainly holds if

1 / 2-L(1-0)0 +v <

Taking logarithms we obtain

K>
L + ln(n + x/) + In #o

-ln(1 0)

Since we have assumed that #0 < 2L, and since 0 < -ln(1- 0), this certainly holds
if K= O().

The following two lemmas are needed to derive an upper bound for the number
of inner iterations in each outer iteration. The first lemma estimates the difference in
barrier function value between the starting point and end point of an outer iteration.
The proof is in essence due to Gonzaga [7]. The second lemma states that a sufficient
decrease in the barrier function value can be obtained by taking a step along the

the Goldstein-Armijo rule (18)direction i5. Moreover, it shows that for any < ,
can be enforced with the default value

Thus the algorithm is well defined.
LEMMA 4.2. One has

0 1
f(’ ,)- I(+’ ,) < ( + v) +

Proof. The definition of f(x, #), x > 0, implies that

f(x,,) I(x, m-l)
cTx cTx

f(x, Pk-m) + 1
#k-1 1 0

0 c.Tx
f(x,,_)

1-0 #k-1

Using this we obtain

(20)

First note that because xpk and xpk+ are approximately centered with respect to
for the first and Lemmax(#k-1) and x(#k), respectively, using Lemma 2.6 and 5

2.1 for the second inequality, we find

3

3
(2 O)/Zk_lVj’(_) ’() +
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Second, using the fact that X(k_l) minimizes f(x(tk_l),tk_l) and using Lemma
2.5 and 5 , we obtain

Hence, substitution of the last two inequalities into (20) yields

0 1
f(xpk #k f(xpk+I k < (On + 3V) +--1--0 3

This proves the lemma. [:]

The following lemma will be used in Lemma 4.4.
LEMMA 4.3. For v > 0 we have:

ln(1 + v) <_ v- V2

2(1 + v)"

Proof. First note that -ln(1 + v) ln(1- 1-v)" Now using Karmarkar’s [8]
well-known inequality, we have for v > 0

v > v 1 v
v 1 + v 2(1 + v)

In 1
l+v l+v 21 l+v

This means that

V V2 V2

ln(1 + v) < -t- v-
1 + v 2(1 + v) 2(1 + v)"

LEMMA 4.4. Let (x, #), - := [p( + p)]-l. Then

/f := f(x,#)- f(x +-IS, tt) >
5

In 1 +

Moreover,

1f_ _> CP ]or _< -.
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Proof. We write down the Taylor expansion for f:

lC2Tv2f(x, #) + tf(x + , #) f(x, #) + aTVf(x, #) +
k=3

where tk again denotes the kth-order term in the Taylor expansion.
Using the fact that

(_o k n
x-’, -k ~xi Pik
i--1

we derive by the definition of 2 and ,

Further,

Tvf(X,) pTx-2 IID-XII _< p22,

and, using the fact that A-1/5 Ai5 0,

DTVf(x, #) (f-l)TffVf(x #)
(f(-l)TPAf(f(Vf(x #))

So if cp < 1, we find

Hence

f(x, #) f(x + , #) > o2 +p + ln(1 cp).

The right-hand side is maximal if a [p( + p)]-l. Note that p < 1. Substi-
tution of this value finally gives

(21) Af> + +ln 1-
(6 + ) ( + ) ({7 ) ;

This proves the first part of the lemma. The second part follows immediately from
(21) and Lemma 4.3: .(22) Af> -ln 1+ >

$ 2p( 2P P 2(1 + ) + P)
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THEOREM 4.5. The number of inner iterations for each outer iteration, denoted
by P, is bounded by

+ +P_<121_ 0

Proof. Let us consider the (k + 1)st outer iteration. Let P denote the number of
inner iterations. For each inner iteration we know, by the definition of 0 and (22),
that the decrease in the barrier function value is larger than

2
2p( + p)"

Since this expression is an increasing function of , and since during each iteration
>_ , we have

2 1

2p( + p) 12p4"

Consequently, we have

1
f(xpk+l #k <_ f(xpk #k 12p4

P.

Equivalently,

12p4
P <_ f(xp, #k) f(xp+I #k).

Now using Lemma 4.2, the theorem follows.
Consequently, using an additional Goldstein-Armijo rule and approximate solu-

tions does not influence the order of the total number of outer and inner iterations.
The last theorem will give an upper bound for the total number of coordinate

updates in 2. For the proof of this theorem we make use of some results obtained by
Anstreicher [1]. The following lemma will be used in the theorem.

LEMMA 4.6. Let w E JR, 0 < w < 1, and v JR, v >_ w. Then

Ilnvl < Ii-vlllnwl
1--’w

Proof. Defining

nz ifzl,f(z) := -1
1 ifz- 1,

it is easy to see that f(z) is monotonically decreasing and positive for z (0, ).
Hence

In v In w

This implies the lemma.
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THEOREM 4.7. The total number M of coordinate updates of up to the last
inner iteration N is bounded by

2p3v (On / 3x/M<
(p_l) 1-0

Proof. Let k be an iteration at which an update of &i is performed. Let k2 > k
be the first iteration at which 57i is updated again. Then we have

xi x > maxmax
j--1 j j--1

j---k1+ Xi Xi \j=kl+l Xi

max
xkl x

>_p.

j=kl+l Xi

Taking logarithms and defining

j+l

r .= 1 + (x)- x
we obtain

(23)
k2

lnp< E Ilnrl"

Let

r/ =mx r:,;
Inequality (23) can be sharpened to

(24) lnp < E Ilnril.

-. ThenTo prove (24), first assume that for some l, kl _< / <_ k2 1, r < p

k2 --1

lnp Ilnril < E Ilnr:l"

Otherwise, r r, k < j < k2 1, and (24) holds because of (23). Hence (24) has
been proved.

We deduce from (24) a bound on the total number mi of updates of coordinate
of :

N-1

m, lnp < lnr/I.
j=o
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Consequently the total number of coordinate updates is bounded by

(25)
N-1 n

Mlnp < E E Ilnr/jl"
j--O i--1

_1In view of Lemma 4.6, with v k and w p,

(26) lnr/J
-1

P

Since r/= r/ if r/> , and r/ > r/ if r/ < 5, we always have

(27)

Substitution of (26) and (27) into (25) gives

M<
p-1

j=O i=1

From the inequality between the 11 and 12 norms,

n

’ I(x)-l
_

v/-II(Xy)-III ,ov/ll()-lll
i=1

Hence

(28) M < 2v/-
p-1

j=o

Since the Goldstein-Armijo condition is satisfied at each inner iteration, for any j and
k such that Pk < j <_ Pk+l (we will write k(j) instead of k to denote its dependence
on j),

(29)

Substituting this into (28) we obtain

p2v/- 1 f(xJ, #k(j)) f(xj+l
M <

.(p 1)
j=o II(J)-lisJll

Since 11(2)-Xll , this implies
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Now using Theorem 4.1 and Lemma 4.2 we obtain

2p3x/ (0n + 3v/-M_<
(p- 1) 1-

Theorems 4.1 and 4.5 imply that N, the total number of inner iterations needed by
the algorithm, is bounded by

p4 p4 )N <_ 12i :0 (On+3v/-) +4-- O(L).

The total number of arithmetic operations in each iteration, aside from the work due
to coordinate updates, is O(n2). The same amount of work must be done for one
coordinate update. Consequently, the total number of arithmetic operations needed
by the algorithm is (N + M)O(n2).

COROLLARY 4.8.

If 0 < < 1, independent of n and L, then the total number of iterations is
bounded by O(nL) and the total number of coordinate updates by O(nl"hL).
Consequently, the total complexity is O(n3"hL).
If u/V/, u > 0 and independent of n and L, then the total number of
iterations is bounded by O(vfL) and the total number of coordinate updates
by O(nL). Consequently, the total complexity is O(n3L).
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LARGE-SCALE OPTIMIZATION OF EIGENVALUES*

MICHAEL L. OVERTON?

Abstract. Optimization problems involving eigenvalues arise in many applications. Let x be
a vector of real parameters and let A(x) be a continuously differentiable symmetric matrix function
of x. We consider a particular problem that occurs frequently: the minimization of the maximum
eigenvalue of A(x), subject to linear constraints and bounds on x. The eigenvalues of A(x) are not
differentiable at points x where they coalesce, so the optimization problem is said to be nonsmooth.
Furthermore, it is typically the case that the optimization objective tends to make eigenvalues coalesce
at a solution point.

There are three main purposes of the paper. The first is to present a clear and self-contained
derivation of the Clarke generalized gradient of the max eigenvalue function in terms of a "dual
matrix." The second purpose is to describe a new algorithm, based on the ideas of a previous paper
by the author [SIAM J. Matrix Anal. Appl., 9 (1988), pp. 256-268], which is suitable for solving large-
scale eigenvalue optimization problems. The algorithm uses a "successive partial linear programming"
formulation that should be useful for other large-scale structured nonsmooth optimization problems
as well as large-scale nonlinear programming with a relatively small number of nonlinear constraints.
The third purpose is to report on our extensive numerical experience with the new algorithm, solving
problems that arise in the following application areas: the optimal design of columns against buckling;
the construction of optimal preconditioners for numerical linear equation solvers; the bounding of the
Shannon capacity of a graph. We emphasize the role of the dual matrix, whose dimension is equal to
the multiplicity of the minimal max eigenvalue. The dual matrix is computed by the optimization
algorithm and used for verification of optimality and sensitivity analysis.

Key words, nonsmooth optimization, nondifferentiable optimization, generalized gradient,
eigenvalue perturbation

AMS(MOS) subject classifications. 65F15, 65K10, 49K99, 90C26

1. Introduction. Eigenvalues of symmetric matrices play important roles in
many different areas of applied mathematics. For perhaps the large majority of true
applications, it is not the case that a fixed matrix, say A, is known, and its eigenval-
ues are needed. It is more typical that A depends on many parameters, and that the
eigenvalues are desired for many different choices of the parameters. In many cases
the choice of parameters is dictated by some optimization objective. For example,
in a control application, where the size of the largest eigenvalue represents system
stability, it may be desirable to minimize the largest eigenvalue, while in a structure
analysis application, where the smallest eigenvalue represents a buckling load, it may
be desirable to maximize the smallest eigenvalue. Other applications might have an
optimization objective that does not involve eigenvalues (e.g., cost of a material), but
include constraints on eigenvalues (e.g., ensure all eigenvalues are in a safe frequency
interval).

In our work on optimization problems involving eigenvalues, we have found it
very useful to concentrate on a particular model problem, namely, minimizing the
maximum eigenvalue of a symmetric n n matrix A(x), where A(x) depends smoothly
on a vector of parameters x E m. It is useful and not significantly more complicated
to allow the imposition of linear constraints on x. A common variation is to minimize
the maximum eigenvalue in absolute value. (We avoid the term spectral radius, since
this suggests complex eigenvalues; nonsymmetric matrices are not discussed in this
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paper, but see [37].) The model problem is directly applicable to many applications,
including the first two mentioned above, while for other problems, e.g., those where
only the constraints involve the eigenvalues, it is fairly clear how the main ideas should
be extended.

The feature of eigenvalue optimization problems that makes them both particu-
larly interesting and particularly difficult to solve is that the eigenvalues of a differen-
tiable matrix function are not themselves differentiable at points where they coalesce.
Furthermore, it is often the case that the optimization objective tends to make the
eigenvalues coalesce at a solution point. For example, consider the model problem
with

x2 1 xl

The eigenvalues are

so the maximum eigenvalue is minimized by x 0. Clearly the maximum eigenvalue
is not a smooth function at x 0. More importantly, though, the max eigenvalue
function cannot be written as the pointwise maximum of two smooth functions at
x- 0; in other words, the eigenvalues themselves cannot be labeled, say, al and a2,

each a smooth function of x E 2. Thus standard minmax optimization techniques
(e.g., [31]) cannot be applied. Suggestions for transforming the problem into a stan-
dard nonlinear programming form by means of determinants have been made [18], but
these methods perform poorly [41]; for other comments on the use of determinants,
see [15].

In the example given above, the maximum eigenvalue is convex in x. This is true
in general when A depends linearly on x, since the Rayleigh principle can be used
to show that the maximum eigenvalue is a convex function of the matrix elements.
Because of this fact, it has been recognized for some time that the techniques of convex
analysis (e.g., [45]) are applicable to eigenvalue optimization problems; optimality
conditions and/or first-order algorithms for various problem classes have been given
by [7], [43], [9], [49], [19], and [1]. See also [34] and [4] for discussion of problems
arising in structural engineering.

In [36], a quadratically convergent algorithm was given to solve the model prob-
lem, using a "dual matrix" formulation of the optimality conditions to fully exploit
the nonsmooth problem structure. Two papers that greatly influenced this work were

[15] and [12]. Numerical examples were given, demonstrating quadratic convergence
to nonsmooth solutions. The assumption was made that A(x) was affine, although
it was indicated that this was not essential for the main ideas to apply. The reason
for this is that the eigenvalues are nonsmooth, nonlinear functions of the matrix, so
whether A(x) depends linearly or nonlinearly on x is not of great importance, pro-
vided A(x) is a smooth function. If A(x) is nonlinear, the maximum eigenvalue is not
necessarily convex in x, but it is a composition of a convex function with a smooth
function. Optimality conditions for nonlinear A(x), for the more general case of min-
imizing sums of largest eigenvalues (algebraically or in absolute value), are given by
[38]. These optimality conditions are derived by characterizing Clarke’s generalized
gradient [5] in terms of a dual matrix. Proofs of the local quadratic convergence of
the successive quadratic programming algorithm used in [36] are being developed in
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There are three main purposes of the present paper. The first is to present a
clear and self-contained derivation of the generalized gradient of the max eigenvalue
functional in terms of a dual matrix. An understanding of this is essential for the
appreciation of the main ideas underlying our optimization algorithms. Our second
contribution is to describe a new algorithm, based on the ideas of [36], that is suitable
for solving large-scale eigenvalue optimization problems. The third purpose of the
paper is to report on our extensive numerical experience with the new algorithm,
solving eigenvalue optimization problems that arise in three very interesting and quite
different application areas.

The paper is organized as follows. Section 2 derives the generalized gradient of
the max eigenvalue, and consequent optimality conditions for the model problem,
using the dual matrix formulation. Section 3 discusses the role of the dual matrix
in eigenvalue splitting and sensitivity analysis. Section 4 summarizes the eigenvalue
optimization algorithm of [36] and relates this to the generalized gradient derived in

2. Section 5 explains how to extend the main ideas of [36] to solve problems with
large numbers of variables. The ideas of this section should also be useful for solving
other structured large-scale nonsmooth optimization problems as well as nonlinear
programming problems with a relatively small number of nonlinear constraints--both
active areas of current research. Section 6 discusses how to efficiently compute the
eigenvalues of the matrix iterates generated by the optimization algorithm when the
dimension of the matrices is large. Section 7 explains how all of the foregoing may
be generalized to apply to eigenvalue problems of the form A(x)q ABq, where B is
a fixed symmetric positive definite matrix. Section 8 discusses the case where several
different matrix families are involved. Section 9 summarizes numerical results that
have been obtained for a fascinating classical problem of Lagrange, finding the shape
of the strongest column. Here the task is to maximize the smallest eigenvalue of a
fourth-order differential equation. Section 10 discusses results obtained for finding
optimal preconditioners for the solution of linear systems of equations. Section 11
discusses the application of our large-scale algorithm to a problem arising in graph
theory, computing the Lovsz number of a graph. Section 12 makes some concluding
remarks.

2. Optimality conditions the generalized gradient, and dual matrices.
We start with some notation. Let n, denote the set of n by m real matrices, and
let Snn denote the set of n by n real symmetric matrices. By A _> 0, where A is
symmetric, we mean that A is positive semidefinite. The notation II. II will always
denote the Euclidean vector norm. Let (,) denote the Frobenius inner product on the
set of rectangular matrices, namely,

(B, C) tr BTC tr CTB Z
where the dimensions of the matrices depend on the context. (For example, B and C
could be vectors.)

We now give a simple but important lemma.
LEMMA 1. The convex hull of the set

is the set

{: D E SNnXn,tr D 1, >_ 0}.
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Furthermore, the elements in the first set are the extreme points of the second set.
Proof. Any convex combination of the first set is clearly contained in the second.

Furthermore, any matrix in the second set has a spectral decomposition

f iWiwT

where the eigenvalues i are nonnegative by the positive semidefinite condition and
sum to one by the trace condition, and the eigenvectors wi have unit norm, i.e., the
right-hand side is a convex combination of elements in the first set. Clearly, any
element of the first set is an extreme point of the second set. Also, any element of the
second set that is not rank-one can be written as a nontrivial convex sum of elements
in the first set and is therefore not an extreme point.

THEOREM 1. Let A E Snxn, and let AI(A) be the largest eigenvalue of A. The
following characterizations hold:

(1) AI(A) max{(q, Aq) q [[= 1};

(2) A(A) max{(qqT, A) "[I q II 1};

(3) A(A) max{(r, A) (f e Sn’, tr/) 1, >_ 0).

Consequently, is a convex function of A.
Proof. Equation (1) is the well-known Rayleigh quotient characterization. Equa-

tion (2) follows immediately from properties of the inner product. Equation (3) follows
from Lemma 1, since maximizing a linear function over a set gives the same result
as maximizing over its convex hull. The convexity follows from any of the charac-
terizations, since the pointwise maximum of a set of linear functions is always con-
vex.

The characterization of a convex function as a pointwise maximum of a set of
linear functions leads directly to the definition of the subdierential of f. For example,
suppose that z k, and

f(z) max{(ai,

where Z is a discrete index set. Then the subdifferential of f at z may be defined as

Of(z)

where "conv" denotes convex hull. An important property of Of that immediately
follows from this definition is that z minimizes f if and only if 0 Of(z); note also
that f is differentiable at z if and only if the subdifferential contains only one element,
namely, the gradient of f at z. It is a fact [45, Cor. 23.5.3] that the subdifferential
may be defined in this way for general convex functions, giving, as a consequence of
(2),

(4) OA(A) conv({qqT: q is a normalized eigenvector for A(A)}).

This leads to the following theorem.
THEOREM 2. Suppose the maximum eigenvalue AI (A) has multiplicity t, i.e., the

eigenvalues of A are

AI A > A+I >_’" >_
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Then the subdifferential of )l at A is the set

(5) 0AI(A) conv({QlwwTQT w e t, w I1= 1}),

where the columns of Q1 form an orthonormal set o.f eigenvectors for AI(A). Another
equivalent form is

(6) O)(A) {= QUQT1 V e Stxt, trU=l, V_>0}.

Proof. Equation (5) follows directly from (4), and (6) then follows from Lemma 1.
Alternatively, writing the eigendecomposition of A as

A Q Diag(hi) QT,

we see that (6) follows from directly applying the definition of the subdifferential to (3)
since the matrices on the right-hand side of (6) are those that achieve the maximum
in (3), with

No convex hull operation is necessary, since the set is already convex. [:l

We now change notation, introducing A(x) E Snn, a continuously differentiable
function of x E m, with eigenvalues

>... >

and partial derivatives

OA
Ak(x) -xk(X).

It is convenient to use the symbol for two purposes, with

A(x) A(A(x)),

and the distinction should be clear from the context. The function A(x) is not
generally convex, but it is the composition of the convex function A(A) with the
smooth function A(x). The Clarke generalized gradient of Al(X) may therefore be
defined by means of a chain rule [5, p. 42], [13, p. 366]. We obtain the following
theorem.

THEOREM 3. Suppose the maximum eigenvalue of A(x) has multiplicity t, with
a corresponding orthonormal basis of eigenvectors Q(x) [q(x),...,qt(x)]. The
generalized gradient of A(x) is the set

(7) O(x) {v ’ Vk <U,Q(x)TA(x)Q(x)),
for some U Stxt,U O,tr U l}.

Proof. By the chain rule just cited,

OA(x) {v e ’ vk (G, Ak(x)) for some G e 0A(A)}.
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The proof is completed by using (6) and noting that

(QUQT ,Aa) (U, QT AaQ).

Equation (4) is well known; see [7], [43], and [5]. The equivalent form (6) is
much less known and much more useful, as we shall see shortly; the earliest reference
we know for this explicit form is Fletcher [12], where a different proof was given.
Equation (7) was given in the case that A(x) is affine in [36], using a proof based on
Fletcher’s work. The proofs given here make more use of the machinery of [5] and [45].
A referee has pointed out that Clarke’s powerful theory is not required for Theorem
3 and subsequent results, which could in fact be obtained from the theory of "locally
convex" functions; see [24] and [49]. We prefer to refer to Clarke’s work so that we
may use the beautifully simple notion of a chain rule developed there.

The matrix U may be viewed as a "dual matrix"; indeed, a "dual problem" is
formulated at the end of this section. The t t matrix U may be called a "reduced
dual matrix," but since it is the one we shall need as a computational tool we shall
also refer to it simply as the dual matrix. (The term "Lagrange matrix" was used
in [36].) The distinction between U and U is analogous to the notational question of
whether inactive constraints in a nonlinear program should be assigned zero Lagrange
multipliers.

Theorem 3 gives a form of the generalized gradient that is particularly useful for
computation, since it does not involve taking a convex hull. Indeed, it characterizes the
generalized gradient using structure functionals, to use a term introduced by Osborne
[35] for some other nonsmooth optimization problems. In our case, the structure
functionals may be taken to be the t(t + 1)/2 quantities

(8) qA(x)qj, 1 <_ <_ j <_ t,

assuming the eigenvectors ql,’", qt are fixed. Theorem 3 then states that the gener-
alized gradient of Al(x) consists of particular linear combinations of the gradients of
the structure functionals, namely, those with coefficients uii and 2uij (j i) making
up a positive semidefinite dual matrix U with trace one. (A better definition of the
structure functionals, which would allow statements about second-order effects, would
presumably use the matrix exponential formulation mentioned in 4.)

Note that the eigenvector basis Q1 for Al(x) is not unique if t > 1 (and even if
t 1 the sign is not unique). However, replacing Q by any other valid choice, which
must have the form QV for some t t orthogonal matrix V, simply transforms the
dual matrix U into VUVT, preserving its eigenvalues.

The directional derivative of A is easily deduced from the generalized gradient
formula. We have the following theorem.

THEOREM 4. Under the assumptions of Theorem 3, the directional derivative

)(x; d)= lim
c--0+

Al (X + ad) Al (X)

is the largest eigenvalue of

(9)
m

B(d) E dkQ(x)TAk(x)Q(x)"
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Proof.
function,

Because Al(x) is the composition of a convex function with a smooth

Ai(x;d)= max (v,d)
vEO.Xl(X)

(see [13, p. 369] or [5, Chap. 2]). By (7), we therefore obtain

A] (x; d) mx(U, B(d)),

where the max is taken over positive semidefinite matrices with trace one. The result
therefore follows from Theorem 1.

The formula for the directional derivative may alternatively be obtained from the
classical results in [25], which state that the multiple eigenvalue A1 At of A(x)
splits into t eigenvalues of A(x + ad), for a near 0, with corresponding derivatives
equal to the eigenvalues of B(d). However, the proof of this basic fact is not at all
straightforward, especially in the case that A(x) cannot be extended to an analytic
function of complex variables.

We now consider optimality conditions for a constrained version of the model
problem.

THEOREM 5. Consider the problem:

(10) min Al(X)

subject to

(11) Cx b; <_ x <_ u,

where C [c,..-, Cm] E ncm, b nc, and u m. Then a necessary condition

for x to solve (10)-(11) is, in addition to (11), that there exists a dual matrix U e
S, where t is the multiplicity of) (x), and vectors of Lagrange multipliers # n
and m, satisfying

(12) (U,Q(x)TA(x)Q(x)) (#,ck) + ")’k, k 1,...,m,

(13) tr U 1,

(14) Uk0,

and

(5)
k 0 iflk<xk<uk;

>_ 0 ifx=k;

" <_ 0 ifxk=uk.

Here the columns of Q(x) form an orthonormal basis of t eigenvectors for (x).
The necessary condition (together with the satisfaction of (11)) is also sufficient for
optimality if A(x) is affine.

Proof. The proof follows from the standard Lagrange multiplier rule for non-
smooth optimization [5, pp. 228, 240], which reduces to 0 E OA(x) in the case that
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there are no constraints. The last statement holds because if A(x) is affine, Al(x) is
a composition of a convex with an affine function, and is therefore convex. [:]

We complete this section with a discussion of a duality result, which clarifies the
terminology "dual matrix." By (3), the "primal problem" (10)-(11) is equivalent to

min max (V,A(x)).
Cx--b; <x(u r: tr --i, _0

(Here, as before, x E m and U sn’.) Now define a "dual problem"

max min (,A(x)).
r: tr r=l, _0 Cx=b; (x<u

The following theorem, motivated originally by [3], is a standard saddle point result
and follows from [45, Thm. 36.3]. For closely related results, see [10] and [48].

THEOREM 6. Suppose that A(x) is an affine function, so that Ak(x) is constant
(independent of x) for all k. If the primal problem has a solution, say, defined by
(x*, U*), then the same pair solves the dual problem.

Note that in the unconstrained affine case the dual problem can have a solution
with corresponding objective greater than -c only if

(,Ak) O, k=l,...,m.

Consequently, the dual version of the unconstrained affine primal problem is

(16) max{(,A(0)) tr 1, /) >_ 0, (,Ak) O, k 1,...,m}.

3. Eigenvalue splitting and sensitivity analysis. The following theorem
shows the importance of the eigenvalues of the t t dual matrix U.

THEOREM 7. Suppose that x, U, #, and / satisfy all the conditions (11)-(15)
except possibly the semide.finite condition (14), and let a be an eigenvalue of U with
corresponding normalized eigeuvector v . If d m, 5 satisfy the following
linear system of equations,

(17) dkQAk(x)Q 51 -vvT,
k--1

(18) Cd O,

(19) dk O if xk lk or xk uk,

then d is a feasible direction with directional derivative

)(x; d) a.

Proof. It is clear that d is a feasible direction. The eigenvalues of the first matrix
term on the left-hand side of (17) are, by construction, all equal to 5 except one that
has the value 5- 1. It follows from Theorem 4 that the desired directional derivative
has the value 5. Taking an inner product of U with both sides of (17) yields, using
(12),

m

((,, +
k--1
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#TCd + /Td- 5 --,

which gives, using (18)-(19) and (15),

=. O

This theorem was given in the unconstrained affine case by [36]. It was also explained
there that for unconstrained problems, the multiplicity t of the multiple eigenvalue
1 is generically restricted by

(20) t(t + 1) < m + 1,
2

the right-hand side being regarded as the number of degrees of freedom available.
(The "1" reflects the fact that the value of the multiple eigenvalue is free.) This
restriction is known as the von Neumann-Wigner crossing rule and is well known
in quantum mechanics; it is further motivated in [15]. For problems with the linear
constraints and bounds (11), it is clearly necessary to replace (20) by

(21) t(t + l)
<re+l--no--rib,

2

where nb is the number of active bounds, i.e., the number of variables xk which are
equal to either k or uk. Note, then, that with this nondegeneracy assumption on t,
the linear system (17)-(19), which consists of t(t + 1)/2 + nc + nb linear equations in
m + 1 variables, is generically solvable.

Theorem 7 shows how a descent direction may generically be computed in the
event that a point x satisfies all the optimality conditions except the positive semidef-
inite condition on U. This direction splits the multiple eigenvalue into two clusters,
one of unit multiplicity and one of multiplicity t- 1, to first order. (See the dis-
cussion following Theorem 4.) Clearly, other splitting choices are possible; the one
given here may be regarded as a generalization of the standard procedure for moving
off constraints associated with multipliers of the wrong sign in linear or nonlinear
programming, namely, moving off only one constraint at one time. Note that the
coefficient matrix of the linear system (17)-(19) is the transpose of the coefficient
matrix describing the active optimality conditions (12), (13), and (15).

Theorem 7 also shows how the eigenvalues of the dual matrix U describe the
sensitivity of an optimal solution along directions that split the multiple eigenvalue
A1 to first order. In particular, the theorem shows how to quantify first-order changes
in A along these directions. If equality holds in (21), then, generically, all feasible
directions in ’ split the multiple eigenvalue to first order; in this case an optimal so-
lution is characterized by first-order information and is generically "strongly unique."
However, (21) cannot usually be expected to hold with equality, in which case there
exists a nontrivial subspace of feasible directions d along which A does not split to
first order, i.e., feasible directions tangent to the nontrivial manifold along which the
eigenvalue retains multiplicity t. Since the function A1 is smooth along this manifold,
it exhibits only second-order changes away from an optimal point x along these direc-
tions. The magnitude of these second-order changes is determined by the eigenvalues
of the appropriate reduced Lagrangian Hessian, just as in nonlinear programming.
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4. The successive quadratic programming algorithm. Let x* be a local
minimum of A1 (x); if A(x) is affine, x* is also a global minimum. Suppose that A1 (x*)
has multiplicity t*. We wish to generate a sequence of iterates x" converging to x*,
but even if t* > 1, A(x) usually has distinct eigenvalues for any finite value of . (A
similar remark applies to nonlinear programming problems; nonlinear constraints are
generally both active and satisfied only in the limit.) In order for an algorithm to have
good convergence properties, therefore, it is important for it to exploit the structure
of the generalized gradient estimated to apply at the limit point, not just the gradient
information at the current iterate. This observation is the basis for the so-called
"e-subgradient" methods found in [27], and similarly it is the estimated optimal
active constraint structure that underlies successive quadratic programming (SQP)
methods for nonlinear programming. In the latter case this estimated structure is
usually defined by the active set found at the solution of the approximating quadratic
program.

The algorithm presented in [36] takes full advantage of the structure of the gen-
eralized gradient that is estimated to apply at the optimal point. To do so, it requires
an estimate of t*, say t, which is obtained and revised as the algorithm proceeds.
One way of doing this was suggested in [36], but more recent numerical experience
suggests that a simpler approach is better. Let x be the current iterate, with A(x)
having eigenvalues

(x) >... > (x),

with a corresponding orthonormal set of eigenvectors (qi(x)}, and define t in terms
of a tolerance T by

(22) AI(X)- At(x)_ Tmax(1, lAl(X)l); Al(X)- A+(x) > T max(l, A,(x) I).

Define

(23) Q(x) [q (x), qt(x)].

It will usually be necessary to adjust T during the course of the minimization process.
The basic iteration of the method of [36] is defined by solving the following

quadratic program (QP):

(24) min 5 -+- dTWd
d,5

subject to

(25) 6I- Z dkQl(x)TAk(x)Q(x) Diag(0, A2(x)- A(x),...,At(x)- Al(x)),

(26) 6 dkqi(x)TAk(x)qi(x) >_ )i(x) A(x), t + 1,... ,n

(27) I1 d ]1_< p,

where d and ti are variables in m and , respectively; W is a positive definite matrix;
and p is a trust region radius updated by the algorithm.

The motivation for the constraint (25) is that it results from linearizing a differ-
entiable system of t(t / 1)/2 nonlinear equations characterizing the condition A(x)



98 MICHAEL L. OVERTON

A(x) w, for some w E . Actually, as was pointed out by [56], the form of
the nonlinear system given by (4.1) of [36] is not correct. The correct system uses a
matrix exponential formulation based on Theorem 3.1 of [15], as is explained in more
detail in [39]. Constraints (26) ensure that linearizations of +1,’" ", An give values no
greater than the linearized value for the approximate multiple eigenvalue A1,’", ),.
Both (26) and (27) prevent d from having too large a norm, particularly during the
early part of the iteration. Ideally, they will not be active near the solution.

The constraint (25) is imposed as t(t + 1)/2 scalar constraints, each of which
has a QP multiplier associated with it. These multipliers make up the QP dual
matrix estimate U, with diagonal elements of U equal to the corresponding multipliers
for the diagonal equations in (25) and off-diagonal elements of U equal to half the
corresponding multipliers for the off-diagonal equations in (25).

Constraints on the variables were not considered in [36] for simplicity, but let us
explicitly include linear constraints and bounds in the present discussion, i.e., address
the problem (10)-(11). Assume that the present iterate x satisfies (11); then the
corresponding restrictions that should be added to the QP are

(28) Cd O,

(29) t. _< x / d <: u.

The following theorems clarify some points that were not made in [36].
THEOREM 8. Suppose the quadratic program (24)-(29) has solution d, 5 with the

property that constraints (26)-(27) are not active. Then the solution has an associated
dual matrix U and vectors of multipliers # and / satisfying

(30) (Wd)k + (U, QT Ak(x)Q) (#, ck) + ")’k, k 1, m,

(31) tr U 1,

and

(32)
")/k 0 if ik < Xk + dk < Uk;

"k >_ 0 if xk + dk ik;

"k <_ 0 if Xk + dk Uk.

Furthermore, U, #, ands/are unique if the t(t+ l)/2+nc linear constraints (25), (28)
on d, 5, together with the active bound restrictions on d, are linearly independent.

Proof. The proof follows immediately from the standard optimality conditions for
quadratic programs (see, e.g., [17]). D

THEOREM 9. Assume T O, SO that Al (x) has exact multiplicity t. The quadratic
program (24)-(29) yields a vector d, which is a descent direction .for 1, unless d O.
Furthermore, if p > O, then (d O, 5 O) solves the QP if and only if (12), (13), and
(15) are satisfied for some U, #, and ", i.e., the optimality conditions (12)-(15) are

satisfied, with the possible exception of the positive semide]inite condition on U.
Proof. By (25) combined with Theorem 4, we have

(33) A(x; d) .
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Also, the QP solution (d, 6) satisifies

1 dT5+- Wd <_O

since the value zero is achievable with (d 0, 6 0). Thus

(x; d)_<-dTWd.
Since W is positive definite, the right-hand side is nonpositive, with zero value if and
only if d 0. The last statement follows from Theorem 8. D

If it happens that d 0, so that the optimality conditions are satisfied with the
possible exception of the positive semidefinite condition on U, and if indeed U has
a negative eigenvalue, then it is necessary to split the multiple eigenvalue Al(X) as
explained in Theorem 7 in order to obtain a decrease in the maximum eigenvalue. In
nonlinear programming, an analogous situation occurs when x satisfies all optimality
conditions except the sign constraints on the Lagrange multipliers.

Whether d is zero or not, (30)-(31) define a matrix U which is unique as long
as the active constraint gradients of the QP are linearly independent. (Note that
(21) is a necessary condition for such independence.) If the dual matrix estimate
U generated by the QP is not positive semidefinite, this is a clear indication that
the multiplicity estimate t is too large and that the tolerance T should be reduced if
possible. This strategy is used in the current version of our programs. Consequently,
we do not generally expect to converge to points x where it is necessary to split a
multiple eigenvalue. This is indeed the case in practice, with the notable exception of
the graph problems to be described in 11.

THEOREM 10. Suppose that the QP (24)-(29) yields a solution d, 6 with the
property that the constraints (26) are not active, and suppose that U defined by (30)-
(31) is positive semidefinite. Then d is a descent direction for 1 (unless d 0),
regardless of the value of T.

Proof. The exact multiplicity of l(x) is less than or equal to the multiplicity t
defined by (22). Consequently, (33) holds, just as in Theorem 9. However, (d 0,
0) does not generally satisfy (25). Let

E=e
represent the combined linear system (25) and (28), where d- (dT, 5)T. It follows
that equations (30)-(31) may be written

where v (Ull, 2Ul., , Utt, #1,’", #n). (Actually, this system needs modification
if the trust radius constraint (27) is active, but this is easily done by modifying the
corresponding lower and upper bounds k or uk to impose the trust radius bound.)
Taking an inner product with d we have

dWd + ve + /d.
We have ’d _< 0 by (a2) together with feasibility of x. Since e has nonpositive entries
corresponding to diagonal elements of U in v and ero entries elsewhere, we therefore
have
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from the semidefiniteness of U and W, with 5 0 only if d 0 (since W is positive
definite).

It follows that if the dual matrix estimate U is positive semidefinite and T and p
are both sufficiently small,

(34) A1 (x + d) < A1 (x),

provided d is nonzero. (If T is tOO large relative to p the QP may not be feasible, while
if p is too large, d II may be too large for the negative directional derivative to yield
(34).) The best automatic way to adjust T and p is not clear, but in practice, given
a reasonable estimate for -, obtaining the reduction (34) by decreasing p is usually
straightforward unless A is very near its optimal value. Provided (34) holds, the new
iterate may be set to x / d. (The difficulty of a possibly infeasible subproblem is
eliminated in the large-scale algorithm described in the next section.)

It is explained in [36] that, in order to obtain a quadratically convergent method,
W should be set to the Hessian of the appropriate Lagrangian function. We emphasize
that W is not the Hessian of the max eigenvalue function, which does not exist at x*
if t* > 1. The correct form of the Lagrangian is not (4.9) of [36], but a modification
using the matrix exponential formulation mentioned above. The formula for W given
by (4.12) of [36] is correct. Its derivation was omitted, but it is given in [39]. In
the case t 1, the formula reduces to a fairly well known expression for the second
derivative of a distinct eigenvalue; see [26], [20]. In the case that A(x) is nonlinear,
an additional term

Q OA
OxjOx’Q

must be added to (4.12) of [36], assuming that A(x) is twice continuously differen-
tiable.

We make here an observation not made in [36], namely, in some cases the reduc-
tion condition (34) may not hold for p large enough that (27) is inactive, even when
W is set to the correct Hessian matrix and x is very close to an optimal solution.
Such a situation is known as the Maratos effect and it prevents quadratic convergence
of the algorithm, since the trust radius p must be reduced until it yields (34). This
difficulty has indeed occurred on some of our test problems, but it has been over-
come by implementing Fletcher’s second-order correction technique, making use of
our knowledge of the Hessian matrix W to avoid additional gradient evaluations, as
does Fletcher in [12].

Clearly, it is important to develop a precise version of the algorithm for which
global convergence can be guaranteed. As yet, we have not attempted to do this,
but we do not see any inherent difficulty. Trust region convergence proofs are by now
rather well understood; the essential ingredients in this case are given by the theorems
above.

The SQP algorithm summarized in this section has been used to solve a wide
variety of problems, some of which will be mentioned in later sections of the paper.
Our Fortran implementations use Eispack subroutines [50] to obtain the eigenvalues
and eigenvectors of each matrix A(x) and either the Stanford code LSSOL [16] or the
equivalent NAG routine [32] to solve the quadratic programs. Using current work-
station technology, only a moderate amount of computer time is typically required to
obtain a very accurate solution, including verification of the optimality conditions, for,
say, max(n, m) <_ 40. However, the algorithm is very inefficient for much larger values
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of n, m. The next two sections discuss how to modify the algorithm for large-scale
problems.

5. The optimization algorithm when m is large. In this section we discuss
our approach to modifying the successive quadratic programming algorithm when m
is large, say, m > 40. The discussion of how to efficiently compute the eigenvalues
when n is also large is deferred to the next section.

The first observation is that the benefits of quadratic convergence are far out-
weighed by the cost of computing and factoring the Lagrangian Hessian W when m
is large. We shall therefore consider a first-order algorithm based on successive linear
programming instead of successive quadratic programming, replacing W by zero in
(24). First-order algorithms, which generally converge at a first-order rate, can be
very satisfactory in some applications; in other cases they can be excruciatingly slow.
If it happens that equality holds in (21), then, generically, the solution is "strongly
unique," which implies that a first-order method is quadratically convergent. How-
ever, this is not generally to be expected.

A successive linear programming method retains the key feature of the SQP algo-
rithm of [36], namely, the algorithm estimates the eigenvalue multiplicity t and uses
the appropriate t(t + 1)/2 linear constraints to approximate the condition ,)i (X -- d)At(x / d) w, generating the corresponding t t dual matrix U. Consequently,
verification of the optimality conditions for the model problem is possible. We have
the following theorem.

THEOREM 11. Assume that T O, so that )l(x) has exact multiplicity t. Then
the linear program (24)-(29), where W O, yields a vector d, which is a direction of
nonascent for (x). Furthermore, if p > O, then (d 0,5 O) is a (not necessarily
unique) solution of the linear program if and only if (12), (13), and (15) are satisfied
for some U, #, and ".

Proof. The proof is a straightforward modification of the proof of Theorem 9.
The solution (d 0, 5 0) cannot be unique when t(t + 1)/2 + nc +nb < m + 1, since
it is not a vertex of the feasible region. D

However, even solving the linear program (24)-(29), where W 0, is not a
justifiable expense when m is large, especially if t(t + 1)/2 + nc +nb << m, which
is usually the case. Usually the LP has only a few active general linear constraints,
i.e., (25) and (28), so that obtaining a vertex solution requires most of the elements
of d to be on their bounds. Often, aside from perhaps a few "genuine" active bounds
arising in (29), most of the active bounds are trust radius bounds in (27). If the
simplex method is used to solve the LP, most of the work involves finding the active
set of bounds. Since there are only a few general linear constraints, the work per
simplex step need only be O(m), but O(m) steps are required. This is not acceptable,
especially since the exact set of active trust radius bounds is of little importance; the
purpose of the trust radius is simply to restrict d so that its norm is not too large.

In view of these remarks we have implemented the following "partial linear pro-
gramming" solver. (For a related idea, see [23].)

PLP Algorithm to partially solve the LP

(35) min gT

subject to

(36) Ed e,
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(37)

(38)

(39)

(40)

Fd>_f,

kEK,

II d I1< p,

where d (dT, )T }m+l, K is an index set, and g, E, e,F, f,[,
are defined so that (35)-(40) is equivalent to (24)-(29), with W 0,
except that the additional constraints (38) have been introduced (for
reasons to be explained shortly) and that, for convenience, the trust
radius restriction applies to d instead of d. Thus

g [0,...,0, 1]T;

E and e, respectively, contain the t(t + 1)/2 rows

[-q(x)TA1 (x)qj(x), -qi(x)TA.(x)qj(x), 50]; ij(i(X)--l(X)),

1 <_ _< j _< t (where 5j is the (i, j) element of the identity matrix),
together with the additional nc rows

[c0]; 0;

F and f contain the rows

[--q(x)TA(x)q(x), ...,-q(x)TAm(x)q(x), 1]; A(x) A(x),

t + 1,...,n; and

[(t x), -1; [(u x), ].
It is assumed that l <_ x _< u, so that l _< 0, >_ 0. Note also that
f <_ 0, so d 0 satisfies all constraints except (36). It is assumed
that t(t + 1)/2 + nc << m. It is not necessary to store or even
fully compute the derivative matrices Ak(x); rather, a subroutine is
required to perform the matrix vector product Ak(x)q for given index
k and vector q.
Step 0. Set p 0. Set o to the least norm solution of the un-
derdetermined linear system (36), (38). This is obtained by a QR
factorization of G, a matrix defined initially to contain the columns
of ET, with rows corresponding to the indices in K removed. Let the
QR factorization of G be given by

G YR,

where R is upper triangular and Y, which has the same dimensions
as G, satisfies yTy I. Then solve

RTdY e
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and set

(41)

(42)

(43)

0 Ydy,

the least norm solution of GTd--e. Set d to the vector containing
0 interspersed with zeros corresponding to the entries in K. (We use
the Linpack software for computing the QR factorization; the range
space basis Y is stored only as a product of Householder transfor-
mations. For details, see [8] and, for information on how to update
the factorization and use it in the context of optimization, see [17].)
Then set d ad, where a is defined as follows. If d is a feasible
point for the LP, set a 1. Otherwise, if d0 violates the constraints
(37), the bounds (39) or the trust radius restriction (40), set a to
the maximum value possible so that d satisfies (37)-(40). (This effec-
tively modifies the equality constraints of the LP. The rationale here
is that if the least norm step to the equality constraints of the LP is
infeasible, most likely the approximations underlying the definition
of the LP are not good enough to justify its solution, should it indeed
have a feasible solution.)
Step 1. Let be g with rows corresponding to the indices in K
removed. Set d to the least squares projection of onto the null
space of GT. This is obtained by using the QR factorization of G to
solve the least squares problem

i.e., solving

Rv yT,

and setting d to the residual Gv-O. Note that a null space basis is not
computed. If II d II- e, go to Step 3. Otherwise increment , and set
dV to the vector containing d interspersed with zeros corresponding
to the entries in K.
Step 2. Compute the maximum step aV so that

satisfies the constraints of the LP, consequently making a new general
linear constraint or bound active. In the former case, append the
corresponding row of F as a new column of G. In the latter case, if the
new active bound is one of the bounds in (39), add the corresponding
index to K and remove the corresponding row from G. In either of
these cases, update the QR factorization of G accordingly and go
back to Step 1. Finally, if the new active bound is one of the bounds
in (40), go to Step 3.
Step 3. Set v to the final vector of constraint multipliers, by per-
muting the elements of the last solution of (42) to correspond to the
row order in E and F, interspersing zeros corresponding to inactive
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constraints in (37). Set ’ to the final vector of bound multipliers, by
setting

k (g- [ET FT]v)e, k e K,

and /k 0 otherwise. (See [17, p. 189].) Exit with 0 (defined by
(423)), v, /, and K.

The basic idea of the PLP algorithm is that once one active trust radius bound
is encountered, there is little to be gained by going through the computationally
expensive process of adding all the other active trust radius bounds making up a
vertex solution to the LP. Of course, since the PLP method neither checks multiplier
signs nor allows a constraint or bound, once active, to become inactive, it will not
generally produce an optimal solution of the LP.

Note that when t 1, d 0 and the vector consisting of the first m components
of ldl, say ldl, is the steepest descent step for the differentiable function Al(X),
projected to satisfy the linear constraints Cd 0 and (38), and with steplength
restricted by (37), (39), or (40) (if the last case applies, the algorithm terminates
immediately with d aid1). When t > 1, the algorithm certainly does not yield
a steepest descent direction; such a direction would violate (25) and hence split the
current approximate multiple eigenvalue. However, the first m components of 1 may
be viewed as a projected steepest descent direction, where by this we mean projected
to satisfy the additional t(t + 1)/2- 1 conditions in (36).

The selection rule for s in Step 0 eliminates one potential difficulty with the
SQP method, namely, the possibility of an infeasible subproblem.

Instead of using the PLP algorithm, which is based on QR factorizations of ma-
trices with a small number of columns, an alternative approach would be to use an
affine scaling interior point method to partially solve the LP.

We now define the successive partial linear programming (SPLP) method whose
purpose is to solve the constrained model problem when m is large by a sequence of
calls to the PLP algorithm. Each of these calls partially solves an LP of the form (35)-
(40). The number of equality constraints in (36) is determined by the multiplicity
estimate t. As with the SQP algorithm, the hope is that, once t is determined correctly,
the inequality constraints (37) will become permanently inactive. However, since
bounds in (11) may be active at a solution x*, it is not adequate to begin the PLP
algorithm with all bounds on the elements of d inactive, since then the same active
set of bounds would have to be repeatedly built up every time the PLP algorithm is
executed. This inefficiency is avoided by the use of the bound active set K. Bounds are
added to K when they are encountered during a PLP execution; they are removed
from K after a PLP execution if the corresponding multiplier signs indicate that
they should not be active. Also, if the dual matrix U defined by the multipliers
characterizing a PLP "solution" is indefinite, the multiplicity tolerance T is reduced.
The updating of the trust radius p is based on recommendations in [13].

SPLP Algorithm to solve (10)-(11).
Step 0. Initialize the trust radius p and the multiplicity tolerance T.

Define a convergence tolerance . Set x to an initial value satisfying
(11). Compute the eigenvalues and eigenvectors of A(x). Initialize
K to the empty set.
Step 1. Define the multiplicity estimate t and associated block of
eigenvectors Q1 by (22)-(23). Set K’ K. Partially solve the LP
(35)-(40), using the PLP Algorithm, producing (dT,5)T, v,,
and (a possibly modified) K.
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Step 2. Construct U and # from v, by setting diagonal elements
of U to corresponding multipliers for diagonal equations of (25), off-
diagonal elements of U to half the corresponding multipliers for the
off-diagonal equations of (25), and elements of # to corresponding
multipliers for the constraint Cd O. If U is not positive semidefi-
nite, reduce T by a factor of two. If II d I1_< e, go to Step 5.
Step 3. Compute the eigenvalues of A(x + d). If 1 (x / d) _> 1 (x),
then set K K’, divide p by two, and go to Step 1.
Step 4. Define

A1 (x) A (x + d)=
the ratio of the actual to predicted reduction in the minimization ob-
jective. If > 0.75, double p; if < 0.25, divide p by two. Compute
the eigenvectors of A(x + d), if they were not already obtained, and
replace x by x + d. If /does not satisfy (32), remove indices from K
corresponding to violated bounds in (32). Go to Step 1.
Step 5. If U is positive semidefinite and "r satisfies (32), stop. If U is
not positive semidefinite, then obtain a reduction in A by splitting
the multiple eigenvalue 1 (x) At(x), as explained in Theorem
7; then reduce T by a factor of 10 and go to Step 1. Otherwise, if, violates (32), remove indices from K corresponding to violated
bounds in (32), divide p by two, and go to Step 1.

The following theorem provides one justification for the SPLP method; to avoid
unnecessary complication, some simplifying assumptions are made.

THEOREM 12. Suppose that the PLP algorithm called by Step 1 of the SPLP
method generates (dT, )T with the property that

aoo + al,

i.e., no bound in (39) or constraint in (37) becomes active. Suppose also that U defined
by the subsequent Step 2 of the SPLP method is positive semide]inite. Then d is a
direction of nonascent for ).

Proof. By construction, we have E e, E 0, so E ae. Therefore, by
the same argument used in Theorem 10, (33) holds. We therefore wish to show that

dm+ is nonnegative. Let us first look at the second term of d. We have

(1)m+1 ]Td _oT(I yyT)o <_ O,

where , are defined by Step 1 of the PLP algorithm, since yyT is the orthogonal
projector onto the range space of G and I- yyT is the orthogonal projector onto
the null space of GT. Now consider the first term of . We have

Gv YYTI,

so taking an inner product with (41) gives

vTe [tTydy .TO (l))m+l"

The proof is now complete, since vTe
_

0 for the same reason as given in Theorem
10.
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Theorem 12 is based to some extent on [31, Thm. 4]; as a point of comparison,
note that the dual matrix estimate U generated by the SPLP method is obtained
from least squares approximation.

We expect that the algorithm described above will be modified in the future with
further computational experience and theoretical development. In particular, we have
no theoretical guarantee that the algorithm will converge to an optimal solution; we
have not yet attempted any convergence analysis. However, in its present form, the
algorithm has been used to obtain very satisfactory solutions to the problems to be
described in 9, 10, and 11.

Although it is not practical to compute W when m is large, we note that the SPLP
method can probably be improved by approximating the second-order information in
some way. The expression for W given by (4.12) of [36] is actually a sum of terms, one
corresponding to each eigenvalue smaller than At. Since the denominator of each term
is the separation of the eigenvalue from 1, one idea is to approximate W by a low-
rank approximation, consisting of terms corresponding to eigenvalues immediately
lower than At. It is not clear exactly how the low-rank approximation would be
exploited, but note that an SLP method may be regarded as an SQP method with a
zero-rank approximation to the quadratic term. An alternative idea is to approximate
W using a limited memory quasi-Newton method; see [28]. In either case it seems
probable that a practical SQP method could be devised that would converge faster
than the SPLP method unless it had difficulty identifying the optimal multiplicity t*.

We complete this section by noting that if n is large, the number of inequalities
in (26), and therefore (37), should be substantially reduced. Indeed, as discussed in
the next section, it is not practical to compute all the eigenvalues of A(x) when n is
large.

6. Computation of the eigenvalues when n is large. When n is large, the
QR algorithm used by Eispack is not an efficient way to solve the eigenvalue problem.
Indeed, it is particularly inappropriate for our purposes for two reasons"

1. Since only the largest eigenvalues are of any relevance to the optimization,
it is grossly inefficient to compute all the eigenvalues of each matrix iterate

A(x).
2. Typically, each matrix iterate A(x) generated by the optimization calculation

does not differ much from the previous matrix iterate, whose eigenvalues and
eigenvectors have already been computed.

For both of these reasons, it is clear that the eigenvalues should be computed
by an iterative method. Possibilities are power methods, inverse power methods, and
Lanczos methods. The best choice depends on a number of considerations. In all cases,
however, it is essential to iterate with a block of r vectors, which are approximate
eigenvectors for A1,..., At, where r _> t*, the multiplicity of at the optimal solution.
Otherwise it will not be possible to verify the multiplicity t* or to generate the dual
matrix U. Indeed, unless an a priori upper bound on t* is known, it is necessary
that r > t* to be sure that the correct multiplicity is calculated. The number r can
be adjusted during the iteration according to the value of the current multiplicity
estimate t. It is important to maintain orthogonality of the r vectors during the
iteration. The orthogonalized block versions of the power and inverse power methods
are generally called subspace iteration; see Parlett [42] for details. The block of
eigenvectors computed for the previous matrix iterate is a very valuable starting block
for each subspace iteration after the first few optimization steps.
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The simplest variation of subspace iteration is that based on the ordinary power
method, which requires repeated multiplication of A(x) onto the block of approximate
eigenvectors. To be applicable, it is necessary that r(x) >1 An(x)I; usually this
method is used only when A(x) is positive definite. The convergence of Ai(x), 1
r, depends on the separation of its magnitude from Ar+l (x). In particular, convergence
of Al(x) is fast if

(44) Al(x)

Whether or not (44) holds, a Lanczos method generally converges faster than the
power method. However, a block Lanczos method is needed, for the reason just
explained. We have not tried using block Lanczos since the necessary software has
not advanced beyond an experimental stage.

Suppose now that (x I<1 An(x)I. This happens, in particular, if A(x)is
negative definite; equivalently, the optimization objective is to maximize the smallest
eigenvalue of the positive definite matrix -A(x), as in the column problem to be
discussed in 9. In this case, an inverse block power method (subspace iteration) is
appropriate. Convergence of A1 (x) is fast if

This is the case for the column problem. The inverse power method, unlike the power
method, requires factorization of A(x) at each step of the optimization iteration, i.e.,
once per subspace iteration, as well as two triangular "solves" at each step of the
subspace iteration.

If the power or inverse power methods converge slowly an attractive alternative
is the shifted inverse power method, commonly known as inverse iteration. As before,
the iteration must be carried out on a block of vectors. Each step requires the block
of vectors to be multiplied by the inverse of sI- A(x); this is implemented by a
factorization of sI- A(x) and several triangular "solves." An excellent shift s is
available, namely, the value of A from the previous matrix iterate. After the first
few optimization steps, the shift is usually so good that only one shifted inverse
multiplication is needed. If sI- A(x) is discovered not to be positive definite during
its factorization, the iterate x may be rejected immediately and the optimization trust
radius p reduced, since )l (x) is necessarily greater than the previous value s. This is
a very valuable observation.

Whatever iterative method is chosen to compute the eigenvalues, caution must
be used. In particular, if the iteration is terminated too soon with an inaccurate
underestimate of A1, which is lower than the previous best value, the optimization
algorithm may be unable to obtain a further reduction in A1 (x + d) for the simple rea-
son that its estimate of 1 (x) is wrong. Thus a good implementation of the algorithm
needs to allow recomputation of A1 (x) when necessary. We have not yet incorporated
this automatically, instead restarting the algorithm when necessary. This is usually
needed only at the beginning of the optimization if shifted inverse iteration is used,
since the excellent choice of shift available makes this method very accurate. Note
one fortunate fact" whatever form of block iteration is used, it is A1 that is the most
accurately computed of A1,..., At; this is the eigenvalue whose accuracy is the most
critical.

If factorizations are not practical, inverse or shifted inverse subspace iteration is
still possible by the incorporation of a third nested iteration for, e.g., the conjugate
gradient method to solve the linear systems required for each step of each subspace
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iteration. In the case of shifts, this inner iteration may be terminated if indefiniteness
is detected, for the same reason as explained above. We note, however, that the
performance of the conjugate gradient method on the nearly singular systems that
result from a good choice of shift is not very well understood. Most of our numerical
experiments have used factorizations but some (not very extensive) experiments with
a conjugate gradient version suggest that the method may give poor results when
the shift is good, perhaps because of instability resulting from the near singularity of
sI- A(x). An alternative idea, following Szyld [52], is to use the eaige and Saunders
method SYMMLQ [40]. This may give better results than conjugate gradient for
nearly singular positive definite systems. Szyld gives an argument explaining why
the near singularity does not cause difficulty for SYMMLQ; he did not consider the
conjugate gradient method, since he was concerned with interior eigenvalues and
therefore needed to operate with indefinite systems. However, the disadvantage of
using SYMMLQ is that the shifted inverse iteration may converge to a subdominant
eigenvalue, since the iteration is not terminated when sI- A(x) is indefinite. We
have not yet experimented with a preconditioned conjugate gradient method, for
example, using a factorization of an earlier matrix iterate for a number of steps of the
optimization.

7. The generalized eigenvalue problem. All of the preceding sections may
easily be generalized to apply to the eigenvalue problem

(45) A(x)q Bq,

where B is a symmetric positive semidefinite matrix independent of x, not necessarily
the identity matrix, as has been implicitly assumed up to this point. We have the
following modifications to Lemma 1 and Theorem 1 (proofs are omitted).

LEMMA 2. Let Q be a matrix E nxn such that

(46) QTBQ I.

Then the convex hull of the set

{wwT w e n, wTBw 1}

is the set

{=QQT. ,,, =T,, trY=l, >_0}.

Furthermore, the elements in the first set are the extreme points of the second set.
Note that the trace of/) is generally not equal to one.
THEOREM 13. As above, let Q be any matrix nn satisfying QTBQ I.

Now let AI(A,B) denote the largest eigenvalue of the pencil (A, B), i.e., largest root
) of (45) for nontrivial q, ignoring for the moment the dependence of A on x. The
following characterizations of hold:

)(A,B)
A(A,B)

max{(q, Aq) qTBq 1};
max{(qqT, A) qTBq---- 1};

(47) ,I(A, B) max{(, A) /) QQT, e SYn’, tr gr 1, >_ 0}.
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Now take Q [ql,"" qn] to be a matrix of eigenvectors of (A, B), normalized so
that (46) holds. Thus, in addition to (46), we have

QTAQ Diag(i).

Assume that the largest eigenvalue A1 has multiplicity t, with corresponding eigenvec-
tors, q,..., qt making up a matrix Q1 E nt. We see then that the set of matrices
achieving the max in (47) is, as before, the right-hand side of (6). Indeed, Theorem
2 and all subsequent theorems, remarks, and algorithm statements then apply ex-
actly as before provided only that the normalization (46) is consistently used for the
eigenvectors.

Note that the details of subspace iteration are well known for the generalized
problem; see [2], [42, Chap. 15]. If a shift s is used, it is of course understood that
A(x) is to be shifted by sB instead of sI.

(48)

8. Several matrix families. Suppose it is desired to minimize

(x)- max A’)(x)
_<<p

subject to (11), where each )t)(x),/-- 1,... ,p, is the largest eigenvalue of a matrix-
valued function A(O(x). The necessary optimality conditions are easily extended to
this case by introducing a dual matrix for each matrix family. Given x, let tt be the
multiplicity of At)(x) if the latter quantity equals (x), and zero otherwise. Let Qt)
be an orthonormal set of t corresponding eigenvectors if tt > 0, and the empty matrix
otherwise.

THEOREM 14. A necessary condition for x to solve (48), (11) is, in addition
to (11), that there exist dual matrices U() Stt, 1,...,p, and vectors of
Lagrange multipliers # nc and "y m, satisfying

P

(49) E(U(0, (Q’))TAk(x)Q)) (#,ck) / /k, k 1,...,m,
1--1

P

(50) Z tr U(0 1,
l--1

(51) U() _> 0, l- 1,...,p,

as well as (15). The necessary condition is also sufficient in the aflfiue case.
The proof is a straightforward generalization of the proof of Theorem 5.
Similarly, the SQP and SPLP algorithms are easily adapted to minimize (x) by

including, in the QP or LP, constraints of the form (25)-(26) for each of the p matrix
families. Multiplicity estimates t, 1,...,p, may be defined as the largest integer
t such that

(x) ,)(x) _< T max(l,
with t 0 if no positive integer satisfies the inequality. Note that it is not recom-
mended to simply define A(x) to be a block diagonal matrix with blocks A()(x),
1,...,p. Such an approach loses some of the structure of the generalized gradient
of (x), since it does not take account of the fact that eigenvalues corresponding to
different diagonal blocks of a block diagonal matrix do not interact with each other.

One application of (48) is minimizing the maximum eigenvalue of A(x) in absolute
value by taking A()(x) A(x),A(2)(x) -A(x); see [36] as well as 10 below.
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9. The column problem. A classical problem that goes back to Lagrange is
to find the shape of the strongest column with given volume. Mathematically, the
problem is to determine a function a(x), the cross-sectional area of the column, from
an admissible set

(52) a L" 0 <

_
a(x)

_ , a(x)dx 1

to maximize the least eigenvalue of

u e

on the interval [0,1], where p >_ 1 (usually p 1 or p 2). Here p has a different
meaning from the previous section and x refers not to unknown parameters but to
a spatial dimension along the axis of the column. The function u(x) measures the
displacement of the column when deflected from its equilibrium position. The case
p 2 models columns with circular (or equivalently square) cross-sections of uniform
material. The case p 1 models "thin-wall" beams or columns, where a variable
thickness shell of one kind of material surrounds a uniform core of another material.
The significance of the least eigenvalue of the differential equation is that it corre-
sponds to the critical buckling load in the Euler-Bernoulli model of the column. (The
load is applied at the ends of the column, in the direction of its axis.)

The problem is a controversial one that has been addressed by many applied
mathematicians and structural engineers, including [53] and [33]. Our work on this
problem is a joint effort with Steve Cox; the details of our theoretical and compu-
tational contributions may be found in [6]. Here we briefly summarize some of the
computational results. We discretized the problem, approximating a(x) by a piece-
wise constant function ah, where h is the mesh size. Following the standard approach
in [51], we approximated u by Uh, using piecewise cubic Hermite finite elements, and
constructed the corresponding finite-dimensional bending matrix A(ah) and stiffness
matrix B such that the eigenvalues of the generalized problem (45),

(54) A(ah)q ,Bq,

converge to the eigenvalues of the differential equation as h decreases to zero. (Only
the smallest eigenvalues are well approximated by the discretization; these are also
the eigenvalues of physical interest.) The eigenvector q consists of the values of Uh
and its derivative at the mesh points. There is a slight conflict of notation; ah refers
both to a piecewise constant function and to the vector of variables that defines it.
The boundary conditions of (53) are "clamped-clamped"; thus A and B are defined
so that Uh and its derivative are zero at 0 and 1. Note that, as in (45), A depends on
the unknown variables while B does not. The integral constraint in (52) becomes a
linear constraint on ah. Regarding the bounds on a: a solution of the mathematical
problem is known to exist only for c > 0, / < c [6]; however, in practice, these
requirements do not seem to be necessary and for most experiments we used c -0,

We then applied the SPLP algorithm of 4 to find that rh which maximizes the
smallest eigenvalue of (54), or equivalently, negating the signs of the eigenvalues,
minimizes the largest one, subject to the linear integral constraint. The order of the
matrices A and B, n, is 2N- 4, and the number of variables, m, is N- 1, where
N h- + 1. We used the inverse version of subspace iteration without shifts to
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compute the eigenvalues, which requires the factorization of a band matrix at each
optimization step, as explained in 6. Since it is known that the extremal eigenvalue
cannot have multiplicity greater than 2, we computed only r 2 eigenvalues. Most
of the papers in the literature do not take this direct optimization approach. Of the
few that do, we do not know of any that compute the dual matrix approximation
U, which is the key to verifying optimality. (When p 1, A(o’h) is linear, so the
minimum eigenvalue is concave; when p > 1, concavity is lost, and satisfaction of the
necessary conditions does not guarantee optimality, but comparison of the results for
varying p indicates that our computed solutions are most likely global maxima.)

The results show that when p > 1, the optimal (rh is bounded away from zero as
h 0, but for p 1 apparently the optimal rh converges to zero at two points as
h 0. Presumably, the optimal column has zero thickness at two points if p 1, but
not if p > 1. This has been a subject of great controversy in the literature, especially
when p 2; see [6] for details. Plots of the optimal cross-sectional area ah(X) are
shown in Fig. 1 for N 513 with p 1 and p 2, respectively. The functions plotted
are piecewise constant with 512 pieces, with no interpolation. The strongest column
is about 33 percent stronger than the uniform column with the same volume in the
case p 2 and about 25 percent stronger in the case p 1.

In all cases 1 _< p _< 3, the first eigenvalue is double at optimality. It is this double
eigenvalue that has caused most of the debate in the literature; indeed, some authors
have expressed doubt about the multiplicity even when giving the correct result for
the optimal a. Even more interesting, the 2 2 dual matrix U that demonstrates
optimality has minimum eigenvalue bounded away from zero as h - 0 for all p > 1,
but for p 1 the dual matrix is apparently singular in the limit as h 0. We
conclude that the double multiplicity of the eigenvalue of the differential equation is
"strongly stable" for p > 1, but not for p- 1.

The performance of the SPLP algorithm was very good. The results shown in
Fig. 1 were obtained using a convergence tolerance e 10-3, with the multiplicity
tolerance and trust radius set initially to T 0.1 and p 5 and the variables initialized
to 1, i.e., the uniform column. The number of calls to the subspace iteration routine,
i.e., the number of times the computation of the eigenvalues was required, was 60 for
p 2 and 27 for p 1, with a total computation time of less than 1.5 hours on a
Sparc station in each case. The residual of equations (12)-(13) was reduced to about
10-3 in the case p 2 and about 10-2 in the case p 1. The accuracy of the optimal
1 was approximately four decimal figures, with the gap between the first and second
eigenvalues reduced to about 10-6. Such fast convergence indicates a well-conditioned
optimization problem, since the method is only first-order. We also performed some
experiments with c, the lower bound on rh, set to a positive number, e.g., 0.25. The
active bound strategy used by the SPLP algorithm worked very effectively. Typically,
most of the active bounds were identified in just a few steps, with fine tuning of the
active set taking place subsequently.

10. Design of optimal preconditioners. Greenbaum and Rodrigue [21] have
used our optimization programs to solve the following problem: given a positive def-
inite symmetric matrix B, find the positive definite symmetric matrix M with pre-
scribed sparsity pattern which minimizes the two-norm condition number of
M-1/2BM-/2. They show that M equivalently minimizes the maximum eigenvalue
(in absolute value) of

I- M-/2BM-/2
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FIG. 1. The shape of the strongest column.

or

(55) I-L-1ML-T,
where LLT is a Cholesky factorization of B. The latter formulation is preferable, since
the variables, the nonzero elements of the sparse matrix M, enter linearly. Since a fac-
torization of B is used, finding the optimal preconditioner is clearly much more costly
than solving a system Bx b; the idea is that finding such optimal preconditioners
gives insight that can then be widely applied.

The work reported in [21] was done before the SPLP version of the algorithm was
available, so the SQP method described in 3 was used, the eigenvalues being com-
puted by Eispack. The primary interest was in matrices B arising from elliptic partial
differential equations, but only very coarse meshes could be handled. Nonetheless, it
was found that the experiments gave a substantial amount of insight. For example,
the optimal tridiagonal preconditioner M for B equal to the five-point finite difference
approximation to the Laplacian on the square was computed. The results led to the
conjecture that the optimal condition number is O(h-9), where h is the mesh size in
each direction, and that the optimal tridiagonal preconditioner is only slightly better
than simply setting M to be the tridiagonal part of B. It was also found that the
optimal solution yields (55) with a double eigenvalue at each end of its spectrum,
these two double eigenvalues having the same magnitude. Further experiments in-
volving domain decomposition were also done; this is a promising area for further
investigation.

A better way to formulate the optimization problem is to minimize the maximum
eigenvalue, in absolute value, of the generalized eigenvalue problem

(i- B)q ABq.

Note that, as in 7, the variables, i.e., the elements of M, appear only on the left-hand
side. Using this formulation, we have now performed further experiments with the
SPLP version of our algorithm. Our first idea was to compute the extreme eigenvalues
of the pencil (M- B, B) by direct subspace iteration. This requires only one Cholesky
factorization of B before the optimization iteration begins. However, convergence was
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much too slow for this approach to be practical. We therefore used shifted inverse
iteration to independently compute the algebraically largest eigenvalues of the pencils

(A(1), B) (M B, B) and (A(2), B) (B M, B).

This required factorizations of (s + 1)B- M and (s- 1)B + M at each optimization
step, for which we used the Linpack band matrix subroutines. At the optimal solution
of all test problems, and indeed usually after a few optimization steps, the largest
and smallest eigenvalues of (M- B, B) were approximately equal in magnitude and
opposite in sign. As explained in 8, two dual matrices U(1) and U(2) are generated by
the SPLP algorithm, with dimensions t and t2, which are the computed multiplicities
of each end of the spectrum of (M- B, B). Note that instead of (13), we have the
condition

tr U() + tr U(2) 1.

We computed the optimal banded preconditioner M for B equal to the finite
difference negative Laplacian on a unit square with mesh size h in each direction.
We assumed Dirichlet boundary conditions, so that B and M are n n matrices,
where n N2, N h-1 1. The matrix M is said to have half-bandwidth k if its
total bandwidth is 2k + 1; thus, for k 0, M is restricted to be diagonal, while if
k N, the optimal solution is M B. The dimension of the optimization problem,
m, is approximately (k + 1)N2. The results support the following conjecture" the
optimal preconditioner M with half-bandwidth k gives a pencil (M- B,B) with
eigenvalues of multiplicity k / 1 at each end of its spectrum for all k < N. However,
computing accurate optimal preconditioners for even moderate mesh sizes was very
difficult for the simple reason that, like the discrete Laplacian itself, the eigenvalue
optimization problem is increasingly ill conditioned as N increases. The negative
end of the spectrum of (M- B, B) has a cluster of eigenvalues which becomes more
dense as N increases. For small mesh sizes (N _< 6) there was not much difficulty
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identifying the apparently correct optimal multiplicity k + 1, but this became more
difficult for larger N, since the gap between the extremal eigenvalue and the interior
eigenvalues becomes smaller as N increases. Furthermore, it is apparently the case
that tr U(1) 0 and tr U(2) 1 as N , showing that the positive end of the
spectrum of (M- B, B) becomes more and more irrelevant as the discrete Laplacian
B becomes closer to being singular.

The situation is quite different from that reported for the column problem as
we allow the mesh size to go to zero. The column problem is well posed in infinite
dimensions and the finite-dimensional optimization problem is well conditioned as
N c. By contrast, the optimal preconditioning problem for the Laplacian is not
a well-posed problem in infinite dimensions. The reason for this is that the column
problem is concerned only with one end of the spectrum of the differential operator,
namely, the lowest eigenvalue that corresponds (in the case that it is simple) to a
positive eigenfunction, while the optimal preconditioning problem is concerned with
both ends of the spectrum, including eigenvalues corresponding to highly oscillatory
eigenfunctions.

The computed optimal spectral radius of (M-B, B) is plotted in Fig. 2 for various
k and N. The trend is clear. The optimal tridiagonal preconditioner represents a
significant improvement over the optimal diagonal preconditioner (which is a scalar
multiple of the identity matrix). However, increasing k gives successively smaller
improvements until k starts to approach N. This, of course, reflects the fact that the
discrete Laplacian has only five nonzero diagonals, namely, the three main diagonals
and the Nth sub- and super-diagonal.

11. A graph problem. The following problem was communicated to us by
Schramm and Zowe; its origin may be found in [29] and [22]. Given an undirected
graph G, with vertices 1,..., n, let M be an n n symmetric matrix with the restric-
tion that its diagonal elements are zero and its offdiagonal elements (i, j) are zero if
and j are not adjacent in the graph, and let x be the vector whose components are

the nonrestricted lower triangular elements of M. The problem is to choose M, or
equivalently x, to minimize the largest eigenvalue of

(56) A(x) M + eeT,
where e [1,..., 1]T. The minimum value for the max eigenvalue is known to give
an upper bound for the Shannon capacity of the graph [29]. (The upper bound is
sometimes called the Lovasz number of the graph.)

We applied our eigenvalue optimization algorithm to a test problem suggested by
[46]. Given integers a _> 1 and w _> 3, let n aw+ 1 and define G to have the property
that vertices and j are adjacent if j -i < w or + n- j < w. The class of graphs
with this property is denoted C-1. We tried solving the optimization problem for
various values a _< 10 and w _< 6. For these examples the order of the matrix n is
moderate (_< 61), but the number of variables m, which is the number of pairs of
adjacent vertices in the graph, is large (<_ 305). Consequently, it is important to use
the SPLP version of the optimization algorithm, but it is reasonable (though not very
efficient) to compute the eigenvalues using Eispack. (Unshifted subspace iteration
would not work since the smallest eigenvalue, which is of no interest, is negative and
sometimes has a larger magnitude than the largest eigenvalue.)

The test problems are certainly very interesting. In all cases the algorithm im-
mediately generated a point, say &, where the max eigenvalue is multiple to machine
precision, with the two optimality conditions (12)-(13) satisfied to machine precision.



LARGE-SCALE OPTIMIZATION OF EIGENVALUES 115

TABLE 1
Summary of results for graph problem.

a w m 1 t
3 4 39 3.106027 7
4 4 51 4.132934 7
5 4 67 5.151476 7
8 4 99 8.183308 7
10 4 123 10.195149 7
3 6 95 3.055559 11
4 6 125 4.073890 11
5 6 155 5.087257 11
6 6 185 6.097343 11
7 6 215 7.105194 11
8 6 245 8.111465 11
9 6 275 9.116589 11
10 6 305 10.120845 11

min e.v. (U)
.0532
.0545
.0556
.0575
.0584
.0195
.0209
.0219
.0227
.0233
.0237
.0241
.0244

# ,-evals.

1
1

217
130
219
235
238
187
181
227
957*
478
608*

The multiplicity was seven in the cases where w 4 and eleven in the cases where
w 6. (In some cases this required as many as four optimization steps, since suc-
cessive doubling of the trust radius was needed to make a sufficiently large change in
x.) In the case of the first two test problems, the dual matrix U was positive semidef-
inite and the algorithm terminated with the optimal solution &. In all other cases,
however, the dual matrix U was not positive semidefinite and so it was necessary for
the algorithm to split the multiple eigenvalue to obtain a lower point, as described
in Theorem 7. The algorithm then took many more steps to converge to the optimal
solution x*. In all these cases, the max eigenvalue had the same multiplicity at the
final solution x* as at the initially generated point &. This unusual behavior of the
algorithm indicates some underlying linear structure of the eigenvalues that is not
generic and not well understood at the present.

In general, it seems that the optimal multiplicity is 2w- 1. Another interesting
observation is that the minimum eigenvalue of the optimal dual matrix has multiplicity
two for all the problems we have run.

The results are summarized in Table 1. The first two columns specify the problem,
and the third gives the number of variables. The next three columns give the computed
optimal max eigenvalue, its multiplicity, and the smallest eigenvalue of the associated
dual matrix U. The last value given is the number of times the eigenvalues of A(x)
were computed (using Eispack). The convergence tolerance was set to e 10-6. The
multiplicity tolerance and trust region radius were initialized to T .01 and p 10,
respectively. The variables were all initialized to -1. The norm of the residual of
(12)-(13) was reduced in each case to about 10-6 except in the first two cases, where
it was reduced to machine precision (about 10-14 in one step. In the two cases
marked by an asterisk (*) it was necessary to restart the algorithm at one point (with
the original values of T and p) to obtain a satisfactory residual for (12)-(13). It is not
clear why the case a 8, w 6 was so much more difficult than the others, but in
all cases an accurate solution was eventually found. (For the purposes of the graph
application, the iteration could have been terminated much sooner, since the integer
part of the solution is of primary interest, but we wanted to test the accuracy of the
SPLP method.)

It is of some interest to compare our algorithm to that used by Schramm and Zowe,
a "bundle trust region" method, which, as the name suggests, combines ideas of trust
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region methods with those of the early subgradient bundle methods of Lemarechal
[27]. This algorithm is intended for general nonsmooth optimization problems, not
necessarily involving eigenvalues. The bundle trust region method accumulates a
set ("bundle") of subgradients during the course of the optimization. In the version
described in [47] and [57], one subgradient is added to the bundle per iteration, namely,

(57) [qTA1 (x)q, qTAm(x)q]T,

where, as earlier,

Ak(x) OA(x)
Oxk

(in this case a matrix with one nonzero element), and where q is a normalized eigen-
vector corresponding to Al(x), arbitrarily chosen from the invariant subspace if the
multiplicity of Al(x) is greater than one. Theorem 2 (together with the chain rule)
assures us that this vector is indeed a subgradient of A1 (x), that is, an element of the
generalized gradient O(x).

The initial comparison of our results with those of Schramm and Zowe showed
that, while both algorithms obtained accurate solutions, our algorithm usually re-

quired fewer steps to achieve the same accuracy [46]. However, a revised version of
Schramm and Zowe’s algorithm has now been tested, where at each iteration, if A (x)
has approximate multiplicity t, then t subgradients of the form (57) are added to
the bundle of subgradients, for q equal to the t different columns of the matrix of
eigenvectors Q(x). This strategy substantially improved the algorithm, which now

requires far fewer steps than ours for the same accuracy [46]. The reason for the
dramatic improvement is not completely clear, but it may be related to the surpris-
ing initial behavior of our algorithm. Considering (6) in Theorem 2 again, we see
that the first version of Schramm and Zowe’s algorithm computes the subgradient
defined by U eleT, while the second version computes the t subgradients defined

T k 1,’’’ t (here ek is the kth column of the identity matrix). Clearly,by U ekek,
then, one could add more subgradients to the bundle, using other permissible values

T since the basis Q has beenfor U; there is nothing special about the choice U ekek,
arbitrarily chosen by Eispack. The feature of our algorithm which we believe to be
very attractive is that it efficiently computes t(t/ 1)/2 generically linearly independent
subgradients at each iteration, namely, the gradients of the structure functionals (8),
while the dual matrix estimate U defines the linear combination of these subgradients
that satisfies the optimality condition (12) in the limit. This dual matrix is the key
not only to the verification of optimality but also to any sensitivity analysis of the
solution (see Theorem 7).

It would be premature to draw conclusions as to whether the bundle trust re-

gion algorithm or ours is more efficient, for several reasons: the former requires an
estimate of the optimal solution value, which ours does not; the former solves a QP
(with dimension equal to the number of subgradients in the bundle), which ours does
not; comparisons have been made only on the graph problems just described, which
apparently have a rather special structure that is not completely understood. We
expect that it should be possible to improve the rate of convergence of our algorithm
by approximating second-order information (see 5). We also wonder if the bundle
trust region algorithm would have difficulties when the eigenvalues are computed by
a shifted iterative method, since the basis Q would tend to be little changed at each
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iteration. By contrast, when Eispack is used, the basis Q1 (x) does not generally con-
verge as x x* (see the examples in [14]), perhaps giving a bundle that is more
"rich" in the various possible values for the subgradients.

Finally, we note that the dual matrix itself appears in the references [29] and [22].
Indeed, the property stated as Theorem 4 in [29] and the third equality in Theorem
9.3.12 of [22] is a special case of Theorem 6 given above, specifically giving the dual
formulation (16). It seems likely that the multiplicity of the minimum eigenvalue
of the optimal dual matrix U (found to be two in our experiments), as well as the
multiplicity of the optimal maximum eigenvalue of A(x) (conjectured to be 2w), should
be significant for the understanding of the original graph capacity problem.

12. Concluding remarks. We have derived optimality conditions for an im-
portant eigenvalue optimization model problem, emphasizing the representation of
the generalized gradient in terms of a dual matrix U. We have given a practical algo-
rithm for solving large-scale problems of this type, based on successive partial linear
programming, which has been applied very successfully in diverse application areas.
The behavior of the algorithm was quite different for the three applications described
in detail. The column problem described in 9 is a well-posed infinite-dimensional op-
timization problem; discretized versions were solved very efficiently by the algorithm.
The preconditioning problem described in 10 gave rise to very ill conditioned prob-
lems, which were nonetheless solved by the algorithm to reasonable accuracy. The
algorithm also gave very accurate answers to the graph problems described in 11,
which have a rather special structure that is not completely understood.

The SQP algorithm of [36], on which the new algorithm is based, has also been
applied to some other applications not discussed in this paper, including the quadratic
assignment problem [44], the stability of Runge-Kutta methods for ordinary differ-
ential equations [30], and optimal diagonal scaling of nonsymmetric matrices [55].
Another application to which we hope to apply our large-scale algorithm is the com-
putation of structured singular values in control [9], [11], [54].

Perhaps the most important feature of our algorithms is that they compute the
optimal dual matrix U, which is the key to the verification of optimality and to
sensitivity analysis of the solution. Given the optimal dual eigenspace basis Q, the
dual matrix U is unique if the active linear constraints of the limiting LP or QP are
independent (see Theorem 9). If the linear independence assumption fails to hold, the
problem is said to be degenerate, since U is then not uniquely defined and verification
of optimality is much more difficult; this happens, for example, in the Runge-Kutta
problems of [30]. Because the basis Q may be replaced by any other orthonormal
basis spanning the same eigenspace, it is the eigenvalues of U that are of significance.
Nonnegativity of the eigenvalues of U is a necessary condition for optimality and,
together with the other conditions of Theorem 5, a sufficient condition if A(x) is affine.
The eigenvalues of U play essentially the same role in sensitivity analysis of optimal
solutions as that well known for dual variables (Lagrange multipliers) in the context
of nonlinear programming; see Theorem 7. In particular, if the smallest eigenvalue
of U is zero, it may be concluded that the optimal multiplicity of the minimization
objective Al(x) is not strongly stable.
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A VERSION OF THE BUNDLE IDEA FOR MINIMIZING A
NONSMOOTH FUNCTION: CONCEPTUAL IDEA,

CONVERGENCE ANALYSIS, NUMERICAL RESULTS*

HELGA SCHRAMM AND JOCHEM ZOWE

Abstract. During recent years various proposals for the minimization of a nonsmooth functional
have been made. Amongst these, the bundle concept turned out to be an especially fruitful idea.
Based on this concept, a number of authors have developed codes that can successfully deal with
nonsmooth problems. The aim of the paper is to show that, by adding some features of the trust
region philosophy to the bundle concept, the end result is a distinguished member of the bundle
family with a more stable behaviour than some other bundle versions. The reliability and efficiency
of this code is demonstrated on the standard academic test examples and on some reM-life problems.

Key words, nondifferentiable optimization, bundle methods
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1. Introduction and exposition of conceptual ideas. This paper deals with
the minimization of a nonsmooth functional (i.e., f C1)

(1.1) minimize f(x) where f" Rn + ].

Additional constraints in (1.1) do not cause difficulties--at least in theory; they can be
added to f as (nonsmooth) exact penalty terms. As usual in nonsmooth optimization
(NSO), we require throughout that

(1.2) f is locally Lipschitzian.

For such f the subdifferential of f at x,

(1.3)
Of(x) conv {g E n g lim Vf(xi), xi - x, Vf(xi) exists, Vf(xi) converges},

is a well-defined, nonempty, convex, and compact subset of Rn; this and other stan-
dard facts from convex analysis and NSO can be found, e.g., in the textbooks by
Clarke [4] and aockafellar [35]. The elements of Of(x) are called subgradients of f at
x. Quite naturally, these subgradients serve in NSO as substitute for the gradients.
Hence, parallel to what is standard in smooth optimization, we require in the following
that we dispose of a subroutine that

(1.4) computes f(x) and one (arbitrary) g e Of(x) for given x.

This seems to be a modest (and minimal) requirement. Sections 4.2-4.4, however,
will show that in many real-life situations, the computation of only one g Of(x) is
all but easy and is the time-consuming job per iteration.
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1.1. Subgradient methods. Apart from the cutting plane method (see below),
the first methods which could deal with (1.1) under assumption (1.4) and for convex

f were the Russian subgradient methods (also called Kiev methods); see, e.g., Er-
moliev [9], Poljak [34], and Shor [39]. At iterate xk one makes a step along a negative
subgradient with some off-line chosen steplength

(1.5) xk+l := xk + ikdk where dk -ge/llgell with gk E Of(xk).

It can be shown that, under rather suggestive assumptions and for Ak $ 0 and

k=l Ak cx, the xk from (1.5) converge to an optimal point. The simple structure
of these subgradient methods still makes them widely used, although they suffer from
some serious drawbacks: The methods do not guarantee a descent at each step, they
lack an implementable stopping criterion, and the convergence speed is extremely poor
(less than linear). The last disadvantage can be partly overcome by premultiplying
dk in (1.5) with some variable metric matrix Hk, which is updated in a simple way
at each iteration. Linear convergence in the function values can be established for
a member of this class (see, e.g., Shor [39]); the additional Hk, however, makes the
method very cumbersome for large n.

1.2. Bundle concept. Lemardchal [23] and Wolfe [41] initiated a giant stride
forward in NSO by the bundle concept, which can handle convex and nonconvex f.
Since the motivating ideas come from the convex situation, we assume a convex f
throughout this motivating section.

All bundle methods carry two distinctive features (for some other views in this
section, see Lemarchal [24] and Zowe [43]):

(i) They make use at the iterate xk of the bundle of information (f(xk),gk),
(f(xk-),gk-1),’’" collected so far to build up a model of f;

(ii) If, due to the kinky structure of f, this model is not yet an adequate one,
then they mobilize even more subgradient information close to xk.

Recipe (i) leads in a natural way to the cutting plane (CP) approximation of f at xk:

(1.6) max {g(x- xi) + f(xi)}.
li(k

Equation (1.6) is a piecewise linear approximation of the convex f from below, which
coincides with f at all xi. For short, we put d :- x- xk in (1.6) and use the notation

(1.7) fcP(Xk; d):= max {gd + g(xk x) + f(x,)} for d e .
l<i<k

Obviously there is no reason to trust this substitute for f far away from xk. Therefore
a stabilizing term (1/2tk)dTd with positive tk is added in (1.7), when minimizing this
CP-model of f. If fCP models f well enough close to xk, then the minimizer dk of

fcP(Xk; d) + -k dTd
is a descent direction for f and a linesearch along xk + )dk for _> 0 provides some

Xk+ with f(xk+) < f(xk). For a nonsmooth f it may happen, however, that feB
is such a poor approximation of f that dk is not a descent direction for f (or that
the linesearch only leads to a marginal decrease in f); think, e.g., of f(x) Ixl,
x < 0 for 1,...,k and xk close to the kink 0. Here strategy (ii) comes up:
Obviously fcP does not copy f on the halfline xk + ,dk,

_
0; to master this lack of
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information one stays at Xk and enriches the model by including one more subgradient
from cOf(xk T/kdk) for small A > 0. Omitting all details, we obtain the following.

(1.8) Iteration xk xk+l:
)dTdl dE(1) Compute dk d(tk) := argmin(fcp(xk;d) + (Yi

(2) Perform a linesearch for f along xk + )dk, >_ O.
(a) If the linesearch leads to a "sufficient decrease" in f, then

make a Serious Step: Put xk+ := xk + kdk with Ak
argmin>0 f(xk + dk) and compute gk+ Of(Xk+).

(b) If the linesearch yields only an "insufficient decrease," then
make a Null Step" Put xk+ := Xk and compute gk+

Of(xk + Adk) for suitable small A > 0.

Unlike the subgradient approach, the above iteration guarantees a decrease for each
(Serious) Step. Further, one disposes of an implementable stopping criterion: xk is
"optimal" as soon as dk in (1) is "close" to 0. And, since the linesearch adjusts the
steplength k to the chosen dk, one has a considerably faster convergence speed. All
this can be made precise and a detailed convergence analysis exists for convex and
nonconvex f; see Lemardchal, Strodiot, and Bihain [26]; Mifflin [31]; or the monograph
by Kiwiel [18].

The above concept has been implemented by a number of authors. We mention in
particular the advanced and sophisticated Fortran code M1FC1 by Lemarchal [27],
which is widely used in NSO. Numerous test runs proved the efficiency of this code;
see also 4 below. Needless to say, M1FC1 is only "work of man" The reader who is
familiar with M1FC1 in applications will agree that the code suffers from two weak
points: First, the success of M1FC1 depends in a delicate way on the parameter tk
in step (1) of (1.8) (actually some "dual" parameter ek is used in M1FC1); a bad
guess for tk (respectively, ek) leads to a "bad" search direction d and M1FC1 breaks
down with linesearch difficulties. Second, for f C and tk 0, (1.8) reduces to the
steepest descent method, which is only linearly convergent. Numerical experiments
confirm this first-order behaviour of M1FC1. We will discuss how one can bypass the
first shortcoming in practice; further, it will become obvious how to deal, in principle,
with the second problem and how to reach faster convergence.

1.3. Bundle trust region concept. We start with a simple observation: With
Tdk from step (1) of iteration (1.8) and Pk := dkdk, the minimization in (1.8)(1)

becomes equivalent to

(1.) com,ute d() "= mi{fc,(x; d) d dpk}.

This follows by a comparison of the Kuhn-cker conditions for the two problems.
A closer inspection shows that there is even a monotone correspondence between tk
and Pk. Now we replace (1.8)(1) by (1.9). It then becomes obvious how to bypass
the first difficulty discussed above. Instead of working with some a priori and more
or less randomly chosen Pk (respectively, tk), we follow the trust region philosophy:
We decrease and/or increase Pk in a systematic way (trust region part) and improve
fCP by Null Steps (bundle part), until we reach some fcP together with a pk-ball, on
which we can trust this model, i.e., the dk from (1.9) leads to a substantial decrease
in f. The advantage of this procedure is twofold: It suggests a way to choose Pk, and
it releases us at the same time from the need for a linesearch. Obviously we can apply
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just the same strategy in (1.8) and tune the tk. The reason for working with (1.8)
is purely numerical in nature. We will see that the minimization of (1.8) leads to a

quadratic programming problem with a lot of reliable software (e.g., [19]). This is not
true for (1.9) because of the quadratic constraint. In schematic terms, we obtain

(1.10) Iteration Xk - Xk+:
dTd ]n(1) Compute d "= d(t) := argmin{fcp(x; d) + d e }

(2) If f(xk + dk) is "sufficiently smaller" than f(xk), then either
(a) enlarge t and go back to (1), or

(b) make a Serious Step: Put Xk+ := Xk + dk, compute
gk+ Of(xk+).

If f(xk /dk) is "not sufficiently smaller" than f(xk), then either

(c) reduce tk and go back to (1), or

(d) make a Null Step: Put x+ :- xk, compute gk+

0( + d).

How to solve the alternatives (a)-(b) and (c)-(d) will be seen in the precise statement
of the algorithm.

Preliminary versions of the above variant of the bundle family have been presented
in [38] and [44]. In these versions the tk were reduced in (2)(c) only as long as they
stayed above some fixed positive lower bound t (otherwise one had to make a Null
Step). This restrictive assumption for the inner iteration (2)(c) can be skipped now by
introducing a modified Null Step criterion (see also [21]). The above variant has been
implemented by us under the name BT (-- "implicit" bundle trust region) algorithm
(see the remark before Theorem 2.3). Extensive testing (in particular on some real-
life problems, which are known as "tough nuts") proved the code to be efficient and
reliable so far. We want to convince the reader of this claim and encourage him to
work with our code and other bundle implementations.

Let us briefly return to the second drawback of the existing bundle implemen-
tations, namely the linear (hence slow) convergence. Obviously, the trust region
approach could also help with this difficulty by tuning the bilinear form dTd in step
(1) of (1.10) to account for the compiled knowledge about the level sets of f. There
is a whole series of recent papers that address this challenging item and try to gain
control of such curvature (hence second-order) information by using ideas from the
ellipsoid method; see, e.g., Goffin [11]; Goffin, Haurie, and Vial [13]; Sonnevend and
Stoer [40]; Kiwiel [20]. Only some first attempts for implementing these concepts
have been made. Some more abstract approaches to second-order ideas in NSO are

reviewed in [24].
We mention that our work has benefitted greatly from cooperation with Lemar-

(hal and from the work of KiT]el (in particular, [18]). In a recent paper [21], KiT]el

proposed a bundle variant, which is close to our BT-iteration. The difference is that
KiT]el does not adapt the t in some inner iteration as we do in steps (2)(a) and
(2)(c), because he does not work with the trust region philosophy. His t is updated

after having made a Serious Step or a Null Step.
The paper is organized as follows. Since the motivation and the key arguments

are based on convexity, we treat the convex case in detail in 2, i.e., we will spec-
ify iteration (1.10) together with the overall algorithm and present the convergence
analysis for convex f. Section 3 discusses the necessary modifications for nonconvex

f and states the convergence results without proofs; the detailed proofs can be found
in Schramm [37]. Section 4 will verify our claim that BT behaves well in practice.
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Some remarks on the notation: I1" II denotes the Euclidean norm. The subscript
k always refers to the sequence of iterates xl, x2,..., whereas the superscript j will
be used in the inner iteration, which leads from xk to xk+. If J is a set of indices,
then IJI denotes its cardinality. Further, we put

A(n)’- AEnlA>0, l<i<n, and A=I
i--1

2. BT-algorithm: The convex case. We assume throughout this section that
f is convex. Then the elements of the subdifferential can be characterized by an
inequality:

9 of() =. 9T(- x) < ()- f(x) o an .
This subgradient inequality plays a crucial role for the conceptual ideas and in the
convergence analysis. For later use we add a continuity result for the set-valued map
x - Of(x):

the map x Of(x) is locally bounded and upper semicontinuous.

Further, let us mention that a convex f n is locally Lipschitzian, i.e., our

general continuity assumption (1.1) holds.

2.1. The cutting plane model. At the iterate xk we have at our disposal the
sequence Xl,X2,’",Xk and a collection of auxiliary points y together with subgradi-
ents g Of(y) for Jk; here Jk is some nonempty set of indices. On first reading,
the reader may think of Jk as a subset of {1,..., k} and assume y x. This bundle
of information leads to the cutting plane model maxj{g(x- y)+ f(y)} of f.
With the linearization errors

(2.3) , (x, u).= f(x) (f(u) + 9y(x u))

and the new variable d :- x xk, we can write this in a condensed form

max{g"d-ak,g} + f(xk) for d
iJk

For convenience, let us skip the constant f(xk) and put

(2.4) fCP(Xk; d):= max{gd-ak,i} for d e n.
iJk

Step (1) from iteration (1.10) becomes, for suitable t (which still has to be chosen
appropriately!)"

(2.5) compute d "= d(t) argmin fcp(Xk; d) + lldll d e

This can equivalently be written as a quadratic programming problem in n:

(2.6)
compute (v, d):= (v(t), d(t))

argmin {v + -lldll 2 v > gd k,i for e Jk
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Problem (2.5) is a strictly convex problem with a unique minimizer d(t); the
same holds for (2.6), of course. From the Kuhn-Tucker conditions for (2.6), one
easily obtains a representation for d(t) and v(t).

LEMMA 2.1. For the solution (v(t), d(t)) of (2.6) there exists A(t) e A(IJkl) such
that

Since (2.6) is a convex problem with linear constraints, the Kuhn-Tucker conditions
(i.e., (2.7)-(2.9)) are also sufficient for optimality of a feasible x.

Thanks to convexity, all ak,i are nonnegative (a consequence of (2.1)),

(2.10) ak,i >_ 0 for Jk.

Now add ak,i -[f(xk) f(yi) g(xk yi)] 0 to the subgradient inequality

gTi (X- Yi)

_
f(x)- f(Yi);

one obtains, after simple reordering,

(2.11) g(x--xk)<_f(x)--f(Xk)+ak,i for allxEN and iEJk,

i.e., ak,i "measures" how good gi Of(yi) satisfies the subgradient inequality at the
point xk. The ak,i take care that the influence of g in (2.6) and (2.16) below will be
greater the smaller the weight ak,i is.

Now fix some A e A(lJk[), multiply (2.11) by Ai, and sum up over i. We obtain
the useful formula, which holds with arbitrary A A(]Jkl):

(2.12) Aigi (x xk) f(x) f(xk) + A,k,i for all x
iJk

Inequality (2.12) can be imerpreted similarly to (2.11) above.
As a direct conclusion from (2.9) and (2.10) we note:

(2.13) v(t) 0 for the optimal v(t) from (2.6).

As expected, v(t) 0 characterizes optimality of xk. This follows immediately from
our next result, if we put there e 0 and use (2.9). The lemma itself is an immediate
consequence of inequality (2.12).

LEMMA 2.2. Suppose there exists A e A(Jk[) with

(2.14) ej Ag
Then Xk is e-optimal, i.e.,

<_ e and E i(k’i - e.
iJk

f(xk) f(x) + llx xkll + for
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For later use we add a continuity result on (v(t), d(t)), which follows easily from
the strict convexity of the objective function in (2.5)"

(2.15) The solution (v(t), d(t)) of (2.6) depends continuously on t e (0, cx).

Due to the simple structure of (2.6), the last statement can be strengthened substan-
tially. We add without proof (a detailed treatment is given in [37]):

There exists a finite sequence 0 to < t < < tm c and ai, b E
such that d(t) a + tb for t E (t-1, t] and 1, 2,..., m;
a 0 and b projection of the origin onto conv {gi Jk and ak, 0};
There exists a CP-solution dcg (i.e., dcg minimizes fcp(xk; ")) if and only if
am dcg and bm O.

Remark. For an efficient implementation of (2.6), two devices become important.
(a) The index set Jk (i.e., the number of subgradients carried along) should be

kept at reasonable size as k -- oc. Hence from time to time we clean up the
bundle. The convergence analysis requires Jkl >_ 3 together with a certain
reset strategy.

(b) Problem (2.6) is a quadratic programming problem in 1 +n variables and
linear constraints. Since, typically, IJkl will be much smaller than the dimen-
sion n, we replace (2.6) by its dual in IJkl variables and IJkl + 1 constraints:

(2.16) min{ 1 12 }iEJk

Some standard duality arguments show that the solutions A of (2.16) and the
A(t) from Lemma 2.1 correspond to each other.

In the next section we make clear how to find an appropriate t for (2.6). Section 2.3
summarizes the overall algorithm and 2.4 presents the convergence analysis.

2.2. Inner iteration xk - Xk+. We fix an upper bound T for t, parameters
0 < m < m2 < 1, 0 < m3 < 1, some small > 0, and a stopping parameter e _> 0.
Suppose we are at the iterate xk and let Jk, Yi, gi Of(yi) and ak,i be as discussed
above. Then we specialize (1.10) as follows. Here the superscript j is the running
index; the subscript k is kept fixed. The stopping rule in step (1) is based on (2.8),
(2.9), and Lemma 2.2. Finally, the decisive criteria SS and NS will be specified below.

(2.17) Inner iteration xk xk+:
(0) Choose t tk-. Set := 0, u := T, and j 1.

(1) Compute the solution (vJ,dJ) (v(tJ),d(tJ)) of (2.6). If
(1/t)lldll <_ and -(1/t)lldJll 2 -vJ <_ , then stop" xk is -optimal. Otherwise put yJ xk + dJ and compute gJ Of(yJ).

(2) (a) If SS(i) and SS(ii) hold, then make a Serious Step: Put
xk+ :-- Yk+l Y, gk+ g and stop.

(b) If SS(i) holds but not SS(ii), then put j+ "-tJ, uj+ :-
uj tJ+l (uJ+l + ), j := j + 1 and go back to (1).

(c) If NS(i) and NS(ii) hold, then make a Null Step: Put
Xk+l :-- Xk, Yk+l :-- YJ, gk+ gJ and stop.

(d) If NS(i) holds but not NS(ii), then put uj+l := tJ,/j+l :=
l tj+l (UJ+I lJ+l+ ), j j + 1 and go back to (1).
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Let vk, dt, and tk be the values, with which we leave (2.17) in case of a Serious Step
or a Null Step. Then dk -tk ieg Ak,igi for suitable Ak ()k,i) E A(IJkl) (see
(2.8)). With this Ak, we define for later use

(2.18) zk :- Z Atc,igi and ak Z )k,iCk,i.
iEJk iEJk

We now present the criteria that determine whether a Serious Step or a Null Step
is taken (for k 1 put in NS(ii) zo "= gl, a0 := 0):
SS: (i) f(yJ)- f(Xk) < mlvj,
SS: (ii) (gj)TdJ >_ rn2vJ or ti _> T- u,
NS: (i) f(y)- f(xk) >_ rnlv,
NS: (ii) o(xk, yJ) <_ m3ak- or If(xk)- f(YJ)l <--IlZk-ll + ak-.

Discussion of SS and NS. Ad (2)(a) and (b): Condition SS(i) ensures, for a
Serious Step, a decrease of at least rn times vk[= fce(Xk; dk) decrease in the CP-
model]. The first part of SS(ii) takes care of a substantial change in the CP-model;
this follows from (we use xt:+ yt:+, vk < 0 and m2 < 1)

T T(2.19) g+d o+,+ gk+ld > m2vk > vk >_ gi d ozk,i for Jk

which implies that, after a Serious Step, the updated model (2.6) will provide some

(v, d) in step k + 1 -o k + 2, which differs from the present (vk, dr:). If the first part of
SS(ii) does not hold (and such a change in the model cannot be guaranteed) and if t
is still smaller than some upper bound T (this is taken care of by the second condition
under SS(ii)), then we prefer to try some larger t, even if SS(i) holds. This motivates
steps (2)(a) and (2)(b).

Ad (2)() and (d): Now suppose NS(i)holds. Then either fce is not yet an
adequate model and/or we were too optimistic with respect to t. The obvious way
out: Try some smaller t in (1); this is step (2)(d). If, however, the first condition
under NS(ii) also holds, then a Null Step makes sense as well and we prefer this
option. The reason: after such a Null Step, we get from (2.11) for k + 1 and k + 1
(us 

(x <_ f(x ) +

where Ok+l,k+ Oz(Xk,yk+l) <_ m3at- and m3 < 1. We conclude that gk+x is
"close" to Of(x) and thus it makes sense to add gk+ to the bundle at x. Condition
NS(i) guarantees that this gk+l contributes nonredundant information. This follows
from the next inequality, which serves the same purpose as (2.19) in case of a Serious
Step:

(2.20)
Tg+dt +,+ f(yk+x) f(x) >_ mv

> Vk >_ gdk OZk,i for e Jk

consequently, in iteration k+1 k+2 the enriched model fCP will yield some direction
d which differs from the unsuccessful present dk. This, taken together, explains one-
half of (2)(c); for technical reasons (which will become clear in Proposition 2.7 below)
we also make a Null Step, if NS(i) holds together with the second condition under
NS(ii).

We summarize (2.17) in a flow chart (see Fig. 2.1). We state a by-product of the
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compute v j, d j from (2.6)

d711 II-<and
vj ?

yJ :-- xk + dj

compute gJ E Of(y)

yes STOP

yes no

lj+ := tj

uJ+ :-- U

(uJ+ lJ+t+ := +
j:=j+l

no

uj+ := tj

yes

yes

FIG. 2.1. Flow chart for inner iteration.

proof of Theorem 2.3 below:

(2.21) If y(yJ) f(xk) < mlv j for some j,
then one leaves (2.17) with a Serious Step.

Hence it suffices to check NS(ii) in Fig. 2.1 only as long as j O.
In our implementation of (2.17) we replace the simple bisection rule for t by a

more sophisticated heuristic strategy. We choose a safeguarded variation of t, which
corresponds to the change of the function value. In step (0) we choose the initial
t tk-1 only in case of a Null Step; in case of a Serious Step we choose t > tk-1,
as in [21].
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The t-variation in (2.17) corresponds to the linesearch in MIFC1. The crucial
difference is: In M1FC1 one makes an a priori decision on tk (respectively, on some
dual quantity ek). This results in a fixed direction dk and, in the line search, one
"minimizes" f(Xk + "dk). In (2.17) t is variable and we thus try different directions
d(t) when "minimizing" f(xk + d(.)). The examples from 4 show that this can be a
decisive advantage.

Remark. Let us mention that the t-adjustment in (2.6) is actually of an implicit
nature and one should better talk of an implicit trust region approach in our context.
A similar implicit trust region idea was considered in a recent paper by Bell [2].

The next result supplies the actual justification for what we are doing.
THEOREM 2.3. Iteration (2.17) ends after finitely many cycles, either with a

Serious Step or a Null Step or the information that Xk is e-optimal.
Proof (by contradiction). Suppose the algorithm is an endless cycle. Then three

cases can occur: (i) lJ 0 for all j; (ii) uJ T for all j; (iii) neither (i) nor (ii) holds.
Ad (i): We are always on the right branch in Fig. 2.1 and thus tJ+l .(Ot_1tj) I 0

and yJ - Xk as j c. Hence NS(ii) will hold for large enough j; since NS(i)
is satisfied by construction on the right branch, (2.17) stops with a Null Step in
contradiction to our assumption.

Ad (ii): Now we are always on the left branch and thus tj+l 1/2(tj + T) T for
j c, i.e., SS(ii) holds for large enough j. Since SS(i) is automatically satisfied on
the left branch, we will stop with a Serious Step in contradiction to our assumption.

Ad (iii): In this case 0 < lJ < uJ < T for all sufficiently large j and a monotonic-
ity argument implies lJ T t* and uJ t* for some t* E (0, T). A continuity argument
(recall (2.15)) together with SS(i) and NS(i) yields for d* := d(t*) and v* := v(t*)

(2.22) f(xk + d*) f(xk) mlv*.

Let j(1), j(2), be the subsequence of indices, for which SS(i) holds; this is an infi-
nite sequence since otherwise j(m) t* for some m and then (2.22) would contradict
SS(i). Since j t*, the gj(i) have a cluster point g* that belongs to Of(xk + d*) (we
use (2.2)). Hence

(g*)T(xk (Xk + d*)) <_ f(Xk) f(xk + d*),

and, because of (2.22),

(g*)Td* >_ mlv*.

Now v* < 0 (otherwise (2.17) would have stopped because of e-optimality) together
with 0 < ml < m2 shows g* d* > m2v*. A continuity argument implies, for sufficiently
large i,

(gj(i))TdJ(i)
_

hence we will stop with a Serious Step in contradiction to our assumption.



A VERSION OF THE BUNDLE IDEA 131

2.3. The overall algorithm. We briefly summarize the overall algorithm with
reset strategy.

(2.23) BT-algorithm: Choose a starting point xl E n and parameters T > 0,
0 < ml < m2 1, 0 m3 1, > 0, e _> 0 and an upper bound
Jmax _> 3 for Jk.

(0) Compute f(x), g Of(x) and put y x, J := (1} and

(1) INNER ITERATION: Compute xk+ and gk+ as in (2.17) or
realize that xk is e-optimal (in which case we stop).

(2) If ]Jk] Jmax, then go to (3); otherwise put g := Jk and go to
(4).

(3) RESET" Choose J C Jk with J Jm- 2 and ax(i]i
Jk, k,i 0} J. Introduce some additional index k and define
with zk, ak from (2.18)

g zk, k, := ak, J "= J {}.

(4) UPDATE" If the outcome of (2.17) was a Serious Step, then put

+, "= k,+f(xk+)--f(xk)--gdk for J, k+,k+ 0.

If the outcome of (2.17) was a Null Step, then put

ak+,i :-- ak,i for e J, k+l,k+l :-- a(Xk,Yk+).

Put Jk+ := g U (k + 1} and go to (1).

Remark. We add a comment on the index in step (3) and the update formula
in step (4).

(a) The g defined in the reset step corresponds to the aggregate subgradient
introduced in [18]. Usually g will not be a subgradient at some point y and
thus k, does not fit into the concept (2.4). It follows, however, from (2.12)
that the synthetic k, again satisfies

gT (x xk _< f (x) f(Xk + ak, for all x

which is actually what is needed from subgradients.
(b) One easily checks that for the indices which correspond to points Yi, the up-

date formula in (4) is in accordance with (2.4). The update strategy dispenses
the need to carry along the xi’s and yi’s.

2.4. Convergence analysis. The proof technique below is largely based on
ideas that go back to Kiwiel [18]. Throughout, we work with the stopping parame-
ter e 0. Let xk, k 1,2,..., be the iterates generated by (2.23) and recall the
abbreviations introduced in (2.18):

Zk Ak,igi and ak Ak,ik,i.
iJk iJk

In terms of zk and ak, the crucial relations (2.8) and (2.9) become

(2.24) dk=--tkZk and Vk=--tkZk]]2--ak.
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Further, let us denote the minimal value in (2.16) by wk, i.e.,

1 1
(.) llzll +-,tk

and put

X* :- (x* e R" f(x*)

_
f(x) for all x

Finally we mention a technical assumption that we will need for our auxiliary results:

(2.26) There exists such that f()

_
f(Xk) for all k.

As a foretaste of what we will prove, we summarize the result:

f(xk) converges to inf f(x) (>_ --oc) and,
if X* q}, then xk converges to some x* E X*.

We start with the following observation.
LEMMA 2.4. /f (2.26) holds, then for each 5 > 0 there exists no(5) N such that

(2.27) I1 x/ll <_ I1 xll / for k > m >_ no(g).

Proof. Equation (2.12) becomes, in terms of zk and ak,

z[( xk

_
f() f(xk + ak

and, since f()

_
f(xk),

If we put

z[( ) <

if k k + 1 is a Serious Step,
if k k + 1 is a Null Step,

then xk+l xk 5kdk --hktkZk for all k and thus

-( x)r(x+ x) t( x)rz <

It follows that

I1 x+ll I1 11a + IIx X+lll 2( xlT(x+ x)
1 11 + IIx X+lll +2.

Hence for all m N and k > m
k

(2.28) 1 x+lI I1 xmll + (llx Xi+ll] 2 + 26itii).

Now consider the sum in (2.28). om f(i+)- f(xi) N imvi we obtain, for
arbitrary > 1,

I(l I() I(l) I() + I() + I(-l I(l -1 e,
i=1
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and thus for -- c (we use (2.9), (2.8), and (2.24)),

cx3 > f(xl) f(ff)

_
--ml E ivi ml E i(ti]]zi]]2 + (7i)"

i=1 i=1

Since 5tllzll 2 --IIx+l xll 2, we can continue

and thus (we use that, by construction, t _< T)

Consequently we can make the sum in (2.28) as small as we like by letting m ---, c.
This proves the assertion.

The next lemma is an almost immediate consequence of (2.27).
LEMMA 2.5. If (2.26) holds, then the xk converge to some 5c, for which

f(Sc) <_ f(k) for all k.

Proof. By (2.27) the xk-sequence is bounded and has a cluster point, say 2. Since,
by construction, f(xk) is monotonically decreasing, we see

f(c) <_ f(xk for all k.

Hence Lemma 2.4 applies once more (now with 2 replaced by ) and for given e > 0
we can choose no(el2) such that

I1- +11 <_ I1- x.ll + 7 for k >_ m _> no

Since is a cluster point of the Xk-sequence, there exists rh >_ n0(e/2) with I1-
xrll 2 _< e/2 and we end up with

In the following we will show that from Lemma 2.5 is indeed optimal. For this
aim, we prove for suitable subsequences

(2.29) Zk(i) ---* 0 and ak(i) --* 0 for i--. oc.

The optimality of follows from (2.12) (cf. Theorem 2.10).
We start with the crucial observation that besides xk, the auxiliary sequences wk,

etc., are also bounded in situation (2.26).
LEMMA 2.6. If (2.26) holds, then the sequences of wk, Zk, (Yk, dk, Yk, gk, and

ak,k (k 1, 2,...) are bounded.
Proof. We combine (2.24)’and (2.25) to see

1 ( 1 ildell)<- =-V + --K
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Now choose i(k) E Jk such that ak,i() 0 (such i(k) exists because of our reset
strategy); then we can continue the last inequality

0 >--Wk > 1
min gi(k)d + Ildlltk dER k

With the minimizer d "---tkgi(k) we obtain

(2.30)

The choice k,i(k) 0 guarantees gi(k) Of(Xk) (a consequence of (2.11) and (2.1)).
This, together with the convergence of the Xk (Lemma 2.5) and the boundedness of
the map x -. Of(x) (see (2.2)) yields the boundedness of {gi(c)}kEN and because
of (2.30), the boundedness of {Wk}keN. A look at (2.25) and (2.24) convinces the
reader that the sequences of Zk, ak,dk, and Yk Xk + dk are also bounded (we use
tk <_ T). Consequently the gk Of(yk) are also bounded, since Of(.) is a bounded
map. This, together with the convergence of the Xk and the continuity of f, finally
proves the boundedness of the Ok,k. D

In our two main auxiliary Propositions 2.8, 2.9 below, we will prove vk(i) -- 0
(respectively, wk(i) 0) for a suitable subsequence. A glance at (2.24) and (2.25)
shows that this implies the crucial relation (2.29), provided tk > t > O. The situation
tk --* 0 has to be treated as a special case in the next theorem. Here the role of the
second condition in NS(ii) becomes clear: It is needed to ensure (2.29) even if tk - O.

PROPOSITION 2.7. Suppose (2.26) holds and 0 is a cluster point of {tk}k[.
Then, for suitable subsequences,

lim z() 0, lim a() 0.

Proof (by contradiction). Suppose there is 5 > 0 with

Ilzkll + k _> for all k.

Now denote by dk(t) the solution in step (1) of (2.17) for variable t and variable k.
The Lipschitz continuity of the convex f, the convergence of the xk (Lemma 2.5)
and (2.8), together with the boundedness of the g (Lemma 2.6) imply the existence
of L > 0, C > 0, and 0 < _< T such that

If(xk + dk(t)) f(Xk)l <_ Llldk(t)]l <_ tLC for k and t <_ .
By making smaller, if necessary, we can guarantee that

If(Xk + dk(t))- f(Xk)l < <_ IlZk-lll + IIk-xll for k > 2 and t < .
Hence, whenever we are on the right branch in Fig: 2.1, then we will leave (2.17) with
a Null Step as soon as, for the first time, tJ <_ T. Since t is increased on the left
branch, we conclude from the bisection update rule for t that tk

_
T for all k. This

contradicts the assumption.
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It is convenient to discuss separately the case of finitely many Serious Steps and
of infinitely many Serious Steps.

PROPOSITION 2.8. Let (2.26) hold and suppose that one makes infinitely many
Serious Steps in (2.23). Then for suitable subsequences,

lim Zk(i) 0, lim ak(i) O.

Proof. We may assume tk > t > 0 for all k, since otherwise the assertion follows
from Proposition 2.7. Now let {xk(i)}ieN be a subsequence resulting in Serious Steps,
i.e.,

f(Xk(i)/l) f(Xk(i)) < mlvk(i)

hence for _> 1 (note, xk+l Xk for Null Steps)

f(xk(l)/) f(Xk(1)) < ml Vk(i).
i--1

We conclude

f(Kc)- f(xk(1)) < ml vk(i)
i--1

and thus 0 >_ = Vk(i) > --oc. The assertion follows from (2.24) since tk >_ t > 0
for all k.

PROPOSITION 2.9. Suppose (2.26) holds and one makes only finitely many Serious
Steps. Then for suitable subsequences

lim zk(i) 0, lim ak(i) O.

Proof. Because of Proposition 2.7, we can again assume that

(2.31) tk_>t>O for all k.

Further, there exists by assumption some with

xk x fork_>k.

In step (i) we will discuss the change in the minimal value wk of (2.16) from w - w+for k >_ k; this is used in (ii) to show wk - O, which proves the assertion (see (2.25)).
ha (i)" We fix some k >_ and consider the function for E [0, 1]

1 1 1
Ck+l,k+l

A glance at (2.16) tells us that

(2.32) w+

_
min{Q() 0 <_ <_ 1} =" .

To unburden the notation we put

1 1

tk+l tk
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and skip the subscript k in the rest of part (i) and write + for k + 1. Simple arithmetic
shows

u(zTg+ + llzll +- + (+Q(’) I1-+11 + i111 1 1 1

t+o- + ’+
(2.33)

!211z g/ll = / (zTg/ -Ilzll 2) / w / / (/ / ),
2 +

Since we only make Null Steps for k > k, one has, as a consequence of NS(i),

g(--tZ) Ol+,+ >__ TIlV > m2v m2(--tllzll 2 O’k)

and thus

1 ( )gz < -+,+ + m2 Ilzll 2 +

This inequality allows us to continue (2.33) for v 6 [0, 1]

lp2 (1 )Q(u) _< z g+ll + u -a+,+ + m2llzll 2 / m2a -Ilzll 2 / w

1
O-)+Ao- + -v(a+,+

t
/ Ilzl12 / w

1
,(a+,+-a)+Aa+ +,+

< -2llz g/II 2 (1 m2)w + w + vA(a+,+ O-) + Ao-
-2

(2.34) =: q().

With

(C =)C "= max {llzll, IIg+II, 1at,1}
we can go on:

Q() _< q()
_< 22c2 u(1 m2)w A- w + ,/k(o+,+ O-) A-- /ko-

=. ().

For the special V := (1- m2)w/4C2, we obtain from (2.33) and the last inequality
1C2 C)/4C2 1)-(note that V e [0, 11 since < (1- m2)( + <

w2

(2.36) w+ < @ < q(#) w- (1 -m2)2 w
(7)-4- AO-- + (1 m2) --ffk(a+,+

Ad (ii)" We add again the index k(>_ ) to w, a, a, t, A, and C from (2.35).
Since we only make Null Steps for k _> , the tk are monotonically decreasing from
on (see Fig. 2.1) and we conclude from (2.31) that

(2.37) Ak
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By Proposition 2.7 the terms zk, gk+l, rk in (2.35) are bounded; this, together
with (2.31), implies the existence of with 0 _> Ck for all k. Inequality (2.36)
simplifies to

Wk+ <_ Wk (1 m2)2-82 -2

+(1 m2)-W-C2Ak(Ok+l,k+l Ok) -- Akrk for k > k.

We use Lemma 2.6 once more to see that {Wk}kEN is bounded. Let a be the greatest
cluster point and assume

wk()+l a fori

Now let b be any other cluster point of the sequence wk(), i.e., for a further subse-
quence we have

Wk((j)) b for j

From (2.37) and (2.38) we obtain for j oc

a _< b [(1 m2)2 1 (-2]b2 +0.
Since, by choice, b _< a, this can hold only if a b 0. This proves wk 0 and the
assertion follows from (2.25) and the boundedness of the tk. [:]

Our convergence results now follow easily.
THEOREM 2.10. If X* 7 , then Xk converges to some x* E X* as k --, c.

Proof. Obviously (2.26) holds and the xk converge to some 5: (Lemma 2.5).
From (2.12) we get, for each k and with Zk, ak from (2.18)

< I(x) +

If we fix x and choose a subsequence as in Propositions 2.7-2.9, then we obtain for

0

_
f(x)- f(c).

Hence x* :- 2 E X*. D
The above result can be supplemented as follows.
THEOREM 2.11. If X* , then f(xk) converges to inf{f(x) x e X}

Proof. By construction, the f(xk) are monotonically decreasing. Now suppose
the assertion not to be true, i.e., for some 2 one has f(2) _< f(xk) for 11 k. Just as

above, we conclude that xk X*, which contradicts X* .
2.5. Piecewise linear case. For piecewise linear convex functions

f(x):=max{ax-bj Ii-<j-<m} withajen, bjN(l <_j<_m).

Theorem 2.10 can be refined substantially. Suppose f is bounded below (which implies
X* 7 for piecewise linear f), choose Jmax := n + 2 in (2.23), and organize the
algorithm such that each gi, Jk, is some aj, 1 <_ j <_ m. For this aim we put
in the reset step (3) of (2.23) J := {i ,k,i > 0}, where dk --tk iEJk Ak,igi
solves (2.6). By Carathodory’s theorem one can always find k such that IJI _< n / 1.
A quadratic programming method, which solves (2.6) with this purpose in mind, is
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given in Kiwiel [19]. Further, some Haar condition has to be satisfied. Denote by
I(x*) the set of active indices for given x* e X* (i.e., I(x*) {i f(x*) ax* -bi})
and assume:

(2.39) If I c I(x*) and III < n then the ai, E I, are linearly independent.

Then we can establish finite convergence for our algorithm.
THEOREM 2.12. Suppose f is piecewise linear, bounded below, and (2.39) holds.

Then xk X* for some k N.
We omit the proof, which the reader can easily copy from the above discussion

and the treatment of this topic in Chapter 2 of Kiwiel [18].
The numerical results from 4 will display the finite convergence convincingly.

3. BT-algorithm: The nonconvex case. We discuss the modifications neces-
sary for nonconvex f. Throughout this section we assume that f is locally Lipschitzian
and

(3.1) weakly semismooth,

i.e., the directional derivative f’(x; d) :- limt$0 t-1 [f(x / td) f(x)] exists for all x
and d, and f’(x; d) limt0 g(x + td)Td where g(x + td) e Of(x + td).

3.1. Model and algorithm. For nonconvex f, the subgradient inequality (2.1)
does not hold and the ak,i may become negative. As a consequence, fcP(Xk; ") is
no longer an approximation of f(xk / ") f(Xk) from below; in particular, usually
fcp(Xk; O) max{--ak,i} > f(xk A-O)- f(xk). To cope with this difficulty we follow
a strategy (also used in M1FC1) and replace ak,i by

:=

here co is a fixed small positive real (and co := 0 for convex f).
/k,i > 0 and the modified model

(3.2) feB (xk; d)’= max {gCd -/k,i }
iEJk

By construction,

coincides again with f(xk + d) f(xk), at least at d 0. The/k,i copy part of the
role of the Ck,i in 2: Whenever yi is "far away" from the current iterate xk, then k,i
is large and thus gi only plays a minor role in (3.2). However, we have to admit that
the above fCP is a much less satisfactory model in the nonconvex case.

Now replace, in 2.1-2.3, the ck,i by the new weights k,i. This does not change
the character of (2.6) and (2.16), and thus Lemma 2.1 and the duality between (2.6)
and (2.16) remain true. For (2.12), however, convexity was essential and as a con-
sequence (2.14) and the corresponding criterion in (2.17)(1) no longer imply the e-
optimality for xk. For nonconvex f the condition

< and Aik,i_<
iEJk

merely says that 0 "lies up to " in the convex hull of certain gi Of(yi) for which the
"yi are not far away from xk" (since iJk ik,i <_ ). This corresponds to "almost"
stationarity in smooth optimization.
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Iteration (2.17) requires two modifications. First, part (iii) in the proof of The-
orem 2.3 does not carry over to nonconvex f. This difficulty is easily bypassed: We
simply omit condition SS(ii) in step (2)(a) in (2.17) and skip step (2)(5). This does
not affect the convergence analysis since the purpose of SS(ii) in (2.17) was of merely
numerical nature.

Second, for nonconvex f, we have to add in (2)(c) the further Null Step condition

NS: (iii) gdJ -/k,j >_ m2vj.

NS(iii) guarantees that, after a Null Step, the updated model provides a direction d
that differs from the unsuccessful previous one. This change in the direction played a
crucial role in the convergence analysis (see, e.g., the proof of Proposition 2.9). For
convex f, condition NS(iii) is automatically satisfied whenever we are on the right
branch in Fig. 2.1; cf. (2.20). This is not true for nonconvex f and we have to add
this as an additional condition. Unfortunately, this supplementary NS(iii) leads to
a serious drawback of our method. For nonconvex f we can no longer guarantee the
existence of > 0 in the proof of Proposition 2.7 such that NS(ii) together with
NS(iii) holds on the right branch of Fig. 2.1 for tj <_ . As a consequence we cannot
assure any more that zk --* 0 and crk -- 0 for the special case tk --* 0, which had to
be separated from the proof of Propositions 2.8 and 2.9.

As things stand now, we can propose only the following emergency exit. We add
to NS(i) and NS(ii) the additional condition NS(iii) and split (2)(d) of (2.17) in
two branches. Suppose NS(i) holds but NS(iii) does not: If the second condition of
NS(ii) is not satisfied, then we are allowed to choose a smaller tJ+l; if the second
condition of NS(ii) holds, then we make a linesearch along dj, just as in M1FC1.
More precisely, this yields the following.

(3.3) Inner iteration xk - Xk+l:
(0) Choose t tk-. Set 11 := 0, u := T, and j 1.
(1) Compute the solution (vJ,dJ) (v(tJ),d(tJ)) of (2.6) with ak,i

replaced by k,i. If (1/tJ)lldll <_ and -(1/tJ)l]dJll2- vj <_ ,
then stop: xk is almost stationary. Otherwise put y J xk + dj

and compute gJ E Of(y J).
(2) (a) If SS(i) holds, then make a Serious Step: Put Xk+

Yk+l Y, gk+ g J and stop.
(b) If NS(i), NS(ii), and NS(iii) hold, then make a Null Step:

Put Xk+ := Xk, Yk+ := YJ, gk+ :-- gJ and stop.
(c) If NS(i), NS(ii) hold but NS(iii) does not, then:

(i) if the second part of NS(ii) holds, then put dk dJ,
vk := vJ and make a linesearch along xk + sdk, s >_ 0,

(ii) otherwise put u+ := tJ + := lJ t+ := (u+ +
/j+l), j := j + 1 and go back to (1).

(d) If NS(i) holds but NS(ii) does not, then put uj+ := tJ,
lJ+l := lj tJ+l lJ+l(Uj+l -I- ), j j + 1 and go back
to (1).

For weakly semismooth f (see (3.1)) the linesearch ends up in finitely many steps
with a stepsize sk >_ 0 such that in Yk+l xk + skdk and gk+l Of(Yk+l), either
the (short) serious criterion

SSS: (i) f(Yk+l)- f(Xk) < mlSkVk,
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SSS: (ii) gkq-lT dk _> m2vk
is satisfied or NS(iii) and the first part of NS(ii) hold but SSS(i) is not satisfied. In
case SSS(i) and SSS(ii) hold, we put Xk+l := Yk+l and add gk+l to the bundle; if
NS(iii) and the first part of NS(ii) hold, we make a Null Step. All details concerning
the linesearch can be found in Lemardchal [22]. Semismoothness is a property with
respect to halflines and this explains the success of a linesearch. The heart of our
argument was simply not to restrict the search to a halfline; we wanted to work with
various directions. Hence we consider a linesearch only as an emergency step that is
against the spirit of our approach. And, indeed, if our method runs into numerical
troubles, then usually this is because we had to switch to a linesearch that ends in a
collapse.

In the overall algorithm (2.23) the updating of the /k,i, together with the reset
strategy, has to be adapted to the new situation. We do this just as in Kiwiel’s
aggregate subgradient method, where one avoids again the storing of the previous xi
and y; these technicalities are skipped here.

We mention that linear constraints can be added in (2.6) and (2.16) without
major difficulties. Proposals on how to handle nonlinear constraints in the bundle
framework have been made, e.g., by Kiwiel [18].

3.2. Convergence analysis. Suppose we use the above definition of k,i and
do not use a reset strategy. It is easily verified that the inner iteration (3.3) is again a
finite process. Lemmas 2.4 and 2.5 rely decisively on the subgradient inequality and
do not carry over to nonconvex f. Hence the statement of Lemma 2.5 now becomes
an assumption:

{Xk}ke is bounded.

With (2.26) replaced by (3.4), Lemma 2.6 remains true. The same holds for Proposi-
tions 2.7-2.9; of course, eventual linesearch steps have to be taken into account. Only
the proof of Proposition 2.9 requires some technical modifications. For nonconvex f
and e 0, we get the following convergence result (for details, see Schramm [37]).

THEOREM 3.1. If f is weakly semismooth, bounded below, and (3.4) holds, then
there exists a cluster point 5: of the sequence {Xk}keN such that 0 E Of(2).

4. Numerical examples and applications. The above concept was imple-
mented in FORTRAN 77 as BTC for convex f and BTNC for nonconvex f. The
implemented reset strategy and a "safeguarded weighting technique" go back to pro-
posals by Kiwiel [18], [21]. Further, we use a subroutine due to Kiwiel (see [19]) to
solve the dual quadratic programming problem at each iteration.

Section 4.1 reports our experience with a collection of (non)convex academic
test problems. In 4.2 we compute dual bounds for traveling salesman problems,
and in 4.3 we deal with minimax eigenvalue problems for matrices coming from
special graphs. In 4.4, finally, we present the results for a nonconvex and nonsmooth
optimal design problem: The maximization of the area of contact for the deflection
of a clamped beam.

All computations were done on a HP9000/330, respectively, on a VAX8600.

4.1. "Academic" testexamples. Convex examples. Table 4.2 presents a
comparison of BTC with M1FC1 [27] for a collection of classical convex test examples
listed in Table 4.1. The following abbreviations are used in Tables 4.1-4.4.
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Dim dimension of the problem,
f* (known) optimal value,
niter number of iterations,
# fig number of function/subgradient-evaluations,
f computed approximation of f*.
Many of the test examples are described in detail in [25] or [42]. Test function

Mifflinl has been communicated to us by Mifflin [32]:

f(x) -xl + 20 max{x + x22- 1, 0},

with starting point (0.8, 0.6)T, minimum x* (1, 0)T, and f(x*) -1.

TABLE 4.1
List of convex examples.

Nr. Problem Dim
1 CB2 [3] 2
2 CB3 [3] 2
3 DEM [6] 2
4 QL [42] 2
5 LQ [42] 2
6 Miffiinl [32] 2
7 Mifflin2 [15] 2
8 Mak [291 3
9 Rosen [3] 4
10 Shor [39] 5
11 Maxquad [25] 10
12 Maxq [37] 20
13 Maxl [37] 20
14 Goffin [12] 50
15 TR48 [25] 48

1.952225
2
-3
7.2

-1
-1

-132.0608
-44

22.60016
-0.8414084

0
0
0

-638565

Since BTC and MIFC1 proved to be strongly superior to all subgradient variants,
which we tested, we restrict our comparison to BTC and M1FC1. In BTC we put
ml :- 0.1, m2 0.2, m3 0.9, _< 10-4. Furthermore we take kmax(maximal
number of subgradients)’- 5 for CB2, CB3, DEM, QL, LQ, and kmax :- 10 for
Miffiinl, Mifflin2, Rosen/Suzuki, Shor, Maxquad; for higher-dimensional examples
we use kmax := 200. The parameters in M1FC1 were chosen correspondingly. We
mention that BTC works in double precision, whereas M1FC1 requires function- and
subgradient-evaluations only in single precision. The function value and the corre-
sponding subgradient are computed in one subroutine.

In all examples, BTNC reached the required accuracy; the same holds for M1FC1
apart from the data marked by ".," where M1FC1 broke down with linesearch diffi-
culties. Obviously BTC often shows a better performance for the discussed examples
than M1FC1. We note that results similar to ours are reported by Kiwiel [21] for his
proximity control algorithm, which is closely related to our approach.

In 2.5 we discussed "finite convergence" of BTC for convex piecewise linear f.
This finite convergence can be observed for the piecewise linear examples of Table 4.2.
As an example, we give the finite behaviour for Goffin’s test function [12]

5O

f(x) 50 max xi _xi,
1<i<50

i--1
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TABLE 4.2
Convex examples.

Nr.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

BTC
niter f/g f

13 16 1.952225
13 21 2.000000
9 13 -3.000000
12 17 7.200009
10 11 -1.414214
49 74 -1.000000
6 13 -1.000000

24 28 -132.0608
22 32 -43.99998
29 30 22.60016
45 56 -0.8414083
125 128 0.0
74 84 0.0
51 53 0.0
165 179 -638565.0

MIFC1
niter # f/g f

11 31 1.952253
12 44 2.001415
10 33 -3.000000
12 30 7.200018
16 52 -1.141420

143 281 -0.999967
30 71 -0.999993
3 5 -132.0608

22 61 -43.99998
21 71 22.60018
29 69 -0.8413589
144 207 0.0
138 213 0.0
72 94 0.00010

163 284 -633625.5*

with starting point x i- 25.5, 1,..., 50, and optimal value 0. We use the
notation:

niter
ncomp
f
gn
alpha

number of iterations,
number of function/subgradient-evaluations,
function value at the current iterate,

BT-Algorithm Goffin

niter ncomp f gn
1 1 .12250000E+04 .49497475E+02
2 2 .12250000E+04 .34641019E+02
3 5 .11497487E+04 .33243153E+02
4 6 .11497487E+04 .31880038E+02
5 7 .10744975E+04 .27719626E+02
6 8 .10744975E+04 .29102567E+02
7 9 .99924621E+03 .24138528E+02
8 10 .99924621E+03 .26342t43E+02
9 11 .92399495E+03 .21277728E+02

I0 12 .92399495E+03 .23604747E+02

20 22 .57248737E+03 .89001539E+01
30 32 .41997475E+03 .65860451E+01
40 42 .24120581E+03 .42541465E+01

45 47 .18869318E+03 .30403588E+01
46 48 .18869318E+03 .29196707E+01

alpha
.O0000000E+O0
.24989898E+02
.20320902E+03
.65908627E+02
.23738585E+03
.99746186E+02
.24395184E+03
.12550253E+03
.23862048E+03
.14317764E+03

.18329243E+03

.22510361E+03

.19390350E+03

.17830897E+03

.17519938E+03
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47 49 .16243687E+03 .22448944E+01 .16184848E+03
48 50 .16243687E+03 .21904615E+01 .15727798E+03
49 51 .16243687E+03 .19993010E+01 .15532349E+03
50 52 .13618055E+03 .11116780E+01 .13312204E+03
51 53 .67968547E-12 .37861010E-14 .60867311E-12

convergence

The last step yields a "jump" to the optimum by adding the decisive subgradient
information.

Nonconvex examples. In Table 4.4 we compare BTNC to MIFC1 (which can
also deal with nonconvex f) for the problems given in Table 4.3. Here "Rosb" is the
differentiable Rosenbrock example.

TABLE 4.3
List of nonconvex examples.

Nr.
1
2
3
4
5
6

Problem Dim
Cres [18] 2
Mad [28] 2
Mabs [30] 2

Rosb 2

0
0.6164324

0
7.894231
0.559814

0

TABLE 4.4
Nonconvex examples.

Nr.
1
2
3
4
5
6

BTNC
niter # f/g f

24 27 0.944280.10-6

21 22 0.6164324
30 39 0.444089.10-14

21 23 7.894231
73 78 0.559814
79 88 0.130389.10-11

M1FC1
niter # f/g f

31 93 0.225317.10-17 41 0.6164330
37 88 0.111921.10-7

16 39 7.894232
116 318 0.559814
70 121 0.243610.10-6

Again, our bundle trust region version BTNC yields better results than MIFC1;
this is further confirmed by some test runs done by Schittkowski [36]. Since, however,
our experience with nonconvex problems is still rather limited, we do not claim this
to be a final statement.

4.2. Traveling salesman problems. In many practical applications one has to
solve a problem which can be phrased as a (symmetric) traveling salesman problem:
Given a complete graph Kn (V, E) and distances cj for each edge ij 6 E (with
cj cj), find a tour T* with length c(T*) as small as possible. Since problems of this
type often appear in tremendous size (e.g., drilling problems with several thousands
of knots), it is generally not possible to solve them exactly. Widely used tools in
combinatorial optimization are therefore heuristics, which compute an approximate
solution T rather quickly. To judge the quality of such a tour T, it is important to
know a lower bound for the length c(T*) of the optimal tour. Such a bound can be
found via the 1-tree relaxation described in Held and Karp [17]. We can formulate
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the TSP as a linear problem of the form

min{(c,x}lAx a, Bx <_ b, xi e {0,1} }.

The following weak duality relation holds:

(4.1) c(T*) min(c(T) T is a tour}

where " If(n --, R is defined by

(A) min{(c, x)+ (A, Ax a) Bx <_ b, xi e {0, 1} }.

Without the binary constraints xi E {0,1}, one has even equality in (4.1). For
our TSPs the gap was never greater than 1-3 percent. Hence we can find a good
lower bound by maximizing the function which, as minimum of finitely many lin-
ear functions in A, is nonsmooth, concave, and piecewise linear. It is known from
combinatorics that (A) can be computed via the length 5 of a so-called minimum

spanning 1-tree x() for our graph with the new distances 5ij := cij + hi + j; it holds
n(A) 5- 2 i=1 Ai. There are efficient algorithms to compute such a tree and thus

(A); we used the Prim algorithm. Simple subgradient calculus shows that this tree
x(A) provides us, for free, with a subgradient of at A: (A) (c, x(A))+(,, Ax(A)-a)
and as a byproduct we obtain a subgradient of at

g(x(,)) := Ax(,)- a e 0(A).

The components of g(x())) are just the degrees of the knots of the 1-tree as follows:

9(x()))i degree(i) 2, 1,...,n.

Thus we are precisely in the framework (1.4) and can apply BTC or MIFC1.
The following subgradient variant

(4.2) Xk+l Xk Mpk(ag + (1 ak)gk_)/llakgk + (1

with fixed M > 0, 0 < p < 1 and 0 < ck

_
1 for all k lI is currently the

standard method in the TSP context. For the choice Ok 1, k ( N, one can establish
convergence with geometric convergence speed (with factor Mp) of the xk to some
limit which, however, need not be optimal. We believe that Table 4.6 will convince the
reader to also consider more sophisticated methods like BTC or M1FC1. Presented
are the results for a collection of synthetic examples (Krolakl, ..., Krolak5) and for
some TSPs which come from drilling problems. Table 4.5 gives a list of the problems
we treated. "Dim" in the third column is the number of knots (i.e., the dimension of
our optimization problem). The fourth column gives the length of a tour, which is
considered a good one (it is not known whether this tour is optimal).

Table 4.6 shows the results. Here "lb" is the lower bound which we obtained from
the three methods; for (4.2) we tried several M’s and p’s and report our best results.
Finally, "%" gives the remaining gap in percentage. In BTC we take m := 0.01,
m2 :- 0.2, and m3 :- 0.9. BTC was stopped when the stopping criterion was satisfied
with s := 10-4 for the smaller problems, respectively, s :- 10-2 for the larger ones.
Also, for M1FC1 we could satisfy a corresponding stopping criterion, apart from a
few runs where the code broke down with linesearch difficulties close to the optimal
point. The subgradient method was stopped when we observed no further progress
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TABLE 4.5
List of traveling salesman problems.

Nr.
1’
2
3
4
5
6
7
8
9
10
11

Problem Dim Tour
KROL1 100 21282
KROL2 100 22141
KROL3 100 20749
KROL4 100 21294
KROL5 100 22068
TSP442 442 5069
TSPl173 1173 57323
V362 362 1966
V614 614 2312
Vl167 1167 5657
V2116 2116 6786

TABLE 4.6
Traveling salesman problems.

1 194 20929 1.66
2 202 21648 2.23
3 264 20451 1.44
4 116 20951 1.61
5 183 21779 1.31
6 229 5043 0.51
7 78 56351 1.70
8 161 1941 1.27
9 129 2253 2.55
10 141 5579 1.38
11 109 6599 2.76

Subgradient Method MIFC1 BTC
#fly lb % #fly lb % #fly lb

103 20938 1.62
606 21753 1.75
156 20473 1.33
326 21110 0.86
292 21784 1.29
248 5033 0.71
621 56193 1.97
360 1930 1.83
255 2250 2.68
442 5564 1.64
668 6579 3.05

58 20938 1.62
233 21833 1.39
79 20473 1.33

118 21142 0.71
136 21799 1.22
378 5051 0.36
399 56386 1.63
285 1942 1.22
179 2254 2.51
506 5580 1.36
713 6606 2.65

in the leading digits; obviously we have convergence to a nonoptimal point, e.g., for
KROL2.

Finite convergence was again observed for many of the TSPs (recall that is
concave and piecewise linear). Below we give the result for KROL1.

BT-Algorithm KROLI

niter ncomp f gn alpha
1 1 .19094198E+05 .66332496E+01 .O0000000E+O0
2 3 .19370920E+05 .52129811E+01 .63650738E+03
3 4 .19654650E+05 .41342650E+01 .72867439E+03
4 5 .20150557E+05 .35600250E+01 .52416612E+03
5 6 .20295988E+05 .23095560E+01 .69738857E+03

I0 11 .20551025E+05 .14857001E+01 .30072466E+03

20 21 .20823536E+05 .71434597E+00 .I1684214E+03
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30 31 .20893782E+05 .47437971E+00 .69645027E+02

40 42 .20926464E+05 .58577127E+00 .88800444E+01

50 52 .20934447E+05 .17380992E+00 .32980892E+01
51 53 .20935444E+05 .13554464E+00 .23477955E+01
52 54 .20935905E+05 .99386622E-01 .19572159E+01
53 55 .20935905E+05 .96884277E-01 .19192909E+01
54 56 .20937609E+05 .15142964E-01 .31555350E+00
55 57 .20937609E+05 .51250884E-02 .31600774E+00
56 58 .20937926E+05 .39299811E-15 .63493827E-11

convergence

4.3. Minimizing the maximal eigenvalue. Often an application requires the
solution of the subproblem

(P) minimize f(x)’= ,ax(A(x))

here A(-) is a real symmetric m m-matrix, which depends linearly on x E Rn, and
Amax(A(x)) denotes the maximal eigenvalue of A(x). The following properties hold
(see, e.g., [5]):

f is convex;
f is nonsmooth at x, if the maximal eigenvalue f(x) has multiplicity greater
than 1;
if u is eigenvector of A(x) for the eigenvalue f(x) and [lu[[2 1, then a
subgradient of f at x can be easily computed from the dyadic product uuT.

Hence we are again in the situation (1.4) and can attack (P) with bundle-type meth-
ods.

We encountered such problems in connection with
(i) stable sets of graphs,
(ii) experimental design (see Gaffke and Mathar [10]).

First, numerical steps for (ii) are reported in [1]. Here we consider (i) more closely.
The theoretical background is discussed in detail in a book by GrStschel, Lovsz,
and Schrijver [14], who brought this subject to our attention. Let G IV, E] be a
graph, w (wl,"., wlvi)T a vector in ]lvI with nonnegative components, and put
0 := (x/W,"", wV-)T. We want to compute the so-called theta-function (G; .),

O(G; w):= min Ama(A + W),
AM

where W T and

M := {BIB symmetric n n-matrix,
bii 0 for V, bij 0 for i, j nonadjacent}.

The theta-function is the support function of the convex set TH(G) (a set that contains
the convex hull of the incidence vectors of all stable sets of G). Its value is known for
some special cases (let w (1,..., 1)T):

(a) If G is a circle with an odd number n of knots, then

cos
(G; w) nr;

1 -t- cos
n
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(b) if G is an Erdbs-Ko-Rado graph K(n, r), then

(g(n,r);w)

To compute #(G; w), we have to solve the nonsmooth convex problem

(P#) minimize max(A + W) subject to A e M.

Since W is constant and the constraints only require A to be symmetric and some
components of A to be zero, (P#) can be phrased as an unconstrained minimiza-
tion problem of form (P),), where A A(x) and x E Rm corresponds to the free
components of A. The dimension is equal to

n(n- 1)
m

2
I((iJ) i, j nonadjacent )1.

Table 4.7 shows some results for (a). Note that for circles the dimension of the
optimization problem equals the number of knots n. The starting point is always

of(-l’.(G; v_7.1)T and kmax :- 20. The value 0 in the second column is the precise value

TABLE 4.7
Odd circles.

n 0
17 8.42701
23 11.44619
39 19.46833
55 27.47756

111 55.48889

BTC
niter # f/g f

19 23 8.42705
26 30 11.44619
42 44 19.46833
49 49 27.47756
50 50 55.48889

MIFC1
niter # f/g f

28 70 8.42706
42 104 11.44626
37 102 19.46837
52 132 27.47756
58 134 55.48897

Table 4.8 gives the corresponding results for (b). Here we put kmax := 20 for
dimension M < 50 and kmax 50 otherwise. In the last two examples (,), M1FC1
breaks down with linesearch difficulties.

The results show clearly what was observed above" For convex f the code BTC
seems to be superior to M1FC1.

TABLE 4.8
ErdSs-Ko-Rado graphs.

BTC
n r Dim O niter #fig f
5 2 15 4 28 28 4.000003
6 2 45 5 33 33 5.000013
10 2 630 9 63 63 9.000008

3 840 28 63 65 28.000095
1 4 1575 84 125 128 84.000409

MIFC1
niter # f/g f

25 52 4.000047
33 62 5.134571
75 95 9.000071
28 36 53.000003*
37 48 163.333332"

Table 4.9 discusses the improvement of BTC, if we add all subgradients, which
we obtain from a system of orthonormal eigenvectors for f(x), to the bundle at x.
We considered eigenvalues as equal if they differ in value less than 10-9. The extreme
improvement is probably due to some hidden structure of the problem, since the same
technique applied to random graphs only leads to no improvement.
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TABLE 4.9
Circles--enlarged information.

BTC
n niter #f/g f
17 12 15 8.42701
23 29 29 11.44619
39 30 33 19.46833
55 49 49 27.47756

111 50 50 55.48889

modified BT
niter #fig f
3 6 8.42701
2 3 11.44619
3 3 19.46833
3 3 27.47756
3 7 55.48888

4.4. Maximization of the contact area between a clamped beam and a
rigid obstacle. Let y(s) for 0 _< s _< 1 be the deflection (state variable) of a clamped
beam under the load u(s) (design variable). The total amount of load f u(s)ds is
given and u(s) is bounded from above by some for each s; further, the deflection of
the beam is limited from below by some rigid obstacle g(s). Then the aim is to find
a load density such that the beam comes as "close" to the obstacle as possible. In an
abstract setting the problem becomes

(4.3)
minimize /(y(s) g(s))2ds subject to

0

(Ay, z- y) >_ (B(x), z- y) for all z e K, X E Xad (X X, y Y).

Here X := L2((0,1)) and Y :- H((0,1)) are the control space and state space,
respectively. Xad := {x L((0, 1)) 0 _< x(s) <_ almost everywhere in (0, 1) and

f3 x(s)ds M} and g := {z e Y z(s) >_ g(s) almost everywhere in (0,1)} are
the sets of feasible controls and admissible state variables. The operator A Y Y
is defined by Ay yV and B X - H-2((0, 1)) is the natural embedding. The
variational inequality (4.3) assigns to a given load x the deflection y; it is known that
(4.3) can be rewritten as a quadratic programming problem

(4.4) y arg min
1

zK -(Z, Az) (B(x),

The above problem is thoroughly discussed in a more general framework in [16]
and [33]. The discretization below follows these references.

For a numerical treatment we divide the interval [0,1] into n equidistant subin-
tervals of length 1In and consider design functions which are a constant xi on each
subinterval i. For the controls we use a standard finite-element technique and work
with functions

2n--2

i--1

where the i are third-order polynomials chosen such that y(i/n) y2i-1 and y’(i/n)
y2i for i= 1,...,n- 1. In this framework g becomes (z e 2n-2 z2i-1 >_ g(i/n)
for 1,...,n-i} and Xad reduces to {x n (xi/n) M, 0 <_ xi <_ for
1,..., n}. With the positive-definite (2n- 2) (2n- 2) rigidity matrix H (built up
from terms f ai j) and the (2n-2)-vector b(x) (with elements f xi), the discretized
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fl 10 p pppe--bound for load
1

x "= 10

0

-0.0001

0 1

FIG. 4.1. Beam (constant load).

-0.0001

upper bound for load

load

FIG. 4.2. Beam (optimized load).

problem becomes

(4.5)

(4.6)

2n--2

] E (y(s)- g(s))2ds subjectminimize to
J
0 i--1

y E arg min
1

zeg -zTHz b(x)Tz, x Xad, (x ]n, y 2n-2).

Now let y(x) ]2,-2 denote the unique solution of (4.6) for given x n and write
l(y) for the integral in (4.5). Then our problem becomes

(4.7) minimize f(x) := l(y(x)) subject to x Xad.

Obviously f is not convex; further, because of the constraint in (4.6), the function
y(.) (and thus also f) depends in a nonsmooth way on x. To compute f(x) we have
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/=10
upper bound/"

load for n 80
1st interval for n 40 [0, 0.025]

1st interval for n 240 [0, 0.00416...]

0 0.0125 0.025 0.0375 0.{

FIG. 4.3. Load for different discretizations.

to solve the quadratic programming problem (4.6). With its solution y y(x) and a
Lagrange multiplier A put

/ "= {z e ]R2n-2 z2i_l satisfies (4.8) for i= 1,2,...,n- 1},

--0,
(4.8) z2i-1

0,

if y2i-1 g() and A2n- > 0,

if Y2-1 g() and ,n-i O,

and solve the derived quadratic programming problem

(4.9) mi_n 1/2zTHz Vyl(y(x))Tz.
zEK

Then, under some technical assumptions (which we skip here), the following is proved
in [33]: If p solves (4.9), then Vb(x)Tp is a subgradient of f at x. Hence at every
iteration we must solve two quadratic programming problems of dimension 2n- 2 to
compute f(x) and one g E Of(x). For these quadratic subproblems we use a code due
to Powell. In our experiments we have set 3 10, M 5, g -0.001, and n 10,
20, 40, 80, 160, 240. Further, we have incorporated the simple linear constraint
(1/n) En

i= xi 5 into the BTNC code itself. Figure 4.1 shows the deflection of the
beam for n 10 and for given x (5, 5,..., 5)T without optimizing; Fig. 4.2 gives
the result for the "optimal" x (5, 10, 10, 0,..., 0, 10, 10, 5)T provided by BTNC.

We mention that these results differ substantially from those shown in [16] and
[aa]; a restart with BTNC from the data in that place proves that the results in [16]
and [aa] are not yet optimal. The "correctness" of our outcome is further confirmed
by the BTNC solution for n 40, 80, 160, and 240 (compare Fig. 4.a):

X (Xl, X2,""", Xll, X12,"" .)T (0, 10,’’", 10, 0,’" .)T E ]40,
X (Xl,X2, ,X21, X22," ..)T (0, 10, ,10,0,"" .)T ]80,
X (Xl,X2, X3,X4, ,Xa3, X44, .)T (0, 0, 0, 10, ,10,0,’" .)T @ ]I160,
X (Xl,X2, X3,X4, Xh, X64, X65,"" .)T (0, 0, 0, 0, 10, ,10, 0,’" .)T @ ]1240.

The stopping criterion was always e 10-9.
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NECESSARY OPTIMALITY CONDITIONS FOR NONSMOOTH
MULTICRITERIAL OPTIMIZATION PROBLEMS*

TILO STAIB?

Abstract. Necessary optimality conditions of the first order are derived for nonsmooth non-
convex constrained optimization problems where the cost mapping is vector-valued and all occurring
spaces are infinite-dimensional. These necessary conditions are given in the Karush-Kuhn-Tucker
formulation and hold for various optimality concepts as proper and weak efficiency. An investigation
and comparison of different constraint qualifications is also included.

Key words, multicriterial optimization, nonsmooth optimization, constraint qualifications
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1. Introduction. The theory of nonconvex and nonsmooth optimization prob-
lems has made rapid progress in the last 20 years and problems with a single objective
(cost) function have been fairly well analyzed. This is evidenced by the works of, e.g.,
Clarke [9], [7]; Demjanov [10]; Ioffe [16], [17]; Robinson [31]-[34]; aockafellar [35],
[36]; and Warga [43] and many others.

The general intention is to introduce a differentiability concept for a nonsmooth
(i.e., non-Fr(chet-differentiable) and nonconvex functional f X where X is
a normed space, and to find a set of linear approximations for its derivative that
contains enough information about the local behavior of the problem to provide, e.g.,
necessary or sufficient optimality conditions that are applicable to control problems
or can be used to study the stability of the problem.

It has turned out that a useful notion is Clarke’s derivative:

f(x, h) :-- lim sup ( O-(f(v + Oh) f(v)) 0 < 0 < A, IIv xll < },
e,A--0+

which exists if f is locally Lipschitz. The mapping f(x, .) is always sublinear and
hence has a convex subdifferential. Moreover, f coincides with the directional deriva-
tive if f is convex and with the gradient if f is strictly differentiable. This notion can
readily be generalized for f X n and the derivative can be approximated by
gradients if X ’. However, there is no general agreement as to how to define a
similar derivative if f X Y and Y is an infinite-dimensional vector space and it
seems impossible to recover all the useful properties mentioned above.

In the past decade there have been several attempts to define such an extension of
Clarke’s derivative. One of the most general notions (and perhaps the first) was given
by Kusraev [23]; others were given by Thibault [40], Papageorgiou [26], and Reiland
[30]. Such an extension is desirable to derive Karush-Kuhn-Tucker conditions for
an extended class of constrained optimization problems, where the constraints and
eventually the objective mapping are nonsmooth operators with infinite-dimensional
range. Here it is essential to avoid strong assumptions like convexity or Fr6chet-diffe-
rentiability.

If one applies the necessary conditions of [23], [40], [26], and [30] to nonsmooth
optimization problems over function spaces (e.g., optimal control problems), one re-
alizes that their notions impose assumptions that are often hard to verify even for

Received by the editors November 30, 1989; accepted for publication (in revised form) February
26, 1991.
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simple mappings in LP-spaces. Moreover, their derivatives generally do not coincide
with the directional derivative, the Gteaux derivative or the Frchet derivative, even
if those exist. We will demonstrate this by simple examples.

In order to improve this, we introduce in 2 another notion of generalized dif-
ferentiability, being in some aspects similar to the mentioned ones, but being more
flexible and covering the smooth as well as the nonsmooth cases. Using this notion we
will derive necessary opimality conditions (i.e., Karush-Kuhn-Tucker conditions) for
multicriterial optimization problems with nonsmooth constraints, where all occurring
spaces may be infinite-dimensional (3). It will turn out that an appropriate approach
to the constrained problem is that of Guignard [12], introduced for Frchet-differen-
tiable problems and also used in [4] and [30]. This approach is slightly different from
the Dubovitskii-Miljutin theory (see, e.g., [11] or [21]).

Further, we will investigate how the constraint qualifications used in this approach
relate to others given in the literature, e.g., Slater’s, and give some examples of how
to verify them.

2. Generalized derivatives. Let X be a topological vector space (tvs) with
dual X* and (Y, -) be an order-complete topological vector lattice with a given topolgy
’. Topological notions, such as general limits, will be prefixed with r only when -denotes the strong topology; then the prefix will be omitted. The order structure of
Y is assumed to be generated by a convex pointed cone Cy that is -- normal, i.e., "has a base L/of zero-neighborhoods with the property U (U+ Cy)N (U-Cy) for all
U E L/(see, e.g., [6]). The operations sup, inf, and land _cy should be understood
with respect to this ordering, as well as monotonicity, normality, increasing, order-
bounded, and so on (see, e.g., [27] or [6]). The dual cone Cy. c_ Y* is defined by
Cy* :-- { y* Y* y*(c) >_ 0 Y c C } and its quasi interior by Cy. := { y*
Y* y*(c) > 0 c C, c : 0 }. Order intervals will be the sets [yl, Y2]cy := { u
Y Yl _c. u _cy Y2 }. Finally, f" X - Y will be a given mapping.

DEFINITION 2.1. Let x E X. A filter L/(x) {U C_ X} is called contraction
system around x, if {x} { U U /(x) } holds and monotonic contraction
system (MCS), if additionally the sets U depend on a real parameter in the following
monotonic manner:

U(x) { U(x, ) c_ x e , > o }, < . U(x,) c_ U(x, .).

If V C_ X is a cone and if the sets U(x, e) have the additional property that for
every k V, e > 0, there exist real numbers 5(e,k),/(e,k) > 0 satisfying
lim-.0 5(e, k) lim_0 /(e, k) 0 and w := u +
U(x, e), 0 < < 5(, k), then we call/g(x) V-stable.

Of course, the family of all e-balls in a normed space is a monotonic contraction
system, but this is by no means the only example.

Example 2.1. Every system b/(x) constructed of one of the family of sets U(x,
given below, is a MCS. The one of (a) is L-stable, (c) is X-stable, (b) is Cx-stable
and X-stable if int Cx , (d) is 0-stable.

(a) Let gt C_ n be nonempty, # the Lebesgue measure on gt, and let X be a
linear space of functions

(1)
(e)

U(x, ).- { u e x Ix()- ()l _< v e } or

U(x,e):= {seX Ix(w)-u(w)[_<e#a.e. wgt}.
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(b) Let (X, Cx) be a partially ordered tvs and let c E Cx"

{ ex

(c) Let X be normed. U(x, ) "= { u X ]lx ui] },
(d) V(x, e) {x)
(e) For every subspace V c_ X the sets V N V(x, ), where the sets V(x, e) are

taken as in (a), (b), (c), or (d), form a monotonic contraction system.
With the aid of a MCS we can now define a general continuity property of Lip-

schitz type and a generalized derivative of f, which are related to the topological or
the order structure (or both) depending on the choice of the contraction system.

DEFINITION 2.2. The mapping f X Y is called Lt-Lipschitz-continuous
at x X, if there exist a MCS H(x), real numbers A, > 0, and a mapping P
X

_
--, Y which has for all 0 < A < and 0 < e < the following properties:

f(u + Oh)- f(u) <_ P(h,e, A) v u e U(x, o e (o,

P is continuous in h and T-limP(h,e,A)=0 VA, e>0.
h--0

If f is H-Lipschitz-continuous in the sense of Definition 2.2, we obtain the existence
of a generalized derivative in the sense of the following theorem.

THEOREM 2.3. Assume that H(x) is a monotonic contraction system, that f is
H-Lipschitz-continuous, and that (Y, T) possesses additionally the Daniell property
either for sequences or for nets (i.e., every monotonically nonincreasing sequence (or
net) that is order-bounded from below converges with respect to T). Then the limit

f(u + Oh) f(u)(3) ’-DSf(x, h) := T- lim sup
e,.x0 uEu(x,e)

exists and has the following properties:
(a) ’-DSf(x, 5h) 5’-DSf(x, h) V 5 >_ O.
(b) r-limh_0 ’-DSf(x, h) O.
(c) Iffor a convex cone Y C_ X the MCS H(x) is V-stable then for all h, k Y we

have ’-DSf(x, h + k) <_ ’-DSf(x, h) + ’-DSf(x, k). If Xo c_ X is a subspace
and this inequality holds for every h, k Xo, then :r-DSf(x, .) is sublinear on

Xo. If V X, then the mapping ’-DSf(x,.) X - Y is continuous.
(d) If M C_ Y is a set with the properties r-int M and ’-int M- Cy C_

r-int M and if -DSf(x,h) ’-intM holds for a given h X, then there
are e, A > 0 with

(4) f(u + Oh)- f(u) e r-int M V u e U(x, ) 0 < 0 < A.
0

Proof. Existence. If e, A are sufficiently small, the order-completeness of Y and
the fact that f is H-Lipschitz-continuous guarantee the existence of

S(,) "= sup{O-(f(u+o)-f(u)) ev(,), O<O<}eY,
S := inf S(e,A) Y.

e,X>O
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For all monotonically decreasing positive real sequences (or nets) - 0, A 0, by
definition, the elements S(e, A) form a monotonically nonincreasing sequence (or net)
in Y that is bounded from below by S. Hence the r-Daniell property of Y implies the
existence of ’-Df(x, h) ’- lim,0 S(, A). Obviously the monotonicity of S(, A)
implies that this limit is independent of the choice of the sequences e, A.

The proof of assertion (a) and of sublinearity in (c) is the same as for a real-valued

f.
To prove (b), note that for e, A sufficiently small, we have IDf(x, h)l <_ P(x, h, , A),

hence for h --. 0 from P(x, h, e, A) - 0 and the normality of the ordering, Dr(x, h)
0 follows. Now we will see that this continuity at 0, together with sublinearity in
V X, implies continuity everywhere, i.e., the last assertion in (c). Take a net
{h}iei C_ X with k := limiei hi. If Df is sublinear on V X we obtain

()
(6)

Dr(x, k) Dr(x, k- hi + hi) <_ Dr(x, k- hi)+ Dr(x, h),
Dr(x, hi) Dr(x, hi- k + k) <_ Dr(x, hi- k) + Dr(x, k),

and thus

-Dr(x, hi k) <_ -Dr(x, hi) + Dr(x, k) <_ Dr(x, k hi).

Since from (b) limiei Dr(x, k hi) limiei Dr(x, hi k) 0 follows, and since Cy is

normal, we can conclude that Dr(x, k) limiei Dr(x, hi); hence Dr(x, .) is continuous
atkEX.

To prove (d), note that Dr(x, h) int S implies the existence of a neighborhood
Y of 0 in Y with Df(x,h)+Y C_ intS. Hence there are e,A > 0 with S(e,A) e
Dr(x, h) + V and together with

f(u + Oh)- f(u) S(e,A)-CyC_Df(x,h)+V Cy C_ intS,

we conclude (d).
DEFINITION 2.4. We define the directional derivative of f, if it exists, by the

limit

-Drf(x, h) := -- lim -1 (f(x + Oh) f(x)).
0---0

Ifthis mapping is sublinear on X, i.e. for all h, k X -Drf(x, h+k) <_ -Drf(x, h) +
’-Drf(x,k), we will refer to this as CASE(D). We define the generalized derivative
of f by

z-Drf(x’ :I-Df(x, .) "= T_DSf(x,
in CASE(D),
else.

If is the strong topology, then we will denote this mapping simply by Dr(x, .). If,
in particular, ’-Df(x, .) X Y is linear, then it is called the Gteaux derivative
of f.

Remark 2.2. Obviously, by definition and by Theorem 2.3, the generalized deriva-
tive is always sublinear, at least on the convex cone V where b/(x) is V-stable; but
stability is needed only if Df is not sublinear. We could define DSf even with a

nonmonotonic contraction system, but this would require an additional sup-operator
(see (a) below) and is of unnecessary generality. If f is a convex operator, then by [6],
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Drf and hence Df are sublinear. If f is Gteaux-differentiable, then Df coincides
with the Gteaux derivative and thus the smooth cases are covered. Under certain
circumstances Drf and DSf coincide. If Y n and f (fl,"" ,fn), then Df is
the vector of Clarke’s derivative of the functions f if one chooses a MCS as in Ex-
ample 2.1 (c). Since each f is real-valued, one can deduce with [9, Chap. 2.3], that
these derivatives coincide with the directional derivative in the convex case and with
the gradient in the strict differentiable case. If X and Y are function spaces one can
easily deduce similar results for the topology of pointwise convergence in Y, but to
extend them to norm-topologies, one has to impose more assumptions (see [39]). The
statement of Theorem 2.3 (d) can be strengthened in CASE(D) to hold for every set S
with nonempty interior and leads to the definition of the Gteaux variation as in [21]
or [38]. However, the weaker form will be sufficient to play a crucial role in the deriva-
tion of necessary optimality conditions for multicriteria optimization problems (see
next theorem). We now discuss the relationships of the introduced differentiability
notion to similar concepts.

(a) gusraev [23] calls f X Y locally Lipschitzian if X, Y are topological
vector lattices (i.e., ordered), order convergence in Y implies topological con-
vergence, and if for every x E X there is a neighborhood V of x and a
sublinear, monotone, and continuous operator P" X Y with

(7) If(x1)- f(x2)l _< P(xl- x2) V xl,x2 e Y.

For those mappings he obtains existence of the mapping (which he calls
Clarke’s derivative of f)

(8) f(x,h) sup inf sup
1

---.x 0<,ve- uev,o<o<e - (f(u + Oh) f(u)),

where $- x is a filter converging to x and the first sup is taken over
all those filters. The difference between this definition and Definition 2.2 and
Theorem 2.3 lies in the use of arbitrary filters instead of a MCS, which requires
the additional sup-operator, and in the assumption that P is monotone and
sublinear. This assumption is very strong (see the examples below) and can
easily be dropped without losing the essential properties of the derivative, as
Definition 2.2 shows.

(b) Reiland [30] calls f order Lipschitz if there is a neighborhood U(x) of x, a
neighborhood W C_ X of 0, a real e > 0, and order bounds yl, y2 Y with

(9) Yl -<or 0-1 (/(u + Ow) f(u)) <_cr Y2 V 0 < O <_ e, u e V(x), w W.

(c) Papageorgiou [26] calls f order Lipschitz if there is a neighborhood U(x) of
x, a neighborhood W C_ X of 0, and an element k Cy with

(10) [f(u + w)- f()! < llwll v u e V(x), w e W.

(d) Topological definition, f is Lipschitz-continuous if and only if there is a
constant A > 0 with

(11) IIf(u + w) f(u)I <_ AIIwl] V u E U(x), w e W.

It is easy to see that (a), (b), and (c) imply the generalized Lipschitz property defined
in Definition 2.2 as well as the usual topological Lipschitz continuity (d) if Cy is nor-
mal. If int Cy then Remark 2.2 (d) implies (b) and (c) (but not (a)!). Thibault’s
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notion [40] is different and consists of a definition of a (sublinear) subderivative via
the contingent cone of the epigraph of f. If f is "compactly Lipschitzian," one can

approximate this subderivative by sequences of difference quotients. In [40], an ap-
plication to optimization problems is not given.

By the following example we will see that Definition 2.2 is weaker than the other
definitions, which also connect the topological and the order structure.

Example 2.3. (a) Let I c_ j be a bounded interval and consider

f’X’=L2(I)-oLI(I)=:Y, f(x)=x(t)2, xeZ.

Obviously -(If(u + h) f(u)l)(t 12u(t)h(t) + 9h(t)21, t e I. The mapping f
is not Lipschitz in the sense of Remark 2.2 (a), (b), or (c) because of

sup { < } y.

There is even no sublinear continuous operator P with 12uh / Oh21 <_ P(h) for all
u" Ilu- XllL2 <_ . But by taking the monotonic contraction system U(x,
X lu(t)- x(t)l <_ # a.e } we can conclude

12uh + h21
_

2(Ix + )lhl + ,h2 P(x, h, , ) Y 0 < 0 < ], u e V(x,

and this mapping P (which is not sublinear) meets the assumptions of Definition 2.2.
One could choose even the monotonic contraction system of Example 2.1 (d), since

f is Gteaux-differentiable.
(b) Let I C_ j/ be a bounded interval and consider the mapping

f" X "= n(I)--+ n(I) Y, f(x(t))- exp(Ix(t)l).

Since for all u E X, 5 > 0, the implication IlUlILO+ _< di = lu(t)l
almost everywhere holds, we conclude

0-+lf(u / Oh) f(u)l < Ihl exp(Ix / e / Alhl) V e (0, A), u e V(x,

# almost everywhere in I. This inequality is true for every monotonic con-
traction system Ll(x) of Example 2.1. The operator

P(x, h, , ]) "= Ihl exp(Ix + e +
is neither sublinear nor can we find a sublinear operator that majorizes P for
all h E X. Hence f is not Lipschitz in the sense of Remark 2.2 (a) but P
does meet the assumptions of Definition 2.2 and f is therefore /g-Lipschitz-
continuous. From P(x, h, +, ]) <_ Ihl exp(Ix + e + ]) for all h IlhllLo+

_
1

we deduce that f is Lipschitz-continuous in the sense of Remark 2.2 (b), (c),
and (d), which illustrates the equivalence of these definitions if the ordering
cone has nonempty interior (as is true in L(I)). This example shows that
Kusraev’s definition is too strong.

For the generalized derivative we now obtain a set of linear approximations, i.e.,
a subdifferential, and investigate its properties. This will be done by applying the
theory for convex operators (see, e.g., [42], [6]) to the sublinear generalized derivative
of f (see, e.g., [30]).

THEOREM 2.5. Let f be bl-Lipschitz-continuous and assume that the MCS
is X-stable. (X, Y) denotes the set of linear continuous operators from X to Y.
Then the following assertions hold.
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(a) The subdifferential of f at x, i.e.,

Of(x) := { L e .(X,Y) L(h) < Df(x,h) Vh e X }
is nonempty and convex.

(b) If X is a Frdchet space, then the set Of(x) is equicontinuous.
(c) /f the order intervals ofY are weakly compact, then the set Of(x) is compact in

s(X, Yw) (i.e., the set of linear operators from X to Y that are continuous
with respect to the weak topology of Y), if :s(X, Yw) is equipped with the
topology of pointwise convergence.

(d) If Cy is normal, then for all h E X Dr(x, h) maxLeof(x)L(h).
For a composition of linear positive operators and Lipschitz-continuous operators,

one can easily derive the following chain-rules.
THEOREM 2.6. (a) Let (Z, Cz) be an order-complete 7--Daniell topological vector

lattice. Then for every linear and continuous operator L Y -- Z that is positive
(i.e., L(Cy) C_ Cz) the following holds:

D(L o f)(x, h) <_ L o Dr(x, h) V h e X,

O(y* o f)(x)
_

y* o Of(x) V y* e Cy..

(b) If the order intervals of Y are weakly compact, we even have

O(y* o f)(x) C y* o Of(x) V y* e Cy..

Proof. See, e.g., [39] or [30]. D
As a special case of this theorem we note that for positive linear functionals (i.e.,

y* Cy.) the following relation holds:

D(y* o f)(x, h) < y* o Dr(x, h) V h e X, y* Cy..

3. Necessary optimality conditions. In this section we use the generalized
derivative to derive necessary optimality conditions for nonsmooth constrained mul-
ticriterial optimization problems. The main tool to approximate the feasible set will
be the well-known contingent cone (also Bouligand’s tangent cone) defined below.
This cone can also be used to define the contingent derivative of set-valued maps (see
Aubin [1], [2]; Robinson [34]; and Klose [22] where it is used to study stability of
nonlinear programming problems). With this contingent derivative Luc [24] obtains
even necessary conditions for some vector optimization problems, but this approach
is different from ours.

DEFINITION 3.1. Let X be a tvs with a given topology 7-, S c_ X be a nonempty
subset, and x X be given. Then the contingent cone or tangent cone of Bouligand
of S at x is defined as

{ {hn},tvCX, h=7--lim hn }n x + tnhn STT-(S,x) h e X 3{tn}ev C +, t0,
If 7- is the strong topology of X we will simply write T(S,x) and Tw(S,x) if 7- is the
weak topology.

DEFINITION 3.2. (a) f(x) is a (Pareto-) minimal element of the set f(S) if
(f(x) Cy \ {0}) f’l f(S)
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(b) Let int Cy O. Then f(x) is a weakly minimal element of the set f(S) if
(f(x) int Cy) N f(S) .

(c) f(x) is a properly minimal element of the set f(S), if f(x) is minimal in the
sense of (a) and if additionally T(f(S) + Cy, f(x)) -Cy {0} holds.

(d) f(x) is a weakly properly minimal element of the set f(S), if f(x) is minimal
in the sense of (a), and if additionally Tw(f(S)+ Cy, f(x))N -Cy {0}
holds.

The set of all minimal (weakly minimal, properly minimal, weakly properly
minimal) elements of f(S) is denoted by MIN(f(S)) (WMIN(f(S)), PMIN(f(S)),
WPMIN(f(S)), respectively) and obviously

(12) WPMIN(f(S)) C_ PMIN(f(S)) C_ MIN(f(S)) C_ WMIN(f(S))

and the first two sets coincide if Y /n.
For weakly minimal and weakly properly minimal elements, one can derive the

following necessary optimality conditions of the first order.
THEOREM 3.3. Assume that f satisfies the hypotheses of Theorem 2.3, i.e., let f

be Lt-Lipschitz-continuous and assume that the MCS b/(x) is X-stable. Let f(x) be a
weakly minimal element of the set f(S). Then the following statements hold:

(a) Df(x,h) -intCy for all h E T(S,x).
(b) For every convex cone K C_ T(S,x) there is some y* Cy., y* Oy. with

(13) y* o nf(x, h) >_ 0 V h e K,

(14) 0 e O(y* o f)(x) K*.

(c) If the order intervals in Y are weakly compact, then

0 y* o Of(x)- K*.

Proof. (a) Suppose that there is some h T(S,x) with the property Df(x,h)
-int Cy. Then there are sequences {hn}nev C_ X and {On}nev C_ + and a number
no for which

0= lira On, h= lira hn and x+0nhnS Vn.

Continuity of the mapping Dr(x, .) then yields

Dr(x, hE) int Cy n > no.

Since the set M -int Cy fulfills the assumptions of Theorem 2.3 (d) we obtain

f(x -{- Onhn) f(x)

_
-On int Cy

_
int Cy

for all numbers n E , n > no for which On is sufficiently small. But the last inclusion
is a contradiction to f(x) being weakly minimal.

(b) From (a)we conclude that Df(x,K)+ Cy - intCy , sublinearity of
Df(x, .) implies convexity of the set Dr(x, K) + Cy and hence we can apply
a separation argument to obtain existence of a positive linear functional y*
Cy., y* 0y., satisfying (13). To prove (14) set p(h)"= y* o Df(x,h).
Observe that p" X - is sublinear and continuous. Hence the set

(15)

.= { e x n < }
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(16)

(17)

is convex and has nonempty interior in X x ti. Because (15) implies p(k) k 0
for all k E K and hence

intepi(p) Cl {(k,a) eXx
By application of a separation theorem to this intersection we obtain the
existence of a linear continuous functional (xl,
(xl, Z) # 0, satisfying

x(h) + Zr <_ 0 <_ x(k) + Za V h e X,k e g,r >_ p(h),a <_ 0.

These inequalities imply _< 0. If 0, then (17) yields x 0 in contra-
diction to (x,) 0. Hence we have < 0 and thus -- > 0. Setting
r p(h) in the first inequality of (17) we obtain x(h) <_ -p(h) and, equiv-
alently, by _/-1 > 0 x*(h) _-lxl*(h) <_ p(h) y* o Df(x, h), hence
x* e O(y* o f)(x). From the second inequality in (17) we deduce x(k) >_ 0
for all k K, hence xl K* and x* K*. Both properties of x* together
imply 0 e O(y* o f)(x) g*.

(c) This statement follows from Theorem 2.5.
There always exists a convex cone K meeting the assumption K C_ T(S, x) of the

preceding theorem, for example, K {0} or Clarke’s tangent cone (which is always
convex; see, e.g., [9]). But it can be shown by the following simple example that
it is generally possible to choose the cone K bigger than Clarke’s, thus obtaining
sharper necessary optimality conditions (because of K1 C_ K2 = K C_ K). Let S :=

{ (t, s) e 2 s <_ Itl }. Obviously S is closed but not convex and we have T(S, O) S.
Clarke’s tangent cone at S at the point x 0 is Tel(S, 0) { (t, s) e 2 s _< -Itl }.
This cone is convex but also every cone ga := { (t, s) e//2 s _< at } with lal <_ 1
is convex, but much larger than the set Tel(S, 0). It satisfies

TcI(S, O) C ga C T(S, O),

where all inclusions are strict. Hence for the dual cones appearing in the necessary
conditions we have the strict inverse inclusions, i.e., K C N(S, O)=TcI(S, 0)where
N is the cone of normals of Tl(S 0) (see [9]). In fact K* { (1,-a) / _> 0 } is a

very small cone consisting of only one direction whereas the cone N(S, O) { (t,
2 s k Itl } is quite big. Hence the condition 0 e Of(x)- K* does give us much
more information about the minimum than 0 E Of(x) N(S, 0).

Note also that Theorem 3.3 (a) does not require any convexity assumption on K.
It states that 0 WMIN(Df(x,T(S,x))), thus being a generalization of the classical
necessary optimality condition Vf(x)lh >_ 0 for all h e T(S,x) for a real-valued,
differentiable mapping f. The same holds for Theorem 3.4(b), which gives necessary
optimality conditions for weakly properly minimal elements.

THEOREM 3.4. Assume that f satisfies the hypotheses of Theorem 2.3, that is,
let f be bl-Lipschitz-continuous and assume that the MCS L/(x) is X-stable. If the
order intervals of Y are weakly compact it follows that

(a) Df(x,T(S,x)) C_ Tw(f(S) + Cy, f(x)).
(b) If f(x) is now a weakly properly minimal element of the set f(S) it follows

w
that Dr(x, T(S, x) + Cy) [’] --Cy Oy.

(C) Assume that Cy has a weakly compact base. Then for every convex cone
K C_ T(S, x) there is a strictly positive linear functional y* C[. with

(18) y* o Dr(x, h) k 0 V h K,
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(19) 0 e O(y* o f)(x)- K*,

(20) 0 e y* o Of(x) K*.

Proof. (a) Let h e T(S,x) be given. Then there are sequences
and {0n }ne G ff+ with

O= lim On, h= lim hn and x+OnhnS Vn

Set dn Ol(f(x + Onhn) f(x)) and en "= Ol(f(x + Onh) f(x)). We show that
there are subsequences of {dn }near and {en}nev converging weakly (in Y) to the
same limit. Because f is L/-Lipschitz-continuous there is an operator P and a number
no E JN with limh-,0 P(x, h, , ) 0 if 0 < e, A is sufficiently small, for which

lenl <_ P(x,h,e,A) Vn > no

holds, i.e., the sequence {en}neV, n > no, is contained in an appropriate order
interval. Now the weak compactness of order intervals implies the weak convergence
of a subsequence {en, }kerr’ against a limit d E Y. Again we deduce from f being
L/-Lipschitz-continuous the inequality

0 <_ Idn, -earl<_ P(hn h).

Together with

-y* (Ida, e l) <- y*(d e) <_ y*(Idn, en, l) V y* e Cy,

and limk P(hn, -h) 0 we can conclude limk-o y*(dn, -end) 0 for all y* Cy,.
Since Cy is normal, we have Y* Cy, -Cy, and thus lim y*(dn -end) 0 for
all y* Y*. From the equality y* (dn,) y* (en,) + y* (dn, en, ), we finally deduce
the weak convergence of the subsequence {dn, }kerr with the limit d. We now claim
d Tw(f(S),f(x)). Since h T(S,x) we have f(x + Onhn) - f(S) for all n
Thus the sequence

Yk dn 0-1n, (f(x + Ou, hnk) f(x))

has the weak limit d and hence d Tw(f(S), f(x)). The definitions of Df(x,h) and
en now imply that Df(x, h) d + Cy holds. With a standard argument we can now
conclude that

d -t- Cy C_ Tw(f(S), f(x)) -I- Cy C_ T(f(S) + Cy, f(x))

and hence we obtain the statement (a). Since convexity of Cy implies Cy + Cy C_ Cy
we can even deduce for every h T(S,x)"

Df(x, h) + Cy c_ d + Cy + Cy C_ d + Cy C_ Tw(f(S) + Cy, f(x)),

and thus

(21) Df(x,T(S,x)) + Cy C_ T(f(S) + Cy, f(x)),

which we will need for the next step.
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(b) The proper weak minimality of f(x) together with (a) and the fact shown in
(21) which implies that

Df(x,T(S,x)) + Cy M -Cy c_ Tw(f(S) + Cy,f(x)) M -Cy {0}

(c)

We

immediately yields (b).
From (b) we deduce Df(x,g)+ Cy M -Cy {0}. Since both sets are
convex and closed cones and Cy has a weakly compact base we can apply
a separation argument (see, e.g., [41) to show the existence of y* e Cv.
with y* o Df(x,h) >_ 0 for all h E K. The subdifferential condition (19)
can be derived as in the preceding theorem and (20) follows from (19) to-
gether with Theorem 2.6, since the order intervals were assumed to be weakly
compact. 0
remark that for a directional derivative Df we even have

Df(x,T(S,x)) C_ T(f(S), f(x)).

For the case in which the constraint set S is given by explicit operator constraints
we will now derive an abstract multiplier rule by "computing" K in terms of the con-
straint mappings. This theorem will be an extension of a corresponding one of [30] to
vector-valued objective mappings, i.e., multicriterial optimization problems. [9] and
[25] also derive necessary conditions for those problems, but only for objective func-
tions and constraints that have a finite-dimensional range. In the infinite-dimensional
case Borwein [4] gives a general Kuhn-Tucker theorem that characterizes properly
minimal elements under the assumption that objective and constraints are Frchet-
differentiable. Hence the following theorem is an extension of Borwein’s to Lipschitz
mappings.

Let Z1,Z2 be partially ordered and g:X Z, g2: X -. Z2 be given mappings,
and suppose that So C_ X, D C_ Z, and D2 C_ Z2 are nonempty sets. For 1, 2 we
define

(22) Si

(24) Pi

(26) Ji
(27) Hi
(2s) J0

:= {x X
"= So N S, N

co T(Di,
ez.: z*(p)>_o, YpePi },

{heX L(h) ePi, VneOgi(x)},
{z* ex* eP ,LeOg (x) X*=R*oL},
co T(S0, x).

The sets P/* are multiplier sets and the sets Hi are sets of compositions of multipliers
and subdifferentials. If in particular inequality and equality constraints are given,
take D1 :- -C and D2 0, where C c_ Z1 is a convex cone representing the inequal-
ity constraints. The following theorem then gives necessary optimality conditions,
which can be considered as abstract Karush-Kuhn-Tucker conditions. Note that the
multiplier y* is always nonzero.

THEOREM 3.5. We assume that at a point x X with f(x) WMIN(f(S))
or f(x) WPMIN(f(S)) the mappings f,g,g2 satisfy the hypotheses of Theorem
2.3, i.e., let f,g,g2 be bl-Lipschitz-continuous and assume that the MCS /d(x) is
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X-stable. The subdifferentials will be denoted by Of(x), Ogl(x), Og2(x). Let K C_ X
be a convex cone satisfying

(29) K c T(S,x) and K* (JoNJ1N J2)*.

Then there is some y* e Cy., y* O, if f(x) e WMIN(f(S)) (or y* e C{.., if
f(x) e WPMIN(f(S))), satisfying the relation

(30) Ox. e O(y* o f)(x)- co Hi + co H2 + J
w

If additionally the relation K* J3 + J + J holds, then

(31) Ox. eO(y*of)(x)- coil1 +coH2 +J
If, moreover, the sets Hi and H2 are w*-closed, then

(32) OX* E O(y" o f)(x)- (coil1 +coil2 + J{).
Proof. If f(x) is weakly minimal it follows from Theorem 3.3 (from Theorem 3.4

if f(x) is weakly properly minimal) and from (29) that

Oz. O(y* o f)(x) K* O(y* o f)(x) (Jo r3 J1 f3 J2)*.

We will show K* (J0 J1 f3 J2)* C_ B co H1 + co H2 + J w*. To get a contradic-
tion, assume that there is some x* K*, x* B. By applying a separation theorem
to the w*-compact set {x*} and the w*-closed set B we conclude the existence of
h X and c satisfying the inequality

x*(h) < a < b*(h) V b* e B.

Because of 0 E B and the definition of B we have c 0 and thus

b*(h)>O Vb*=p*oP[, LOgi(x), i=1,2 and b* J.
From p* o L(h) > 0 for all p* e P/* it follows that L(h) e P[* Pi, for all L Ogi(x),
since Pi is a closed convex cone. This implies h J1 J2 and with J* J0,
even h J0. Because of x* K*, then x*(h) > 0 in contradiction to the inequality
x*(h) < a 0.

In order to prove (31) we show J/* co Hi Suppose that x* J/* with x*
co Hi Using a separation argument again, we obtain h E X with

x* (h) < 0 _< v* (h) V v* co Hi.

This implies L(h) P* Pi for all L Ogi(x) since P is a closed and convex cone
and hence h Ji for 1, 2. But this implies x*(h) > 0 in contradiction to x*(h) < 0
from the inequality above. Now let x* co Hi and x* J*. Linear separation then
yields the existence of some h E X with the property

x*(h) < 0 < v*(h) V v* e J[.

Because of J/** Ji this implies h Ji, which means L(h) >_ 0 for all L Ogi(x)
and hence z* o L(h) > 0 for all z* o L Hi. Since x* co Hi this inequality is a
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contradiction to the separation inequality. The last statement of the theorem follows
from co Hi being w*-closed.

We now draw conclusions from this theorem. Regarding the definition of the sets
H1,H2 the statement (32) means that for j 1,...,n and k 1,..., n there are
linear operators

o o (xL E Of(x), Lj Og(x), Lk Og2 ),

real numbers

aj >_0, k>_O with EaJ=Ek= 1,
j k

and linear functionals (i.e., multipliers)

y* e Cy., y* Oy. (respectively, y* e C.), z,j e P{, z,k e P,

with the property

(33) E * E * n2kg’x* := y* o L ajZl, o Lj kz2,k o

and hence x* (h) >_ 0 for all h J0. If the subdifferentials of gt, g2 consist of single
elements (e.g., if g, g2 are Gteaux-differentiable) then the sets H and H2 are convex,
and one has the classical Karush-Kuhn-Tucker condition

(34) y* o L(h) z o Dgl(x,h) z o Dg2(x,h) >_ 0 V h e Jo.

If we consider the particular case that D1 :- C is a closed convex cone and D2 0
then the set S represents inequality constraints and 5’2 represents equality constraints
and we obtain the relations

(35) P1 K(-C, gl (X)) and P2 0.

This implies the complementary slackness condition z(g (x)) 0 and the multiplier
sets are P{ -C* and P Z. If C Cz1, then we obtain (34) even without
assuming that the mapping g is Gteaux-differentiable, that is, even in a nonsmooth
case. For the generalized derivative Dg,

Lj(h) <_c Dg(x,h) V h X, Lj Og(x)

holds. This inequality obviously extends to convex combinations L Y’j ajLj,
which, together with z{ -C*, implies the inequality

-z o L(h) <_ -z o Dg(x,h) V h X.

The same argument applies to y* Cy, and hence (33) implies

(36) y* o Dr(x, h)- z o Dg(x, h)- z o Dg2(x, h) >_ 0 V h e Jo,

if g2 is Gteaux-differentiable and f and gl are generalized differentiable. If g2 is
only generalized differentiable one has the full convex combination from (33), which
seems to be typical in the nonsmooth case for control problems as well; see, e.g., [9]
(Hamiltonian multipliers). If the spaces X, Y, Z1, Z2 are finite-dimensional (even
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if X is a Banach space) Rockafellar [36], Clarke [9], and Minami [25] obtain, with
different methods, somewhat sharper necessary conditions than those of Theorem
3.5. The optimality conditions (30) and (31) are asymptotic conditions (see, e.g., [4]),
which are generally difficult to apply. Hence we will now investigate the assumptions
for (32) as well as (29), which can be understood as abstract constraint qualifications
(CQ) of a type introduced by Guignard in [12]. It will turn out that they are implied
by the classical Slater conditions but that they are more general than those. In fact,
as has been demonstrated by Bazaraa and Shetty [3] in finite-dimensional spaces,
Guignard’s CQ is the weakest among several known CQs, moreover, Guignard’s CQ
does not assume the existence of interior points of C and S0 required by Slater’s CQ
(see also Penot [28]). We will use the following lemma.

LEMMA 3.6. (a) For every convex cone I with int I the dual cone I* is
w*-locally compact (or, equivalently, has a w*-compact base).

(b) IfI* and J* are convex closed cones, I* is w*-locally compact and ifI*M-J*
{0} then the set I* + J* is w*-closed.

Proof. The statement (a) is due to Ky Fan (see, e.g., [44]). The statement (b) is
due to Dieudonn6e (see, e.g., [20] or [14, Lemma 15(d)]). []

THEOREM 3.7. Assume that int So and int C . Define Io int Jo and
11 := { h e X Dgl (x, h) e int P1 } and g := Io r 11 r J2. If the cone g satisfies
the Slater condition K and if additionally the tangential inclusion

(37) J2 C_ T(S2, x)

holds, then K satisfies Guignard’s CQ, i.e., K is a convex cone with the properties

(38) K C_ T(S,x), K* (Jo N J1 n J:)*, K* ;l + J + J.

Proof. It is standard (convexity arguments) to prove the following statements"

(39) I0 Jo, I1 J1,

(4o) K* (Jo n J n J.)* K JonJ nJ,

(41) Io n r j c_ T(S, x).

We will now deduce the equality K* J + J + J. Since

(42) J + J + J c_ K= (Jo n ,] n J,)*
_
J + J + J*,

we only have to show that the set J + J; + J is w*-closed, which will be done by
Lemma 3.6. We now observe that g implies I N-J {0} (k 0, 1) and that
I, I are w*-locally compact. Hence repeated application of (a) and (b) of Lemma
3.6 gives w*-closedness of the set (Jo N J1 n J2)*.

We remark that the Slater CQ is sometimes stated in the equivalent form

h E int So" Dgl(x, h) int K(-C, gl(x)), Dg2(x, h) O.

LEMMA 3.8. For 1, 2"
(a) Hi U { L* (P) L* adjoint of L e Ogi (x) }.
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(b) If Ogi(x) {L}, i.e., if the subdifferential consists of a single element, then
the set Hi is always convex.

Proof. The proof is immediate.
We now discuss various sufficient conditions for H1, H2 being w*-closed.
THEOREM 3.9. Let X, Z1, Z2 be Banach spaces.
(a) If H2 J { L*(P) L* adjoint of L e Og2(x) } X*, then H2 is convex

and w*-closed. If one L e Og2(x) is a closed operator (i.e., L(X) is closed)
and injective, then H2 X*, and this set is convex and w*-closed.

(b) Now let Og2(x) {n}. Then H2 is always convex and the following holds.
(i) If Z2 is finite-dimensional, then the set H2 is always w*-closed and lo-

cally w*-compact.
(ii) If L is a closed operator then H2 is w*-closed and norm-closed. More-

over, forg := { h e X
X* x*(x) 0 V x e N }. Hence, if n is injective, then H2 X*, and
otherwise H2 is a proper w*-closed subspace of X*.

(c) If Og(x) {L} and intC q}, then the set H L*(-C*) is a convex cone
with w*-compact base.

Proof. (a) Because n is injective it follows that L*(Z) X* (see, e.g., [37,
Thm. 4.12 and Corollaries]) and closedness of L is equivalent to closedness of L* in the
norm-topology and in the w*-topology (see, e.g., [37, Thm. 4.14]), hence L*(Z)
X* H2 and this last set is obviously convex and w*-closed.

(b) (i) The set H2 L*(Z) is a finite-dimensional subspace and hence w*-closed
and locally w*-compact.
(ii) This follows the same argument as in (a). The characterization of H2 fol-
lows from considering the quotient space XN :---- X/N on which L is injective
and using the fact that Xv N*; hence by closedness of L one can deduce
L*(Z) Xv N*.

(c) See [44].
The preceding theorem can be regarded as an extension of the surjectivity as-

sumption for the Frchet derivative of the equality constraints, which implies, by the
famous Ljusternik’s theorem, the tangential inclusion J2 C_ T(S2, x). For an extension
of this to Gteaux-differentiable mappings, see [29] or [21].

Apart from the Slater and Guignard CQ, there are many other CQs in the lit-
erature. Those that apply to infinite-dimensional problems will be dicussed now.
The original CQ of Guignard reads as follows. For g := (g,g2), Z :- Z Z2,
C := Cz1 (0}, J := JoNJNJ2, U := (x*
there is a closed, convex cone K0 C_ X with the properties that Ko J C_ T(S, x), and
that the sets K + J* and H are w*-closed. This CQ obviously does not assume the
existence of interior points of the sets C and So, hence the equality and the inequality
constraints can be treated together. The same holds for the CQ of Zowe and Kurcyusz
[45] and Robinson [31], which can be formulated as follows. Assume that the mappings
f and g := (gl, g2) are Frchet-differentiable and C :- Cz x {0}, Z :- Z1 x Z2.

(43) Z Dg(x, K(So, x)) K(-C, g(x)).

Zowe and Kurcyusz [45] show that this CQ implies

L(S,x) { h e X h e K(So, x), Dg(x,h) e -C } c_ T(S,x),

which means that the CQ (29) of Theorem 3.5 holds because of JoCJ1 J2 L(S,x),
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and

K := J0 g J1 N J2 := L(S,x) C_ T(S,x).

If one assumes existence of interior points of the sets Cz1
is equivalent to the following CQ (see [41]):

and So, then the CQ (43)

(44) 3 s E int So" Dg(x, s x) K(-C, g(x)), Dg(x, X) K(-C, g(x)) Z.

[41] makes use of this CQ to apply a multiplier rule of [45] to optimal control problems.
In [21] a necessary condition is proved (for Fr6chet-differentiable constraints) un-

der the following constraint qualification:

(45) h e Io gl (x) + Dgl (x, h) e int CzI Dg2(x, h) O,

(46) 0 int Dg2(x, I0), f, gl, g2 are Fr6chet-differentiable and Dg2 is surjective.

We see that by Theorems 3.7 and 3.9 these assumptions imply (29).
Now we demonstrate by an example that there are situations where the modified

Guignard CQ (or the Robinson-Zowe-Kurcyusz CQ) are advantageous because the
Slater CQ cannot be applied. This example may appear simple but in fact covers
the essential structure of more complicated examples as optimal control problems of
nonlinear partial differential equations or variational inequalities. The application of
the Karush-Kuhn-Tucker conditions derived above to problems of this type will be
the subject of a future paper.

Example 3.1 (pointwise constraints). Let X Lp (I) be the space of real functions
on the real interval I [a, b] whose pth power is integrable with respect to the
Lebesgue measure #. As is well known, the natural ordering cone

(47) c= {xX Ix(t)>_o, .e. on/}
has an empty interior for 1 <_ p < . Hence the Slater CQ cannot be applied to the
problem to minimize a given functional or mapping with respect to the constraint
set S := { x e L2(I) g(x) -x(t) <_ 0 it a.e. }. But because of the linearity of

g we can easily see that T(S,x) is a convex closed cone with T(S,x) J := { h e
X Dg(x, h) e -C } and thus J* T*. Because the mapping g is Frchet-differen-
tiable, we can verify (43) and also (29).

We now consider the constraint set

(48) S:={xeX g(x):=lx(t)l-e<_Olta.e}

defined by the nonsmooth constraint g" X L2(I) - Z L2(I) where e > 0 is a

given real number. At first we determine Dg(x, h). Since g is convex it is sufficient
to compute the directional derivative. We find

f h(t)sgn(x(t)), t e I’x(t) O,Dg(x(t) ,h(t)) ih(t)l t e Z x(t) O.

This derivative is sublinear in h but not linear if x 0 on a subset of I of positive
measure. We will now show

(5o) J:={heX L(h) e K(-C,g(x)) V L e Og(x) } T(S,x).
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We will show that this identity even holds for every x E S. Because C is normal,
from Theorem 2.5 it follows that J- { h e X Dg(x,h) e g(-C,g(x)) } { h e
Z Ig(x)+ Dg(x,h) e -C }, where the last identity follows from g(-C,g(x))
U>oA(-C- g(x)). The inclusion T(S,x) C_ J is easy to see, hence we show the
inverse. Let h J be given, i.e., g(x) + Dg(x, h) <_ 0 it almost everywhere. Then we
have (neglecting sets with measure zero)

(51) Ix(t)l -e + h(t)sgn(x(t)) <_ O, t e M := { t e I x(t) 7 0 },
-e + lh(t)l <_ O, t e N := { t e I x(t) O }.

We now construct a sequence {h,}ne C_ X converging to h and a sequence {An}ne
of positive real numbers with the properties An 0, with x + A,h S, i.e., Ix +
Ahnl- <_ O. This last statement then implies h T(S,x). Define for n _> 1 the sets
M :: {t M llx(t)l e}, M2 := {t M llx(t)[ < e}, B := {t M llh(t)l < n},
Mn :: MI[ Bn, M2n :-- M2CI {t e M I (t)l _< }. Obviously we have
M M U Me. The indicator function of a subset Io c_ I is denoted by (I)(Io), i.e.,
O(Io)(t) 1 if t e Io and O(Io)(t) 0 if t e/i \ Io. Then we define

h(t) h(t)(O(N)(t) + O(Ml)(t) + O(M2n)(t)), An :=min 1,-n2
Since O(Mn) -- O(M1) and O(Mn2) --* (I)(M2) pointwise and, by Lebesgue’s

theorem of dominated convergence, in L2(I) as well, we can deduce hn h in X
L2(I). Moreover, we have A, 0+. Now it remains to show that (neglecting sets of
measure 0)

(53) Ix(t) + Anhn(t)l <_ e V t I,n >_ l.

For t e I \ (N U M U Mn2) we have hn (t) 0; hence (53) holds since Ixl _< e.

For t N we have x(t) 0 and the inequality (52) implies Ix(t)+ Ah(t)l

For t Mn we deduce with Ix(t)l e from (51) that 0 >_ Ix(t)l-e+sgn(x(t))h(t)
sgn(x(t))h(t). This implies sgn(x(t)) -sgn(h(t)) for t E Mn C_ M and hence, by
Ih(t)l <_ n, An <_ e/(2n2), we deduce Ix(t)+ Anh(t)l esgn(x)- Anlhnlsgn(x)

Finally for t Mn2 we conclude that Ix(t)+ Anh(t)l <_ Ix(t)l + Anlh(t)l <_
e- e/(2n)+ ne/(2n2) e. Hence we have shown that x(t)+ Anhn S, which implies
heT(S,x).
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DUAL METHODS IN ENTROPY MAXIMIZATION. APPLICATION TO
SOME PROBLEMS IN CRYSTALLOGRAPHY*
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Abstract. This paper is devoted to some infinite-dimensional optimization problems with finitely many
constraints. These deal with entropy maximization, and this paper is particularly concerned with those
originating from Fourier analysis.

These problems have a structure that makes them amenable to dual methods, for theoretical as well as
numerical solutions. Existence results are recalled, and the use of duality to construct suitable and efficient
optimization algorithms is demonstrated. Finally, the so-called phase-problem of crystallographers, which
is of crucial importance in biology and pharmacology, is studied. Although it is a nonconvex optimization
problem, a solution algorithm also based on duality is proposed and some numerical illustrations are given.

Key words, entropy maximization, image reconstruction, applications, large-scale problems, duality,
decomposition
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1. Introduction. This paper deals with problems of the following general type:

(1.1) {’inf H(p) pB,
e,(p) =0 nN,

where B is a Banach space, H is a convex function on B, each constraint en is a smooth
function from B to JR, and N is a finite set of INI indices; we will denote by N the
set of real IN[-tuples whose coordinates are indexed in N.

Most of our analysis will concern the linearly constrained case. With a particular
application in mind, however (the so-called phase problem in X-ray crystallography
[18], [20]), we will also consider a class of problems where the constraints e, are
quadratic functions. In the specific case that we consider, B is Ll(fl), where f is a
bounded open set in a (in most applications, d 3), and the objective function has
the form

(1.2) H(p) := fa h[p(r)] dr

where h is a strictly convex function of a single real variable.
Fhe aim of this paper is mainly: (i) to study briefly the existence and characteriz-

ation of a solution (using earlier works of Rockafellar [30], [31]; Ekeland and Temam
[11]; Ben Tal, Borwein, and Teboulle [1], [2]; and Borwein and Lewis [4], [5]); (ii)
to introduce a very interesting class of problems in crystallography dealing with entropy
optimization and Fourier analysis; and above all (iii) to demonstrate some numerical
solution schemes of (1.1), (1.2), based on duality (a technique that we think is generally
overlooked in the mathematical programming community, although it goes back at
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least to [33]; see also [13]). The new material in this paper is limited to 4 and 5,
devoted to (ii); the other sections should be considered as advertisement.

We find it convenient to view h in (1.2) as an extended-valued function (see [32]
for a general introduction to extended calculus). This means that, the convex function
h being defined a priori on a convex set dom h c , we extend h outside its domain
by setting

h(t):=+ fortdomh.

Thus, we obtain a function defined on the whole , with values in ]-, +]; dom h
is the set of such that h(t)< +. Since dom h is convex in , there are two numbers
m and M, with -o =< m < M -<_ +, such that

h(t)<+ for ]m, M[,

h(t)=+ fort[m,M].

As for the boundary values, we will assume that h is continuous on its domain: there
holds

h(m)--lim h(t), h(M)-- lim h(t),
/ M

knowing that each of the above limits can be infinite. This assumption simply means
that h is lower semicontinuous (on ), or "closed," in the terminology of [32]. Naturally,
lower semicontinuity is essential for the existence of a minimum.

Here are various examples of possible objective functions:

h(t):=1/2t2 (m =-o, M +; hl(m)=h(M)=+o),(1.3)

(1.4) h2(t) := exp (m -c, M +; h2(m) 0, h2(M) +0),

-Log for t>0
(1.5) h3(t) +o for =< 0,

Log for t>0
(1.6) h4(t) +c for < 0,

(m 0, M +; h3(rn) +, h3(M) -),

(rn 0, M +c; h4(m) 0; h4(M) +),

-(27r) 1/2 exp (-82/2) for ]0, 1[,
(1.7) hs(t) :=

+ for ]0, 1[,

with s defined by t=(27r)-1/2ISexp(-u2/2)du. Here, m=0, M=I, hs(m)=
hs(M) =0.

For pedagogical purposes, we also mention (although it is not of great practical
interest)

(1.8) h6(t) := / 1/2t2 for 1,
+ for Itl> 1.

The difference between (1.7) and (1.8) is essentially that h5 (respectively, h6) has infinite
(respectively, finite) slopes at m and M.

Actually, h2 and h will be ruled out from our development: they do not increase
at infinity and, in this case, little can be said about the existence of an optimum in
(1.1), (1.2). We do need h to be coercive, i.e.,

(1.9)
h(t)
]t--V--+ when ]tl- o,
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an assumption that will be in force throughout our paper. Beware that (1.9) is not the
definition of coercivity used in, for example, 11]: it is essential that h tend to infinity
faster than a linear function.

Remark 1.1. The rationale for (1.1), with H given by (1.2), can be explained as
follows: the constraints represent measurements, which provide partial information
concerning the unknown function p from 12 to . On the other hand, one knows for
sure that p(r) (for almost all r12) must lie between m and M. Then, one seeks a p
which is "best" among those functions satisfying the given properties. The wording
"best" is made precise by the exact form of h between m and M; -H is usually called
an entropy. Observe in passing that strict convexity is a natural property of h: its role
is to select a unique convenient p satisfying the constraints.

We refer to [23] for the definition of various entropies, in particular (1.7), based
on statistical considerations. The idea is to introduce an optimal probability measurem
in the sense of [19]; see also [7]mon the set of all admissible functions; then, our
unknown p is defined as the averaged admissible function, in the sense of this optimal
measure. Changing the set of admissible functions changes h.

Linear constraints, now, are most generally defined by

(1.10) c,(p) := Iaf,(r)p(r) dr-z,,

where each f, is in L(12) and z, .
A first example of such possible constraints is fn :=X(12.), the characteristic

function of some open set 12,, i.e.,

(1.11) f,(r)=l ifr12,; f,(r)=0

Here, {12,: n N}c f. The nth constraint is therefore

dr

which is encountered in various problems of image reconstruction, tomography, etc.
[15], [16].

Another type of constraint consists of fixing some Fourier coefficients of p,
considered as the restriction to 12 (the mesh) of a periodic function on a. Then, with
12 := ]0, 27r[d, C, is actually complex-valued:

(1.12) f,(r) := exp (in. r),

where n is a d-tuple of d integers in d, N is a finite subset of ta, and
n r := nr + n2r2 + + nard

is the usual dot-product on a (note the change of notation: z, of (1.10) is now a
complex number, or a couple of real numbers). It is generally the case that 0 N,
which fixes the mean value of p on 12. This kind of constraint is encountered in
crystallography, where p represents the electronic density of a given crystal.

To sum up, the problem of interest to us in this paper is essentially

(1.13) Iinffh[p(r)]dr=:H(p),pL(),
(1.14) [ff(r)p(r)dr=z,nN
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(except in 4 and 5, dealing with special nonlinear constraints). The following
assumptions will hold throughout.

ASSUMPTIONS 1.2 (standing assumptions).
12 is a bounded set in a;
h is a closed (i.e., lower semicontinuous or 1.s.c.) strictly convex and coercive

function of the real variable;
N is a finite set, and the given functions f, are in L().

2. Theoretical background--existence and characterization of a solution. Duality
will play an essential role in our development, for theoretical as well as practical
purposes. A useful tool for this is the concept of conjugacy: we denote by

(2.1) k(s) := sup {st h(t): N}

the so-called conjugate function of hmusually denoted h*mand we recall that k is a
1.s.c. convex function (because it is a sup of linear continuous functions). Since h is
evidently minorized by some affine function:

(2.2) h(t) >= a + bt for some a, b, and all in ,
k is not identically +oo (k(b)<=-a !). In fact, coercivity of h implies that the domain
dom k of k is the whole . For an illustration, apply (2.1) to examples (1.3)-(1.8):
direct calculations give the maximal (when it exists) for given s, and we obtain

(2.3) kl(S __1 2
S
s Log s-s

(2.4) kz(s) 0

for s > O,
for s =0,
for s<0

(the domain of k2 is now [0, +oo[: st; e’ has no supremum if s < 0)

-1- Log (-s) fors<0,
(2.5) k3(s) +oo for s-> 0,

(2.6) k4(s) :exp (s- 1),

(2.7) ks(s) (2)-’/2 s exp (-u/2) du +exp (-s/2)

1/2s 2 for Isl_-< 1,
(2,8) k6(s) tl l-- for 1.

It is a consequence of coercivity that (2.1) has a solution for all s, but strict
convexity of h implies also that this solution t(s) is unique, and is indeed the derivative
of k:

(2.9) k’(s)=t(s).

In a word, our standing assumptions, Assumptions 1.2, imply that k is a continuously
ditterentiable convex function on . It results directly from (2.1) and (2.9) that

(2.10) sk’(s)-h[k’(s)]=k(s)>=st-h(t) for all s and t.

Remark 2.1. All these classical properties are fairly well illustrated by (2.3)-(2.8).
The function k is not so important per se; in fact, the important thing is the mapping
s- t(s) in (2.1), sometimes called the Legendre transform, which is well defined thanks
to strict convexity of h. Its crucial property is that it is continuous, and can be expressed
as the derivative of a smooth convex function, namely k.
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The existence and value (2.9) of k’(s) comes from [8]. Observe the "miracle": k’
is just the partial derivative of the maximand in (2.1) (and yet, t(s) does depend on
s!). The following formal calculation will help us understand it: plug the value t(s)
in (2.1) and differentiate with respect to s, thus obtaining

k’(s) t(s) + st’(s) h’[ t(s)]t’(s);

then realize that s-h’[t(s)]=O because t(s) solves (2.1). The aim of our notation s
is to suggest that the argument of k is nothing but a slope of h. Likewise, (2.9) indicates
that is a slope of k. Indeed, the conjugacy operation applied to the convex function
k gives back h.

We leave it as an exercise to compute the conjugate function of, say, h(t) := 1/2t2
to realize that ditterentiability of h has nothing to do with smoothness of k or t(. ).

Naturally, just as H is obtained by integrating h, we can define the convex function

(2.11) K(q) := J-a k[q(r)] dr,

which, because dora k N, is finite for all q 6 L(I).
These preliminaries place us in a position to prove existence for (1.13), (1.14).

We note first that the condition p dora H is implicit in our formulation, and can be
interpreted as additional (inequality) constraints. Then, a necessary condition for
existence is of course nonemptiness of the feasible domain, i.e.,

(2.12) there exists/ 6 LI(I)) satisfying (1.14) and such that H(fi)<
THEOREM 2.2. Under the standing assumptions, Assumptions 1.2:
(i) In (1.13), the function H Ll(l)--]-oe, +oo] is convex and l.s.c, for the weak

topology.
(ii) For any function f6 Loo(), the sublevel-sets

(2.13) {p L,()" H(p)+ff(r)p(r)dr<-_c,}
are weakly compact.

(iii) If (2.12) holds, then (1.13), (1.14) has a unique optimal solution.
Proof In the terminology of [30], the h of (1.13), which does not depend explicitly

on r, is a (particularly simple) normal convex integrand. In particular, if we take
po(r) to and qo(r) So with toe dom h and So arbitrary, then H(po) < +oe and K(qo) <
+oo. With these observations, [29, Thm. 1] ensures that H is a well-defined convex
function; from [29, Thm. 2], it is even a conjugate function (of K), hence 1.s.c.; (i) is
classical (see, for example, [11, Chap. I, Cor. 2.2]).

Now, coercivity of h is just finiteness of k(s) for all s, so (ii) is [30, Cor. 2B].
Then, the proof of (iii) is classical: if {p} is a feasible minimizing sequence, (ii) ensures
that it has a weak cluster-point p*. Clearly, p* is feasible (and would be so even if N
were infinite) and from (i),

H(p*) -<lim inf H(pj),
in which the right-hand side is just lim H(p), the optimal value of (1.13), (1.14). As
for uniqueness, it trivially results from strict convexity of h, hence of H.

Remark 2.3. Examples are known of optimization problems in L1 whose objective
function is merely increasing at infinity, and whose optimal "solutions" contain Dirac
measures; see [3]. In these problems, a minimizing sequence is bounded (in L1) but
this does not suffice to imply the existence of a cluster-point (the bounded sets of
L() are not compact, even for the weak topology: L is not reflexive).
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Indeed, coercivity of h is the key to (ii), which in turn is essential for (iii). The
convex analysis setting of [31], used to prove (ii), somehow hides this point. We will
see in 4 a proof based on functional analysis, applied to a problem with nonlinear
(hence nonconvex) constraints.

We now turn to duality: taking the Lagrange function

(2.14) L(P’h)::fa{h[p(r)]- ,1 h,f,(r)p(r)}dr+,
the fundamental question is whether there is h* u such that L(., h*) is stationary
at the solution p*. Being convex, the function p- L is stationary when it is minimal,
so we consider the dual function defined by

(2.15) D(h) := inf {L(p, h): p L(I))}.

Observe the usefulness of Theorem 2.2(ii) (which results from coercivity of h): it
implies that the above infimum in (2.15) is attained, just as in Theorem 2.2(iii). The
next result, also classical, will show that the minimizing p is simply obtained by
minimizing pointwise the integrand in (2.14). Then the role of (2.1) pops up, exhibiting
a key function of r, which we denote h TF L(f), and whose value at r f is

(2.16) h TF(r) := E
nN

(F denoting the vector (f,),N, the above function is really the dot-product of
with F(r) u).

PROPOSITION 2.4. For each h , L has a unique minimizer px, which is actually
in L(fl). The value ofph at r [2 is

(2.17) ph(r) k’[hrF(r)].

The dual function (2.15) is given by

(2.18) D(A) , rz- K(ArF) =,rz- I. k[, rF(r)] dr.

It is concave, continuously differentiable, and its partial derivatives are

(2.19)
OD(,)
Oh,

z,- p(r)f(r) dr, n N.

Proof The profound reason is that K and H are conjugate to each other; see
[30] again. However, the stated result is essential for numerics; we therefore give a
self-contained proof, by showing a posteriori that (2.17) minimizes L.

First, observe that

because , TF L(Y) and k’ is continuous. Now take an arbitrary function p L(fl)
and apply (2.10) with s= hTF(r) and t=p(r):

, ’F(r)p (r) h[ p, (r)] k[, TF(r)] _--> , TF(r)p(r) h[ p(r)]

almost everywhere on f. Changing signs, integrating, and adding z gives

L(P,h)=-Ia k[hrF(r)] dr+hrz<-_L(p,h).
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This shows that D(h)= L(p, h), which is exactly (2.18). Finally, the integrand
in (2.18) is differentiable with respect to , for almost every r; its derivatives are bounded
for bounded . We can therefore differentiate under the integral (see, for example,
Theorem 13.8.6 of [10]) to obtain the derivatives (2.19). [3

Remark 2.5. Thus, unlike (1.13), (1.14), the optimization problem in (2.15) is
easy: it has the explicit solution (2.17). This comes from decomposability of H (and
of the constraints); the whole interest of the dual approach lies precisely here.

The differentiability of D is just what can be expected when one accepts (2.9):
OD/OA,, is nothing but OL/OA,,, the partial derivative of L with respect to h. Once again,
this is the "miracle" of [8]; see also [17] for a simple proof of it.

As already said, the constraint H(p)< +o is implicit in the formulation (1.13),
(1.14); it implies the constraints

m _-< p(r) _-< M for almost every r l-l,

which, in our infinite-dimensional situation, do not define a polyhedron. Hence, some
qualification condition is needed and we make the Slater-type assumption:

(2.20) there is/ in (2.12) with m </(r) < M for almost every r e .
Then, the existence of Lagrange multipliers relies on the following technical result,

essentially due to [1], [2], [4], and [5], with a slight extension of Borwein.
LEMMA 2.6. If (2.20) holds, the dual function D of (2.18) has a maximum.

Proof We use [5], in particular its Theorem 2.4 (where X is LI(gl), f is H, A and
b symbolize the constraints (1.10), and P is {0}eN). For this, we prove that the/
of (2.20) is in the quasi-relative interior (qri) of dom H f3 C, with

C := {p LI(): m <-p(r) <= M a.e.}.

First, observe that

{p L(I): m < ess infp _-< ess sup p < M} c dom H,

so that dom H is dense in C. Now, we consider three cases.
(i) M -m +. Then observe that Lo(l) c dom H, hence the closure of dom H

is the whole L(I). Apply [5, Lemma 2.3] with dom H C c C2 L(l)): qri dom
H =dom H /.

(ii) In the case where either m or M but not both, is infinite, the result just follows
from [5, Cor. 2.6] (by translation and/or symmetry, the case m 0 or M 0 generalizes
to arbitrary m or M in a straightforward way).

(iii) Now let m and M be finite. We just observed that we may assume m =0,
and of course M > 0. Then define

F:= {(u, v) [L()]2: u>_-0, v->0, u+v= M a.e.}.

According to [4, Cor. 3.16], together with [4, Ex. 3.11(i)],

qri F {(u, v)F: u>0, v> 0 a.e.}.

Now define the linear continuous operator A that, to (u, v) [LI()]2, associates
A(u, v) u L(). Observe that

AF= {pc L(I): 0_-<p =< M a.e.} C.

Clearly,/ of (2.20) is in A(qri F), hence in qri (AF) by virtue of [4, Prop. 2.22].
Finally, since dom H is dense in C AF, the rest follows as in (i): with the

help of [5, Lemma 2.3] (used with C2=AF), we prove that /qri(domH)=
qri (dom H (3 C). ]
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THEOREM 2.7. With the standing assumptions, Assumptions 1.2, let A be any
maximizer of D. The corresponding p of (2.17) is the solution of (1.13), (1.14), whose
optimal value is just D(A).

Proof. Expressing in (2.19) that VD(A)=0 gives

zn n N,dr= for all

i.e., p is feasible. Also, D(A) L(p, A) H(p). For any other feasible p, there holds

n(p) L(p, A) _-> D(A) L(p, A) n(p).

We purposely give the optimality condition in a rather unusual form (usually, one
establishes that the solution p* of (1.1) is the p-part of a saddle point of L). In fact,
our statement of Theorem 2.7 is inspired by the suitable methods to maximize (2.18):
they will of course be based on some gradient-type algorithm.

A key to this approach is the strict convexity of h, which implies uniqueness of
p. In the language of Wolfe’s duality [34], the condition VpL(p, A)= 0 can be used
to eliminate the primal variable from Wolfe’s dual problem. If h were merely convex
(as for the example in linear programming), a dual solution A* would not readily
furnish a primal solution: a selection among the minimizers of L(., A*) should be
needed. This selection would be automatically performed by special maximization
methods, say, bundle methods (see [21], [29]), which incidentally would be made
necessary because D is differentiable only thanks to strict convexity of L(., A).

Remark 2.8. Note a curious consequence of Theorem 2.7: up to the nonlinear
but continuous mapping k’, the primal solution is a linear combination of the finitely
many constraint functions fn. As such, it has the same smoothness: for example,
p* C(f) in the case of the Fourier constraints (1.12); or p* is a step-function for
constraints such as (1.11).

Primal-dual existence is studied much more deeply in ], [2], [4], [5]. It is shown,
in particular, that coercivity of h is not needed to prove Lemma 2.6. Along this line,
we mention the following instructive counterexample, which can be found in [24].

With 2 := ]-Tr, +r[ (the counterexample would not work with d <= 2), consider
the following problem (1.12)-(1.14): take the (noncoercive) entropy of (1.5) and the
four Fourier constraints

I’(2.21) p(rl, r2, r3) dr dr2 dr3-- 1,

I’(2.22) p(rl, r2, r3) COS r dr dr2 dr z, n 1, 2, 3,

with given z [0, 1[. It can be proved that the feasibility assumption (2.20) holds. For
this, start from the function

1/ce ifr]0, O[
p,(r) :=

0 otherwise.

It satisfies (2.21), and (2.22) is satisfied if a solves the equation

sin a
-z,

which has one solution in ]0, zr] if 0_<-z<l. Then apply [5, Thm. 2.9]: there is e>0
such that p can be modified to take its values in [e, +c[.
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Now, the dual function D of (2.18) is (up to a constant)

D(Ao, A1, A2, A3)

Ao+Z A+ Log -Ao- A. cosr. dr
n=l n=l

ifAo+ Ancosrn<0 a.e. in12,
n=l- otherwise.

By virtue of [2, Thm. 2.1] or [5, Thm. 2.4], it has a maximum and, by symmetry, it
has a maximum for 1 2 3. Restricting our study to this case, we set := Al/Ao
and write the above dual constraint

and ho<0,

while the function p, of (2.17) becomes -P(, r)/ho, with the positive function

[ ]-P(,r):= 1+/ cosrn
n=l

(2.23)

(2.24)

Feasibility in (2.21), (2.22) is"

Io(k) := fn P(/, r) dr=-Ao,

I1() := f cos r P(/, r) dr =-ZAo ZIo(l)

(knowing that (2.24) stands for three equations, which are identical). That is, the
equation

II(k)
R(/x) := -z

Io(/X)

must have some solution in [-3, +], and then Ao is given by (2.23). We claim that
this is not possible, at least not for all values of z ]0, 1[.

The crucial point is that lo and 11 are convergent integrals (for +). At/ -3,

for example, develop each cos rn near the singularity rn 0 and use polar coordinates:
P diverges at the speed p-2, which is balanced by the element of volume
2p cos 0dp dOdq (note" d >2 is essential). We can even say more" for r in some

neighbourhood B of (0, 0, 0), the coefficient of in P(/, r) is positive; hence P(, =<
P(-3," ) L1(B). We deduce by Lebesgue’s Theorem [10] that Io(/) is continuous at

+3. The same argument applies to 11 (cut B in two parts).
Then R is a continuous function on [-3, +3], and it is clear enough that ]R(/x) < 1

for all [-3, +]; it has a maximum, say, < 1. Conclusion" if z is close enough to
1, a dual solution is of no help to recover a primal solution" the corresponding p of
(2.17) is a nice function of LI(I)), but not even feasible in the primal problem. In
summary, Theorem 2.7 can fail in the absence of coercivity.

3. Linear constraints: Computing a solution. The way to solve (1.13), (1.14) is
clearly indicated by the results of 2. One can maximize D to obtain a solution A*;
then, it suffices to compute the primal solution as in Theorem 2.7. This technique is
by no means new, and goes back at least to [33]; see also [8].
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Thus, we are in a fairly favourable situation: the dual problem is set in R N, the
space of constraint values, much simpler than the primal space; furthermore, it has
no constraints, the objective function (to be maximized) is concave, and its gradient
is made available by (2.19). On the other hand, a restrictive aspect is that (2.20) must
hold, in addition to the necessary assumption (2.12).

Generally speaking, the dual algorithm will work as follows.

ALGORITHM 3.1. Choose an initial AR; set j =0.
Step 1. Compute p :=p of (2.17) and the corresponding constraint and L-values.
Step 2. Stop if A is approximately dual-optimal, i.e., if p is approximately feasible.
Step 3. With the help of some gradient-type optimization algorithm, select a new
aimed at increasing D; increase j by 1 and loop to Step 1.

A discretization of L(I)) is necessary in Step 1 to compute the various integrals
defining the problem. These relatively easy computations are under the responsibility
of the user who needs to solve (1.13), (1.14). As for Step 3, the algorithm designer will
often be faced with rather big sets N, say, ]N]-- 104; in such cases, it is appropriate
to use conjugate gradient methods, or limited-memory variable metric methods [6], [25].

Remark 3.2. With D just continuously differentiable, convergence can be proved
for a method of the steepest descent-type only. For more sophisticated methods, one
needs additional smoothness of D, i.e., of k, which in turn requires more than strict
convexity of h. To prove convergence of, say, BFGS when VD is Lipschitz continuous,
use the lemma in 3 of [26] in conjunction with [27].

We note the expression of the second derivatives of D, i.e., the Jacobian of the
vector (2.19):

02D(A fa k"[-O-,-O-A- A rF(r)]f,(r)f,,,(r) dr,

which makes it possible to use second-order methods, at least formally. Needless to
say, second differentiability of D requires additional properties of h.

We have to check that this dual technique does solve our primal problem. This
property does not follow from Theorem 2.7: the fact that 7D(U)-0, i.e., that p is
asymptotically feasible (assuming that tends to a dual solution), does not imply
that p tends to a primal solution.

PROPOSITION 3.3. The function A-pa is continuous from N to L().
Proof Let II/lll be the 1-norm of A eNr and set IlFlloo: max {llf, IIoo: n N}. The

majoration

(3.1)

is easy to obtain. Now, suppose A- A*, which, by (3.1), implies

IIAF- A*FII- 0.

Also, the convergent A is bounded and (3.1) again implies that the two functions A rF
and A*rF vary in some fixed interval I-A, +A], on which the continuous function k’
is uniformly continuous. This allows us to deduce

k’(A rF)- k’(A* rF) [l - 0. [-1

Thus, in Algorithm 3.1, the convergence of p to the primal solution just depends
on the convergence of A to a dual solution. As far as numerical algorithms are



DUAL METHODS IN ENTROPY AND CRYSTALLOGRAPHY 183

concerned, such a convergence can be forced rather easily, with the help ofline-searches
or similar stabilizing techniques. By contrast, if the A-problem is viewed as a mere
system of equations

(3.2) fa k’[A TF(r)]fn(r) dr= z,,, n N

expressing the fact that pa must be feasible (see [12]), then stability may be harder to
obtain. It is very helpful to interpret (3.2) as the dual optimality condition VD 0, in
which the concave function D must be maximized.

With any reasonable algorithm, {M} will be automatically bounded if D is sup-
compact. This latter property, however, does not trivially hold, in particular because
A- ArF may be rank-deficient; so the sequence {M} might diverge if one is not careful
enough in Algorithm 3.1, especially with a Newton method. Indeed, consider the
subspace

(3.3) Z := { " Zlp Ll(f) with faf(r)p(r) dr , n N}
which is nothing but the range of the linear operator L(f)--Nu mapping p onto the
constraint values in (1.14). A necessary condition for existence is, of course, z Z (not
even mentioning that the p in (3.3) must also have p(r) [m, M] for almost every r f).

PROPOSITION 3.4. Denote by

Z+/-:= {/x : tzr=OforallZ}
the orthogonal complement of Z. For all A there holds

(3.4) ’q/x Z- D(A +/z) D(A) +/xrz.
It follows that, if z

_
Z, then sup D +. If z Z, then the set (possibly empty) of

maximizers of D over is just ^ *+Z-, where ^ * is the set (possibly empty) of
solutions of
(3.5) sup {D(A): A Z}.

Proof Observe that L is affine in A" for all p e L(f), A and/x in ,
L(p,A+l)=L(p,A)+tz[z-fafn(r)p(r dr].

By definition, the integral in the bracket is in Z, so (3.4) is established (p+,=p,
indeed). If z Z, i.e., z has a nonzero projection z’ onto Z+/-, take/x az’ with a -+to exhibit unboundedness of D. If z Z, then /xz =0 and the rest follows without
difficulty. [3

Accordingly, (3.5) is the relevant dual problem to solve: each A in Algorithm 3.1
should actually be projected onto Z. Our next result shows how to do it.

PROPOSiTiON 3.5. We have

Z+/-={AeNn" nhf(r)=Oa.e.}={AEr’qA=O}
where d RN 1 is defined by

fnm := I,f,(r)fr,(r) dr.
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Proof. Apply the definitions:

AZ-C:>ATz=O for all zZ,

::, *, faf.(r)p(r) dr=O
=> p(r) 2 A,f(r) dr=O

which means that ArF=0 L(a), so IIFIl-0:

A,f r) dr= ,k rcDh =0.

for all p L(f),

for all p L(f),

Finally, observe that hrh=O (if and) only if h=O, because is symmetric
semipositive definite.

In many applications, Z =u, which means that Z-= {0}, i.e., the functions f,
are linearly independent. This is the case, for example, with the Fourier problem (1.12)
( (2r)aI). On the other hand, this property is unlikely with image reconstruction
of the type (1.11): in these applications, the subsets , usually have a high overlap.

The above difficulty concerning boundedness of h is purely numerical. A more
fundamental one is that (2.20), or at least (2.12), may not hold, even in real-life
situations: it may even be that z Z because of measurement errors. In this case, one
is bound to replace (1.13), (1.14) by a penalized problem

(3.6) inf h[p(r)] dr +--4 Y p(r)f,(r) dr-z,

(T plays the role of a temperature; it is supposedly small). Although this is an
unconstrained problem, we are somehow back in the situation (1.13), (1.14), with an
optimization problem in L() instead of Nu. Quite nicely, however, all the simplicity
of the dual approach is still fully alive. To see it, observe that (3.6) is clearly equivalent
to the apparently more complicated (1" is the Euclidean norm in RN)

inf H(p)+---fT 1[2’ p L,(Y), "
(r)p(r) dr z, ,, n N,

1 .LW(p, , A)-- L(p, h)+- [’1:+ h

whose Lagrangian is

(3.7)

Needless to say, (3.7) can be minimized separately with respect to p and ’; the
p-part is not affected by T: we again obtain pa of (2.17). Finally, the new dual function

(3.8) DT(A) := min {LT(p, , ): p L,()), sr NN}=

has a unique maximum hT if T is positive.
In other words, the only (beneficial) affect of passing from (1.13), (1.14) to (3.6)

is to simplify the dual problem: it has a (unique) solution without additional hypothesis,
in particular, without (2.12), and it is better conditioned: penalization in the primal
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corresponds to regularization in the dual. As a result, (3.6) is totally "safe" and all
our development can be reproduced with T> 0. We summarize the important results.

THEOREM 3.6. Under the standing assumptions, Assumptions 1.2:
(i) The first derivatives ofDr are

OD(A)
z.- p,(r)f.(r) dr-

(ii) If T> O, the penalized function of (3.6) has a unique minimum p T and its
minimal value H p r) is just Dr A r ).

(iii) When A-> A T, p-. p r in Loo(tl).
(iv) Thus, p r can be computed by some gradient-type maximization method applied

to Dr

Just as in Remark 3.2, the second derivatives of DT, when they exist, are

0Dr(A)--- k"[A rF(r)]f.(r)fm(r) dr-
0A,0A,, J

Remark 3.7. An interesting by-product of the above development is the following"
suppose that one insists on solving (3.6) explicitly (instead of simply maximizing Dr).
Then the optimal pr has a priori the form (2.17)" it is not necessary to search the
solution in the whole L(t)), but only among those functions of the form (2.17). This
allows a parameterized penalty technique" (3.6) is equivalent to minimizing with respect
to A

(3.9) pr:= H[k,(ArF)]+._ f,,(r)k’[ArF(r)] dr-z,

which depends only on NI parameters. This remark, which is apparently useless (after
all, D r is much nicer than pr), will have its importance in the next section. Finally,
observe that the optimality conditions for Dr are

z, j’ p;,(r)f,(r) dr TA,, n N.

They are also the optimality conditions for p T, since minimizing pr is maximizing
D.

We conclude this section with an example illustrating the role of the entropy:
with d 1 and tl ]0, 1[ discretized in 256 points, Fig. l(a) represents a function p
to be reconstructed (note the 11 peaks, and note that 0_-< p =< 1). Suppose that we just
measure the mean value of p, together with its Fourier coefficients 1, 2,. ., 11. Then
we impose the constraints (1.12), (1.14) with n=0, 1,..., 11. Naturally, computing
the true p is a highly underdetermined problem; if, for example, we complete the
Fourier series by 0 (setting z, 0, n > 11) and compute the resulting inverse Fourier
transform, we obtain a very bad reconstruction, given in Fig. 1 (b). In order to account
for additional information, the idea is therefore to introduce some entropy and to
solve (1.12)-(1.14) (compare Remark 1.1). This results in maximizing the dual function
(3.8), which poses no particular difficulty; it is a concave smooth function of + 2 11
23 real variables. Figure l(c) gives the reconstruction obtained with (1.6)" only 10
peaks are obtained, and the upper bound p =< 1 is not respected. An excellent reconstruc-
tion (Fig. l(d)) is obtained with the help of an entropy resembling (1.7), except that
h(0) h(1)= +oo; it is defined by

1 1
(3.10) 2k’(s) 1 -’--+ths 1/2s’ k’(0) 1/2.
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p(r)

(a) The true function, l

0 i=

p(r)
(b) Reconstruction from truncated Fourier series.

0.3

_
,

-0.1

p(r)

(c) Reconstruction with

[11 classical entropy.

p(r)

-j (d) Reconstruction with

], the new entropy. /

FIG. An illustrative example.

Remark 3.8. Just as with (1.7), (2.7), the entropy associated with (3.10) is obtained
from statistical considerations (see [23] again). The difference is essentially the
behaviour of k’ at infinity: here, k’(s) converges to its limit with the speed 1Is (instead
of exp (-s2/2) for k). It is interesting to observe that, when using such an approach,
it is not h that comes out directly, but rather k’. Here, a primitive of (3.10) and the
fundamental formulae (2.9), (2.10) give the corresponding entropy

1/2s
(3.11) h(t) :=th 1/2s+ Lg sh ls’
where s is defined by k’(s) of (3.10).
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4. A nonlinearly constrained problem. The example above has illustrated the recon-
struction of a function from its truncated Fourier series {Zn}nN. An important case is
when only some of these zn are fully known, while the phases (in the sense of complex
numbers) of the others are unknown. The physical origin of these problems is to locate
the atoms of a given crystal: p(r) is then the electron density at r 6 c 3, the moduli
of its Fourier coefficients being measured (up to some finite resolution) via X-ray
diffraction. Interesting crystals are of organic nature, in which case the number of
atoms per mesh is huge" 10 for a protein, 106 for a virus.

More precisely, our optimization problem (1.1) becomes

inf f h[p(r)] dr,

(4.1) cos (n. r)p(r) dr= xn; sin (n. r)p(r) dr= y, n No

cos(n.r)p(r)dr + sin(n.r)p(r)dr m, n M.

Here, No and M form a partition of N; No is the set of fully known Fourier coefficients
z (x, y), M the set with unknown phases (note: 0 No, which fixes the mean value

xo of the density p; consistent data have yo=0; in extreme cases, No {0}, i.e., no
phase is known at all). The given moduli m, n M, are of course positive (otherwise,
the corresponding index would be in No!). As for h, it may, for example, have the
form (1.6) (which automatically ensures p_->0), or (1.7) or (3.11) (from which also
follows p -< 1).

We introduce a simplifying notation, based on complex calculus: we condense
each pair of linear constraints into one single, complex-valued constraint, and we
denote by Fn(p) the nth Fourier coefficient of p:

Fn(P) := fa einr" p(r) dr6C

(to reduce the risk of confusion, a dot "." denotes the usual product of complex
numbers, even if one ofthe numbers, like p(r), is real). Furthermore, for zn x, + i. y,
C, n 1, 2, we denote

Zl * z2 := Re (Zl z.) 1/2(z z2 + z z2) XlX2 + YlY2,

the usual Euclidean product of Zl and z2, considered as vectors in [2. Note that its
associated norm is the usual modulus of complex numbers. With these notations, (4.1)
can be written

inf H(p),

(4.2) F,(p)= z,, n No,

]F(p)]=m,, neM.

THEOREM 4.1. Under the standing assumptions, Assumptions 1.2, there exists an

optimal solution to (4.1) whenever its constraints are consistent.

Proof Consider a sublevel-set

(4.3) {p L(): H(p) <= }.
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Convexity and coercivity imply that h is bounded below, say, by C. Then, for p in the
set (4.3) and fl’c fl, we have

-< a C meas fl\fl’
_-< a + [CI meas fl =: C’.

On the other hand, let e > 0 be arbitrary. We know from coercivity that there exists
T > 0 such that

Itl<--h(t) forltl_->t.

Thus, setting fl’={rfl: ]p(r)[_-> i}, we put t=p(r) and deduce by integration over
fl’ that

Ip(r)l dr<-- hip(r)] dr<-_ e.

This is the so-called equi-integrability, which, together with the weak lower
semicontinuity of the convex H, is equivalent to the weak compactness of the set (4.3);
see [11, Chap. VIII, Thm. 1.3]. Then the end of the proof is standard" exploiting the
weak continuity of the constraint functions of (4.1), we see that any weak cluster-point
of a minimizing sequence is an optimal solution.

To compute a solution, we want to use 2 and 3, which allowed such an efficient
numerical approach. If we dualize the nonlinear constraints of (4.1), however, there
is a double difficulty" (i) the resulting Lagrange function cannot be easily minimized
with respect to p and may have several minima, which implies that (ii) usually, no
value of the dual variables gives back an optimal p (or even feasible). For a convenient
use of 2 and 3, we consider in (4.2) that the unknown Fourier coefficients
are additional optimization variables. Clearly, (4.1)= (4.2) is equivalent to

infH(p),

(4.4) Fn(p)= zn, n N= NoU M,

in which the optimization variables are now: p Ll(fl) and z C4 (remember that
is known and fixed for n No).

A possible Lagrange function associated with (4.4) is

H(p) E An * (Fn(p) 2n)_ll_1/2 [d,n(lZnl2 1Tin),2
nN nM

which exhibits the following formal optimality conditions" there exist h C N and
/z 4 such that

(4.5) p(r)=p;,(r):=k’[nNAn*einr ] (stationarity in p),

(4.6) ,, =/x,. F(p), n M (stationarity in z).

Needless to say, (4.5), (4.6) is neither necessary nor sufficient for p to solve
(4.1) (4.2): not even mentioning the nonlinearity of the constraints, the need for
(2.20) is still present. On the other hand, (4.5) deserves attention, as it opens the way
toward searching an optimum in the parameterized form (2.17) (compare Remark 3.7).
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PROPOSITION 4.2. Suppose that (4.1)= (4.2) has an optimal solution . Suppose, in
addition, that m <(r)< Mror almost every r . Then there exists A CN such that
has the form (4.5).

Proof For n N, call n := Fn(/); then/ is clearly a solution of (1.13), (1.14) with
the right-hand side . Because the Slater assumption (2.20) is obviously satisfied (by
/ =/5!), the claim is just Lemma 2.6.

Our trick (4.2) (4.4) somehow splits the original problem into two parts: one,
which is nice and convex, concerns p alone expressed by (4.5); all the nasty non-
linearities are packed into the second part, concerning z, in which p appears rather as
a parameter. The situation is analogous to that of 3: with an additional assumption
of Slater type, our problem is posed in the h-space C N instead of the p-space
Naturally, the h-problem is now much more involved: we must not only have feasibility
of the function (4.5), but also its Fourier coefficients must be aligned (mod zr) with
if (4.6) is to hold.

Remark 4.3. The additional Slater-type assumption needed for Proposition 4.2
can hardly be tolerated: it is an assumption that must be satisfied a posteriori by the
optimal solution, and there is no way of checking it in advance. Note, incidentally,
that it can be slightly relaxed to the followingmhardly more tolerable:

At the optimal/5, := F(/5) satisfies (2.20) (possibly with/ /5).

On the other hand, the problem is limited to trigonometric constraint functions
f,; for this special class, (2.20) turns out to follow automatically from (2.12) in some
cases; let us cite:

when m and M are infinite (obvious);
when h(m)= h(M)=+oo (obvious as well: indeed, any p with H(p)<+oe

satisfies the Slater assumption);
when rn or M is finite but not both: this is [5, Thm. 2.9];
when m and M are both finite but, a posteriori, there is some other function

having the same Fourier coefficients as the optimal p; this can be proved by extending
the proof of [5, Thm. 2.9].

The key issue underlying this question is the following: "Is it true that the set of
functions lying between two finite bounds and having given Fourier coefficients is
never a singleton?" If the answer is "yes," then a strictly feasible solution can be
proved to exist whenever a merely feasible solution exists.

Partly because of the above technical difficulty, but mainly for practical reasons
(the data z, and m, are highly noisy), we now turn to a penalized form of the problem,
just as was done at the end of 3. Choosing the formulation (4.4), we penalize only
the linear constraints, explicitly keeping the nonlinear ones: we now solve for p LI(f)
and z C (z. being known for n No):

inf H(p) +-- 2 [F,(p)- Zn] 2,
(4.7)

THEOREM 4.4. Under the standing assumptions, Assumptions 1.2, (4.7) has an
optimal solution for any T> O. The p-part of the solution set of (4.7) is also the set of
minima of the function

1 [2+__1 2 {IF.(p)[- m.}2.(4.8) H(p)+- E ]F,(p)-z,
N M
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Proof The existence of an optimal solution to (4.7) is exactly as in Theorem 4.1.
Now, (4.7) can equivalently be solved in a hierarchical way with respect to z first, and
then with respect to p. For fixed Fn(p), the objective of (4.7) is minimized on CM by

m, Fn(p)/IF,(p)l ifF,(p) O,
z,

arbitrary of modulus m, otherwise.

Plugging these values back into (4.7) for n c M N\No, we just obtain the function
(4.8), whose minimization is therefore equivalent to the resolution of (4.7). El

Thus, (4.7) is nothing but the standard penalized formulation of (4.1)= (4.2); let
us now address its numerical resolution. Among the possibilities, there is a hierarchical
approach opposite to the one suggested by the above proof, namely, to minimize with
respect to p first, a convex decomposable problem fully resorting to the dual machinery
of 2 and 3.

TIEOREM 4.5. Under the standing assumptions, Assumptions 1.2, let T > 0 and use
the notation (4.5). The optimization problem in A

(4.9) PT(z) :=
cmax nN An g Zn -- [An]2 k nN An * einr dr

has a unique solution A T(z). The maximal value pr(z) is convex and differentiable in

z; its gradient is given by the formula
(4.10) dpT(z) Y h(z) dzn.

nGM

The optimization problem (4.7) is equivalent to the problem in z C4

(4.11) min {P(z): [z, m,, n M}.

Proof Realize from (2.18) that the maximand in (4.9) is just the dual function
D 7" of (3.8). Then apply Theorem 3.6: the optimization problem in (4.9) has a unique
solution , T(z) and the function Pr(z) is nothing but the minimal value of (4.7) with
respect to p. It is convex because it is the conjugate of a convex function. Its differentia-
bility and (4.10) follow again from [8] (differentiate the maximand in (4.9); remember
Remarks 2.1 and 2.5).

Since Pr(z) is just the result of a partial optimization with respect to p in (4.7),
the equivalence (4.7),(4.11) becomes clear. D

Let us summarize our results: the solutions of the penalized form (4.8) of (4.1)
are obtained by (4.5), where , solves (4.9) at those z solving (4.11); to compute such
a z, a gradient-type minimization method can be used based on (4.10). Beware that
the A-problem (4.9) is always posed in the whole C N, while the z-problem (4.11) is
posed in the smaller C M, the set of "incomplete" Fourier data. Needless to say, (4.11)
has an optimal solution (the feasible domain is compact!) that is hard to find, in view
of the nonconvex constraints; but at least the difficulty is now concentrated in these
constraints--no trouble comes from the objective p r.

The optimality conditions for (4.9) have been seen in Remark 3.7:

(4.12) TA (z) z, F,[pT(z)] for n N.

On the other hand, the optimality conditions obviously hold at an optimum of (4.11).
Use (4.10) and draw a picture in the complex plane to realize that they are:

A,r(z) and z, are aligned (mod. 7r) for n M;

in view of (4.12), this means also that ,,r(z) and F,[paTz)] are aligned (rood. 7r); we
recognize the original condition (4.6).
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Remark 4.6. As part of the elegance of this approach, observe that Theorem 4.5
somehow unifies (4.4) and (4.7)= (4.11); it suffices to set T= 0 in (4.9) or (4.12). This
case, however, introduces the technical difficulties alluded to in Remark 4.3" pO may
be +oe, or there may be no optimal A, or there may be several; then, regularity of pO
may disappear.

5. Conclusion. We have studied in this paper two classes of problems dealing
with entropy. The "easy" class has linear constraints only, and is most efficiently solved
by a dual algorithm. The "difficult" class of 4 contains nonconvex constraints, for
which we have proposed an approach keeping as close as possible to the convex
situation. This approach amounts to solving a minimax problem in CM x

min max DT(z, A)(5.1)
Iznl=mn A

where DT, the maximand in (4.9), is nothing but the regularized dual function of
(2.18), (3.8). The original unknown variable p is searched in a parameterized form, as
a function of , coming out from (5.1).

Remark 5.1. The inherent difficulty of the problem, namely, the nonconvexity of
its constraints, is conserved as such in (5.1)" we have not made the least step toward
global optimization. If the z-domain of (5.1) were convex, things would become "easy"
(Dr is convex-concave).

We mention a problem studied in [28] which, in our notations, is

min {H(p)" F,(p) z,, ]z, ,]<-_ m,, n N}

(the ’, C and m, are all given). Our approach is particularly well suited here as well:
we end up with a formulation (5.1) having the simple constraints
Furthermore, LI(I) is discretized a priori in [28], in such a way that the internal
A-problem has an explicit solution; see Remark 5.4 below.

The z-constraints of (5.1) are most conveniently handled via polar coordinates: set

Zn Z,,(q)= mn e i’’’’ fornM

and minimize P" of (4.11) with respect to the unconstrained real variables q,. Elemen-
tary calculus gives the gradient of this new function QT(o):= Pr[z(p)]" from the
relations

dzn zn dn and dQr dPr y h * dz,,,
haM

we obtain (setting h, a, + i./3, and z, x, + i. y,)

oQ
flnXn a

Oqn

Observe that VQr= 0 when, once again, An and zn are aligned (mod. zr). With these
notations, the following algorithmic scheme suggests itself.

ALGORITHM 5.2. Choose an initial q e RM.
Step 1. Apply, for example, Algorithm 3.1 to compute h maximizing Dr of (2.18),

(3.8), given that z, ran" ei
Step 2. Stop if q is approximately optimal, i.e., if for each n M

phase (An)- qn (mod r).

Step 3. With the help of some gradient-type optimization algorithm, select a new
q RM aimed at decreasing the resulting Dr and loop to Step 1.



192 DECARREAU, HILHORST, LEMARICHAL, AND NAVAZA

By construction, each iteration constructs pc L() of the form (4.5); Step 1
solves (4.12) and Step 3 aims at solving (4.6) asymptotically. The algorithm can be
used with T =0 (see Remark 4.6), at the expense of some complications. First, the
various iterates of Step 3 might well generate unbounded A and/or D Do in Step 1.
Actually, a penalty approach is then recommended for the constraints of (5.1). A major
difficulty is that (4.5), (4.6) may not hold at a solution of (4.2). In these conditions,
little can be said concerning the overall convergence, as long as the argument raised
in Remark 4.3 is not fixed.

Remark 5.3. An interesting question is the inversion of the min- and max-
operation in (5.1): consider

(5.2) max min Dr (z, h).

The internal z-minimization can be worked out explicitly, and (5.2) is just the minimiz-
ation of the convex function of h

(5.3) Y m.l.[- Z z. a. +- + k h, * e i"r dr.
nM nN

Now, because Dr is linear in z, (5.2)= (5.3) is also equivalent to

(5.4) max min Dr(z, h),

and the theory of saddle functions (see, for example, [32]) tells us that (5.4) is in turn
equivalent to

rain max Dr(z, h),

the convexification of (5.1). Admitting that this latter problem is close to (5.1), it, or
its equivalent form (5.3), can be used to initialize Algorithm 5.2.

This technique has a limited value, however: take the most unfavourable situation,
with no phase known a priori, No {0}. Then, it is not difficult to see that the optimal
h in (5.3) is hn =0 for n # 0 (observe that the corresponding p is a constant function,
whose Fourier coefficients are all zero; from (2.19), we know that these Fourier
coefficients are precisely the derivatives OK Unfortunately, h 0 is just the point
for which (5.4) gives exactly no information on z.

An important drawback of Algorithm 5.2 is the need to maximize Dr for each
iterate q. This means that Algorithm 3.1, which acts as an internal subroutine, has to
be extremely fast and reliable. When ]N is small enough, Newton’s method is suggested
and allows an exact computation of Q r pr; but this method may become impossible
to implement for larger NI: to begin with, storage problems may appear with the
matrix oZDT/oh2. So far, we have not really experimented with any alternative.

Remark 5.4. For really large NI, Algorithm 3.1 must be abandoned, but one can
exploit the fact that trigonometric functions are orthonormal. Indeed, consider (4.2):
it is reasonable to assume that N (very large) contains all the observable [Fn(P)I; in
other words, we can reasonably fix Fn(p)=0 for n N. Then, there is only one p
satisfying the constraints (1.14), explicitly given by inverse Fourier transform. Based
on this idea, we explain schematically how to compute hr(z), even for T> 0.

The Fourier series defines a linear operator A mapping L2() onto a subset of
C. This A is invertible and A-, the inverse Fourier transform, is its adjoint A*. With
this notation, p of (4.5) is nothing but the function k’(A*h) L2(); the A-problem
(4.12) (4.9) is

Ak’(A*h)+ Th z
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(z is given: the zn are data if n No, the current outer iterate if n M, and 0 otherwise).
Taking the inverse Fourier transform:

k’(A*A)+ TA*A A*z.

To compute A’A, we have to solve pointwise the equation in

k’(t)+ Tt=(A*z)(r);

calling q(r) the result, A7‘(z) is the Fourier series of q and we are done (in view of
(4.10), An needs to be computed for n M only). Note that this trick leaves the
z-problem unchanged, in fact, M is still the same and the whole business just amounts
to replacing No by \M.

For a numerical illustration, we have considered a molecule called prostaglandin,
having 25 atoms. In a first experiment, we took a data-set with INol=4, IMI= 185;
taking symmetry into account, the resulting optimization variables were A 377 and
q 185. The internal A-problem was solved by Newton’s method, which gave (4.12)
to within machine accuracy; then, computing the value and gradient of QT" essentially
amounted to two Fourier transforms (with c 3 discretized in 34 38 20 28424
points); the Hessian 7207"(q) could be computed with one more Fourier transform
and the inversion of a 377 377 matrix.

Three methods were tested in Step 3 of Algorithm 5.2: the variable-memory
quasi-Newton method of [25], [14], the truncated Newton method of [9], and the
method of Newton with trust region [22]. Not unexpectedly, the latter two methods
were substantially better, both in terms of computing time and accuracy. Roughly
speaking, it can be said that quasi-Newton needed some 200 computations of
(D, VD7‘), and a computing time perceivably longer than the other two methods.
These latter methods obtained a much better accuracy in some 20 computations of
72QT (by far more expensive than the corresponding 40 computations of function-
gradient). A detail is worth mentioning concerning truncated Newton: initializing the
stepsize for the line-search is not a straightforward task; we chose a weighted combina-
tion of 1 (suitable when Newton’s equation is solved accurately) and "Fletcher’s value"
-2AQ/VQT"d (always not bad, here AQ is the progress in the previous iteration, d the
direction).

The behaviour of truncated Newton is illustrated in Fig. 2, as a function of the
number of D T"- maximizations. Figure 2(a) displays Q. Observe how little it varies:
D 7" is very flat indeed (the starting phases were randomly selected, hence supposedly
far from the optimum fund). Figure 2(b) gives the corresponding evolution of IIVQT"II;
it is interesting to mention that the iteration where it starts really decreasing is also
the iteration where V2Q 7" starts having all its eigenvalues positive. Another measure
of IIVQT"II is given by (4.6): call an[0,90] the angle between the two complex
numbers An and F,(p); q is stationary when all an are 0. Figure 2(c) displays the max
and average of these angles along the iterations. With trust region, the results were
better but qualitatively the same. All these results were obtained on a SUN/4 computer
using single precision (about six digits).

One more detail: as predicted by Theorem 2.4 in [9] and Theorem 4.17 in [22],
truncated Newton and trust region consistently converged to true local minima. In our
example, Fig. 2, the eigenvalues of 72Q7" after convergence of truncated Newton were
regularly spread in [1,104]; quasi-Newton produced three eigenvalues smaller than 1,
including one at -3. Thus, we have here an example in which a descent method using
first derivatives only does not converge to a local minimum; such examples are not
easy to construct.
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(a)
# QT-computations

20 40

(b)
angle (o)

450 -]""’" .......................................... ............................................................................. \;............................................"/...................
(c)

FIG. 2. Solving the phase problem by truncated Newton method.

To give an idea of the primal aspect, Fig. 3 displays contours of the function
p(’, ", r3), plotted for a number of equidistant values of r3. The picture seems to go
out from its frame because prostaglandin crystallizes in a nonorthogonal unit cell. This
reconstruction needed a data-set with INol 27 and IMI 303.

Finally we mention that, depending on the data-set, such reconstructions were
often mediocre, having little to do with an actual electron density, and this was
invariably the case when No was a small set. For example, consider a data-set with
No {0}, IMI 78 and suppose that the 78 unknown phases are those of the exact
solution. Then VQ0 and, more importantly, the Hessian V2Q is indefinite: its
spectrum is regularly spread in [--102, 104], with 13 negative eigenvalues: these exact
phases are far from a minimum. Worse, when initialized on these exact phases,

FIG. 3. A primal reconstruction.
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Algorithm 5.2 converges to the reconstruction of Fig. 4, from which no chemist could
extract any useful information. Nevertheless, take a small data-set with IN[ 20, but
No N (M 0, we are actually in the linear framework of 3); then Algorithm 3.1
produces the reconstruction of Fig. 5, which points out the overall shape ofthe molecule,
thanks to the connectivity of the electron density. Conclusion" it is fair to say that the
entropy approach has limited efficiency, in the sense that it requires a good amount
of information, especially concerning the phases. Other models are wanted when this
information is not available.

Remark 5.5. Let us mention that more information can orient the search for a
solution without making the problem easier. For example, it is known that the unknown
p is an atomic distribution (a sum of Dirac measures); it is, however, difficult to take
this into account. In particular, the entropy-based model is somehow self-contradictory:
if the observations were neglected, it would give an absolutely flat p.

Another such item of information is symmetry, which helps to reduce the number
of variables. For example, if p is even, i.e., p(-r)=p(r), then its Fourier coefficients

FIG. 4. Entropy maximization can ruin a good starting point.

FIG. 5. The importance ofphase information.
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must be real, i.e., their phases are 0 or 7r. The phase-problem becomes a 0-1 programming
problem (highly nonlinear); needless to say, it is strictly intractable for standard
methods of combinatorial optimization.
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A LOW COMPLEXITY INTERIOR-POINT ALGORITHM
FOR LINEAR PROGRAMMING*

MICHAEL J. TODD?

Abstract. This paper describes an interior-point algorithm for linear programming that is almost as
simple as the affine-scaling method and yet achieves the currently best complexity of O(v/- t) iterations to

attain precision t. The basic algorithm needs neither dual estimates nor lower bounds, although its analysis
is based on Ye’s results for the primal-dual potential function. Some computationally preferable variants
are also presented.

Key words, linear programming, interior-point methods
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1. Introduction. The polynomial-time interior-point algorithms that have been
developed in the past few years can be roughly classified as follows:

(i) projective-scaling algorithms, stemming from Karmarkar’s original method
[16], such as those of Anstreicher [1], de Ghellinck and Vial [9], and Todd and Burrell
[281;

(ii) path-following methods, which attempt to follow closely the central path
studied by Megiddo [20] and Bayer and Lagarias [6], such as the dual algorithm of
Renegar [26], the primal algorithm of Gonzaga 11], and the primal-dual algorithms
of Kojima, Mizuno, and Yoshise [17], [18] and Monteiro and Adler [24], [25]; and

(iii) potential-reduction algorithms, such as those of Gonzaga [12], Ye [31],
Freund [8], Kojima, Mizuno, and Yoshise [19], Gonzaga [13], and Anstreicher [2], [3].

While the derivations of these methods follow very different lines, the search
directions employed are invariably linear combinations of two directions: the affine-
scaling direction and the centering direction, which try, respectively, to improve the
objective function and to drive the current iterate towards the analytic center (Son-
nevend [27]) of the feasible region. This property of the search direction was noted
in several papers: Yamashita [30], Gonzaga 10], Mitchell and Todd [22], Zimmerman
[32], and the recent survey of den Hertog and Roos [15]. (In case an algorithm does
not require a feasible starting point and generates infeasible iterates, a third "feasibility"
direction is also included in the search direction; see, e.g., de Ghellinck and Vial [9]
and Anstreicher [2].)

The affine-scaling direction mentioned above is the basis of the affine-scaling
algorithm first proposed by Dikin [7] and rediscovered by Barnes [4] and Vanderbei,
Meketon, and Freedman [29]. This method is believed not to be polynomial on the
basis of results of Megiddo and Shub [21], although a variant that includes centering
steps does possess a polynomial time bound (Barnes, Chopra, and Jensen [5]). The
convergence results assume a step a fixed proportion of the way either to the boundary
of the feasible region [29] or to the boundary of the inscribed ellipsoid [7], [4], which
corresponds to a step of fixed Euclidean length in the transformed space.
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In this paper we propose a new algorithm whose search direction is a very simple
combination ofthe affine-scaling and constant-cost centering directions. The step length
is a constant in the transformed space. This simple algorithm attains the best-known
complexity for the number of iterations without requiring the generation of lower
bounds on the objective value or of dual feasible iterates. The proof, however, does
make use of results of Ye [31] concerning the primal-dual potential function used in
his potential-reduction algorithm.

Complexity results given in the literature typically address the case of a linear
programming problem with integer data, and bound the computational work in terms
of the number of inequalities n (the number of variables in a standard form problem)
and the length L of the input (the total number of bits necessary to describe the
problem). Hence, after suitable initialization, the projective-scaling algorithms require
O(nL) iterations (and O(n3SL) or O(n4L) arithmetic operations in total) and the
path-following and potential-reduction methods, O(v/-ff L) iterations (and O(n3L) or
O(n3SL) arithmetic operations). This number of iterations guarantees a feasible sol-
ution that is close enough to optimal that an exact solution can be obtained with
modest additional computational effort. However, we feel it is more appropriate for
linear programming (where the data are usually regarded as real) to state the complexity
results in terms of n and a parameter t, which represents the precision required as well
as the quality (initial objective value and "closeness" to the central path) of the initial
solution. Our algorithms require O(v/-ff t) or O(nt) iterations in this sense, and easily
translate to O(x/-ff L) or O(nL) iteration methods in the integer data case.

Section 2 describes the basic algorithm, and the O(v/-ff t) complexity result is
derived in 3. Section 4 describes two variants, one of which maintains this complexity,
while the other requires O(nt) iterations. These variants sacrifice some of the simplicity
of the basic algorithm for improved practical behavior, and, in particular, recur
lower-bound estimates of the optimal value; the algorithms then bear a strong
resemblance to those of Gonzaga [12], Ye [31], and Freund [8]. Section 5 contains
the results of preliminary computational experience showing the superiority of the
second variant. This illustrates a phenomenon which has also been observed elsewhere:
the better practical versions of interior-point algorithms frequently do not have the
best theoretical complexity bounds. Our results also suggest the most important
modifications in making the basic algorithm efficient; line searches are essential, and
then the tightest lower bounds significantly improve performance.

2. The basic algorithm. We consider the linear programming problem in standard
form:

min c rx,
(P) Ax= b,

x>-O,

where A is rn x n. Let F(P):= {x R": Ax b, x >-O} denote its feasible region, and
F+(P) := {x F(P): x > O} the relative interior of the feasible region. We assume that
F+(P) is nonempty, and that (P) has a nonempty bounded set of optimal solutions.
Let v(P) denote the optimal value of (P).

We suppose that an initial point x F+(P) is available. At iteration k we will
have the current iterate xk F+(P), and we define a scaled problem (/3) as follows.
Let Xk := diag (xk) be the diagonal matrix with the components of xk down its diagonal,
and consider the affine transformation x 2:= X-lx. The image of xk under this
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transformation is e, the vector of ones in R". In terms of , (P) becomes

min T,
(P) AX= b,

=>0,

where A := AXk and := Xkc.
In the scaled problem (P), there are two very important directions. Let P denote

projection into the null space of A. The first direction is the affine-scaling direction

(1) -gp :- -Pg;

the second is the projection of the negative gradient of the barrier function

(2)

evaluated at the point --e, which is

(3) ep := Pe.
If gp 0, then it is easy to see that all feasible points of (P) have the same objective

function value and so are optimal, and hence xk is optimal in (P). Henceforth, we
assume that gp 0.

Most of the directions we are concerned with are combinations of the form

(4) dt := -,8p + en
of our two basic directions, for some scalar/3. In particular, the direction d, where

(5) a:=gfe/-T-Op Cp,

will be very important to us. We note that it has three properties"

(6) d argmin {[]d[[" d de for some/3};

(7) -r-dcp =O; and

(8) -- -dd d,d for all/3.
It is easy to see that d is the steepest descent direction for the barrier function in the
set {" ,ff,= b, gT=gTe}, SO we call aT the constant-cost centering direction. This
direction appears in the centered version of the affine-scaling algorithm due to Barnes,
Chopra, and Jensen [5] and in the monotonic versions of the standard-form projective
variant (Anstreicher [1]) and of the scaled potential algorithm (Anstreicher [3]).

The direction of our algorithm is then chosen as follows"
Case 1. Ildll=>.3. Then set

(9)

Case 2. Ild.II <.3. Then set

(10) d e,,/II e,, II.
Thus our direction is proportional either to the constant-cost centering direction or
the affine-scaling direction, and in either case it is normalized to have length 1.

Having defined the direction d, we take a step of length .2, so that

(11) + e + .2d

in the transformed space, and then

(12) xk+l= Xk(e+.2)= X
k +.2Xk.
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Since Ildll 1, :+ > 0 and it is easy to check that ,ff.+ b; hence xk+ F/(P). Moreover,
0r+ -< Ore (strictly if Case 2 obtains), so that Crxk+l < CTX.

3. Analysis. In this section we show that, if x is suitably chosen, in O(v/-ff t)
iterations we will have an iterate x F/(P) with

(13) CT"xk v(P) <= 2-’.

The argument uses the results proved by Ye [31] in his scaled potential-reduction
algorithm.

The dual of (P) is

(D)

max b y,
Ary+ s c,

s=>0,

and, for any x F(P) and (y, s) feasible in (D), the duality gap is by-cT"x xTs >=0.
Let F(D)={s": Ay+s= e for some y and s->0} and F+(D)={s F(D): s>0}.
The fact that (P) has a nonempty bounded optimal solution set implies that F+(D) .
For an x F+(P) and s F+(D), and for any q _-> 0, we define the primal-dual potential
function (with parameter q) to be

ckq(x, s):= q In (xs)-Y In x- In s- n In n

(14) (q- n) In (xs)-E In xsss
xs/n

=> (q- n) In (xs)
since the xsss/(xs/n) terms are positive with arithmetic mean one. We also use b(x, s)
to denote cko(x, s) where := n +.

The condition we require on x F+(P) is that, for some s F+(D) (which need
not be known), (x, s) O( t). (When the data of (P) are integer, Monteiro and
Adler [24], [25] show how to construct a related linear programming problem for
which such an initial (x, s) can easily be obtained, with L, the size of the input.)

Suppose that at each iteration we can reduce by a constant. Then in O( t)
iterations we will have (x, s), with (x, s)- t, so that by (14),

cTx v(P) (x) 2-’,

as required.
We aim to show that this constant reduction is achieved even though the iterates

s are not explicitly computed. For each x F+(P), we use an associated s= s(x)
F+(D) that minimizes 6(x, .). First we show the existence and uniqueness of such
an s. (In fact, it is not hard to see that s is on the central path [6], [20] for the dual.)

PROPOSITION 1. If F+(P), then inf {(, s)" s F+(D)} is attained by a unique
Tas F+(D). Write g= s(). IfY F+(P) with cY c x, then cT Tg Cy_ yTg, where

g= s(), g= s(;).
Proof Choose any geF+(D); then we can confine the minimization to those

s e F+(D) with (, s)N4(, ). By (14) this shows that we can add the constraint
2 N for some , and since > 0, that s can be confined to a bounded set. Next,
since (2, s) In (2)-ln (2sss) + In ()-ln n, and 2rs cr2-v(P)>0, we can
further restrict s to be at least some positive s, and this argument applies to each j.
But (2,.) is continuous on the compact set {se F(D)" 2rsN, ss# all j}, so it
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attains its minimum there, and existence follows. Uniqueness is then implied by the
argument of [28, Lemma 2.3]. So we can write s().

Now suppose = s(), = s(Y), where cry <- crY. If cry crY, then (,. and
(:, differ by a constant, so and the second part follows easily; both sides of
the inequality equal b y, where ()3, ) is feasible in (D). So assume that cry <
Then from (, ) _-< 4) (, ) and (, ) <- 4) (, ), we deduce that In 5r+ In rg <-
In rg+ In x s. Suppose (fi, ) and 07, ) are feasible in (D). By exponentiating the last
inequality and simplifying, we find

cT crY)( b rfi b r) <- O.

Then b _-< b rf, which yields the second part.
We will show that (xk+l, s(xk))<- (Xk, s(xk))--.02 for each k, so that

(15) (xk+l, s(xk+I)) <- (Xk, s(xk))--.02
afortiori. This will prove the desired complexity result. (In effect, we are working with
the primal-only potential function

(16) d/(x):=min{(x,s): s6F+(D)}=(x,s(x)),

which is the only such function we know that can ensure an O(v/-ff t) iteration bound.)
Note that (A-lx, As)= (x, s) for any positive definite diagonal matrix A. We

can therefore always scale so that our current iterate xk is e, and it is straightforward
to check that the algorithm of 2 is invariant under such scaling. We will therefore
assume until the statement ofTheorem 1 that such a scaling has already been performed,
so that xk= e, and we omit the overbars in our notation, so that Cp Pae, ep Pae,

Tdt =-Cp-Jl--ep, ol.--Cp e C]Cp, and d is our search direction. We wish to show that

(17) (e +.2d, s(e))<= (e, s(e))-.02;

this will then imply (15), as desired.
A key point is that, for any q->_ 0,

q
-PA(V,dpq(e, s(e)))= --PA ers(e) s(e)-e) q

ers(e) Cp + ep

(since Ay+ s(e)= c for some y, PAS(e)= PAC=Cp), and this is of the form d for
some/3 => 0. We now have the following result.

LEMMA 1. For any q >= n + x/if,

e rs( e) Cp + ep

Proof Assume the contrary, so that Ilhll <.4 where h (q/eTs(e))cp-ep for some
q _-> n + x/ft. Then, for some y,

ers(e)Ary+ (e+ h)= c,
q

so that

(19)
ers(e)

g:=(e+ h)e F+(D).

Moreover, the associated duality gap is

(20) erg -ers(e) (er(e+h))<- ers(e)
q

(n + .4x/-ff) <- (1 n +x/if]
ers(e)"
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Finally, Lemma 2 of Ye [31] shows that

eT e s
(21) g-e -<.5;

note that Ye’s argument does not require that q (his p) equals n +x/ft. We can then
argue as in Theorem of Ye [31] that

.6 (.5)2
(e, g) <= (e, s(e))-+2(1.5----- < 6(e, s(e)),

which contradicts our choice of s(e). Hence (18) must hold.
We also require the following standard result; see, for instance, Ye [31].
LEMMA 2. If ad 0, d 1, and 0 < y < 1, then

2

(22) dpq( e + Td, s) <= dpq( e, s) + TVxdPq( e, s) rd + T
2(1 -y)"

Now we consider the two cases of our algorithm, and prove that in each case (17)
holds. Define by -PaV,(e, s(e)) da.

First assume that lid, >= .3 so that d a/lla II. Then
Vxb(e, s( e)) Td (PAVx( e, s( e))) d./ lld.

where the first equality holds since d is in the null space of A, the second holds by
definition of 8, and the third by (8). Hence with 3’ .2, Lemma 2 yields

(.2)2
(e +.2d, s(e)) <= (e, s(e)) -.2 x .3 +2((23)

<-(e,s(e))-.02.

Now suppose that Ila, <.3. Then > a (otherwise c q/ers(e) for some q _-> n +
x/, contradicting Lemma 1) and, in fact, since II--> 4, makes an angle of at least
arc cos (-34) with d,, and hence an angle of at most arc cos () with -Cp (see Fig. 1).
Hence, with d--c/llcll, we have a2a->x.4=.25. Using Lemma 2 we can
conclude that

(e +.2d, s(e)) <= (e, s(e))-.2 x .25 -+ (.2)2

2(1 -.2)

<=(e,s(e))-.02.

To summarize, we have shown our convergence result.
THEOREM 1. Nt each iteration of the algorithm of 2,

(24) (xk+’, s(xk+l)) <= &(x, s(x))-.02.

If(x, s) O(x/- t) for some so F+(D), then after O(x/- t) iterations we have x with

crx-v(P)<=2-’.

4. Refinements. The simple algorithm of 2 does not perform well in practice.
Indeed, (12) shows that each component of xk can decrease by at most 20 percent in
each iteration, so that the best we can hope for is linear convergence with ratio .8. In
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-Cp

25

-PAVxb(e’ s(e)) in this con; 0

FIG.

this section we describe refinements that attempt to improve the convergence while
maintaining the simple structure of the algorithm. Usually, an interior-point method
can be improved significantly by incorporating a line search. Here, however, the
potential function on which we would like to perform a line search cannot easily be
computed, and hence complications arise. We use the insights obtained from the
analysis of 3 and update lower bounds on the optimal value. The resulting methods
bear a strong resemblance to those of Gonzaga [12], Ye [31], and Freund [8].

Our first variant maintains (24), and hence provides an O(v/-ff t) iteration method
(O(x/-ff L) for a problem with integer data), while our second variant is preferable in
practice but has only an O(nt) iteration bound.

At each iteration, we try to update the current lower bound zk, then choose a
search direction and make a line search in this direction to minimize approximately
some potential function. In the second variant we only need zk <- v(P). In the first, we
require further that crx-z >= (x)rs(x), and when we update zk to z+l, we insist
that Z+l also satisfies this inequality. Since our algorithm is monotonic, Proposition
1 then implies that crx+l-z+l>=(xk+l)s(x+l). In both variants we can initialize
with Zo

To describe the iteration, it is again convenient to assume that the problem has
been scaled, if necessary, so that the current iterate is e. Suppose %, %, and a have
been calculated. In the first variant, z is updated as follows.

(25)

If d, .4, z+l: z.
Otherwise, let e > c be such that IId II--.4.
If e -< 0, zk+l := zk.
If e>0, let z+:=cre-(n+x/-ff)/e and z+l := max {Zk, Z+}.

This method of updating Zk is very similar to that of Gonzaga [12, 5] and closely
related to those of Freund [8] and Ye [31]. We then have Lemma 3.

LEMMA 3. Assume that ere- Zk >= ers(e), so that Zk is a valid lower bound on v(P).
Then if Zk+l is updated by (25), cre--zk+l >--ers(e) also, so that Zk+l is a valid lower
bound, too.
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Proof There is nothing to show if Zk+ --Zk. Otherwise, Zk+ --Z+. Because of
Lemma 1, (n+v/-)/eTs(e)>=e=(n+/-)/(cre-z+), which gives the desired
inequality. Then Zk+l is a valid lower bound because it is at most cTe-ers(e), the
value of the dual solution corresponding to s(e).

Next we compute the search direction d as follows. First, let

q --Zk+l) if Zk+,>--oO,
(26) ’:=

/(ere
if zk+l

for q n + v/-. Note that, if d, < .4, then sr => e > a, so that d -> .4 by definition of
e, while if [[d, _>-.4, then [[de[l_>-.4 by (6).

Case a. < a. Then [[d, ->- .4. In this case, set

d(27) d

Case B. >- a. Let

d -c d-
d

(Note that Gonzaga [12], Ye [31], and Freund [8], given a lower bound zk+l and
resulting " with [[dcl sufficiently large, would choose d de.)

LEMMA 4. If d is defined as above, then

VxChq(e, s(e))rd <--.28

for any q >= 0 if z+ -o and for any q
Proof Define by --PaV,q(e, s(e)) d. Then VxChq(e, s(e))rd -d rd. In Case

A, d d/[[dal] and -d[d -d[d/[]d[[ =-drd/ [[d [[d _-<-.4 using (8).
In Case B, Lemma 3 and (26) show that _-> ’_-> a as long as z+ =-ee (" =0,

6 _-> 0 for any q => 0) or q _-> n + (using Lemma 1). Hence d _-> d _-> .4. Now d is
a unit vector that bisects the angle between the two extreme directions for d, namely,
d and -cp. Since ’_-> a, these two directions form a nonobtuse angle, so the angle
between d and d is at most r/4. Then

-asrd < -II d cos (-/4)=< -.4 cos (-/4) <= -.28.

Now we search on the half-line {e+ hd: =>0}. If z+1 =-oe, we seek to minimize

(29) ’(x, -ee) := -2 In x,

the barrier function. It is easy to see that, in either Case A or Case B, ’ can be
decreased by at least .03. Moreover, since c rd <-_ O, we obtain at least as great a decrease
in the primal potential function

P(30) I])q(X, z):= q In (crx-z)- In x
for any q>=n and z <- v(P), and hence in ch(x,s(e)), since this differs by a constant

e(x,z) with q= n+/- and z=cre-ers(e).from q

If zk+ >-oe, we seek to minimize

(31) d(x, z,+)

for q n + /-. Again, our updating scheme for z ensures that this can be decreased
by at least .03, and that oh(x, s(e)) can be reduced by at least as much.
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Hence our first variant of the basic algorithm preserves (24), while employing
directions probably closer to the negative of the projected scaled gradient of the
appropriate potential function and allowing line searches to achieve greater reductions
in such potential functions.

The following argument, which improves the author’s original and is due to Ye
(private communication), shows that a finite lower bound must be generated in O(v/- t)
iterations. Indeed, b(x, s) O(x/-ff t) implies b(x, s) O(x/- t). Until a lower
bound is generated, b decreases by a constant at each iteration, while it is bounded
below by zero. This yields the desired complexity.

Once again, we have a monotonic algorithm, so all iterates lie in the compact set
{xf(P)’cTx<=crx}. Let :=max{eTx/n’xF(P), cTxcTxO} and let o:=
(II]=l xY) /, the geometric mean of the components of x. Our remarks above on

Pdecreasing 4 q ensure that

(32) bqe(X, z) -< bqe(X, z)-.03k

for q n + x/if, and using the estimates above and the fact that n -< n + x/-ff-< 2n, we find

(33) (crx-z)<-_(?s/)’exp (-.Olk/n)’(crx-z).

Assuming that crx-zo and /o are bounded by 2’, we can obtain from (33) an O(nt)
bound on the number of iterations to obtain crx-z <-2-’. This contrasts with the
O(x/-ff t) bound in Theorem 1, which is still valid; one reason for the difference is that
v(P) is not known in Theorem 1, whereas here z is a known (and possibly not very
tight) lower bound on v(P). By contrast, the algorithms of Ye [31] and Freund [8,
4] require only O(v/-ff t) iterations to obtain this inequality, where now z is the lower

bound associated with an explicitly computed dual solution.
This first variant ofthe basic algorithm generates better directions than the original,

but it still converges rather slowly in practice. The reason appears to be that the lower
bounds generated are rather poor, so that in the line search to minimize
the barrier term -Y In x forces a small step size, typically of the order of a tenth of
the maximum feasible step size.

In order to obtain better lower bounds, we reconsider the argument used in Lemma
1. For any fl > 0, if 1[-Cp + ep -< 1, we find that s := 1 //3 )(e + flCp ep Cp
belongs to F(D), and the associated duality gap is eTcp+eT(e-ep)/fl
eCp + [Ie ep 112/t , which is decreasing as a function of/3. In fact, it is not even necessary
that II-t c / II--< 1; as long as s is nonnegative, it provides such a bound. Hence we
have Lemma 5.

LEMMA 5. If there is some/3>0 with Cp+(e-ep)/fl>-_O, let fl be the maximum
such. Then z+ := c re e-lie-e ll2/t a lower bound on v(P).

This lower bound was also obtained independently by Gonzaga [14]. In fact, it
is also implicit in the statement on performing a line search for A in Freund [8, 3].

Thus our second variant sets z/ as above if the criterion of the lemma is met, and
then sets

Zk+ := max {Zk, Z+}.

In this second variant, z+ is always a lower bound, but we may not have ce z+ >_-

es(e), as we did before. Given z+, we define the search direction d as above (see
(27), (28)) and perform a line search on (29) or (31) as before. However, since we no
longer have 2k+ cTxk--(Xk)rs(xk), we may not obtain a corresponding decrease in
b(x, s(e)). Nevertheless, our line search can guarantee a decrease of at least .03 in
b’(x,-co) (and in bqP(x, z) for any z and any q) if Zk+ =--oe and the same decrease
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in (X, Zk+l) for q=n+/-ff if Zk+l>--. Thus (32) and (33) remain valid, and we
deduce that the second variant provides an O(nt) iteration algorithm. This remains
true if q in (26) and (31) is O(n), rather than n +/-ff.

5. Computational results. We conclude the paper by giving the results of some
very preliminary computational testing. These results suggest that the key refinement
is the incorporation of a line search, followed by the use of improved lower bounds.

The test problems were obtained as follows. For a given m and n, we generated
each entry of A, y, and s as an independent standard normal random variable; then
set b ae and c ay + Isl, where Isl- (Is l); the initial solution was x e. We describe
the results of several variants. In all of them, we generated a sequence of lower bounds
zk, even if they were not used in the algorithm, in order to terminate when (cT"x-
zk)/max {1, Ic xl} was less than 10-4. Whenever a search direction d k was obtained,
we checked this termination criterion at the point x= xk +Amaxdk, where hmax
max {h" xk+ hdk-> 0}, so that the algorithm could terminate in a reasonable number
of iterations even if it chose rather small step sizes.

The first variant differs from the basic algorithm of 2 in three respects. It uses
a sequence of lower bounds, generates improved directions, and performs a line search
on a suitable potential function. The second variant adds to this an improved lower
bound update. For one 50 x 100 problem, we tested all combinations of these features,
as well as trying q n +rff and q 2n for the second variant. Thus we tried nine
algorithms" the basic algorithm of 2 (with termination based on lower bounds, as in
the first variant), then this basic method with a line search, the basic method with
improved search directions, and the basic method with improved lower bounds (which
only affect the termination criterion in this case); next, the basic algorithm with two
of these features, namely, with improved directions and improved lower bounds, with
a line search and improved lower bounds and with a line search and improved directions
(the first variant); and finally, with all three features and q n +v/- or q 2n (the
second variant). The results are given in Table 1, which also presents a typical value
of Ak/Amax, where Ak is the step size chosen and Amax the maximum feasible step size.
All runs used PRO-MATLAB [23] Version 3.5e on a Sun SPARCstation 1.

It is clear that the most significant enhancement is the incorporation of a line
search; when this is present, improved lower bounds are more important than better
directions because they allow longer step sizes to be used. Finally, all three features
together allow a considerable decrease in the number of iterations required, especially
for q 2n. (If we also recur the improved lower bounds in the first variant, but only

TABLE
Computational results on a 50 100 problem.

Method
Number of Typical
iterations Ak/Ama

Basic 347
Basic with line search 98
Basic with improved directions 347
Basic with improved bounds 282
Basic with improved directions and improved bounds 262
Basic with line search and improved bounds 27
Basic with line search and improved directions (first variant) 95
Second variant, q n + 12
Second variant, q 2n 11

.04

.13

.04

.04

.04

.46

.14

.87

.98
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use them in the termination criterion (thus maintaining the theoretical O(v/- t) bound),
then the number of iterations required decreases only slightly, to 77. Thus the difficulty
is slow primal convergence, not a poor termination criterion.) Similar results hold for
other test problems solved.

We also solved ten random 50 100 problems using the second variant. With
q n + v/-, the average number of iterations was 12.2, with /k//max typically .87; with
q 2n, the figures become 11.0 and .97. Five random 100200 problems needed an
average of 14.0 iterations with q= n +v/- and 12.2 with q 2n. For 150x 300 problems
the figures were 14.4 and 13.0, respectively, and for 200 400 problems, 15.4 and 13.6.
The typical step size ratio was similar to those reported above.

Finally, a single 100200 problem, which required 16 or 14 iterations for the
second variant, needed 161 for the first variant (144 if termination was based on the
improved lower bounds) and 626 for the basic algorithm; and a 200 400 problem,
also needing 16 or 14 iterations for the second variant, required 240 (or 202) for the
first variant and 739 for the basic algorithm.

Aeknowletlgment. I am very grateful to the referees for their helpful comments,
which considerably improved the presentation.
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AN SQP AUGMENTED LAGRANGIAN BFGS ALGORITHM FOR
CONSTRAINED OPTIMIZATION*

R. H. BYRDt, R. A. TAPIA$, AND YIN ZHANG

Abstract. In this research an effective algorithm for nonlinearly constrained optimization using the
structured augmented Lagrangian secant update recently proposed by Tapia is presented. The algorithm is

globally defined, and uses a new and reliable method for choosing the Lagrangian augmentation parameter
that does not require prior knowledge of the true Hessian. Considerable numerical experimentation with

this algorithm, both embedded in a merit-function line search SQP framework and without line search, is

presented. The algorithm is compared to the widely used damped BFGS secant update of Powell, which,
like the one in this paper, was designed to circumvent the lack of positive definiteness in the Hessian of
the Lagrangian. It is also established that when the algorithm converges it converges R-superlinearly, which

is a strong result in that it makes no assumptions on the approximate Hessian or the augmentation parameter.
An immediate corollary is a new result in unconstrained optimization: whenever the unconstrained BFGS
secant method converges, it does so Q-superlinearly. This study has led to the conclusion that, when properly
implemented, Tapia’s structured augmented Lagrangian BFGS secant update has strong theoretical proper-
ties, and in experiments, is very competitive with Powell’s damped BFGS update.

Key words. BFGS secant method, augmented Lagrangian, SQP methods, superlinear convergence,
constrained optimization

AMS(MOS) subject classifications. 49D37, 65K05, 90C30

1. Introduction. In this work, we will be concerned with the equality-constrained
optimization problem

minimize f(x),
(1.1)

subject to h (x) O,

where f: R R, h" Rn- Rm(m < n), and f and h are generally nonlinear. The
Lagrangian function associated with problem (1.1) is the function

(1.2) {(x, A)=f(x)+ A Th(x),

where A R" is called the vector of Lagrange multipliers or simply the Lagrange
multiplier. We will be examining algorithms for solving this problem based on successive
quadratic programming that make use of a modification of the Lagrangian in (1.2),
the augmented Lagrangian.

As usual, V will denote the gradient operator, V2 the Hessian operator, and
subscripts on these quantities signify partial differentiation. We will denote Vf(x) by
g(x) and the matrix whose columns are Vhl(X), Vh2(x),..., Vhm(x) by A(x). On
occasion, we employ the convention of writing gk for g(Xk) and g. for g(x.), and
similarly for other functions and other arguments. This usage should be clear from
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the context. We will use x, to denote a local solution of problem (1.1) and A, to
denote a Lagrange multiplier vector, satisfying Vxg(x,, A,)=0.

In unconstrained optimization the BFGS secant update has emerged as the secant
update of choice. The convergence analysis of BFGS secant methods requires that the
Hessian matrix that is being approximated be positive definite at the solution. Further-
more, this requirement is satisfied at any nonsingular local minimizer.

It is well known that a formal extension of the BFGS secant method can be made
from unconstrained optimization to constrained optimization (problem (1.1)) by
employing the so-called successive quadratic programming (SQP) framework. In antici-
pation of our later needs, we now state this formal extension in a line search globaliz-
ation environment.

ALGORITHM 1.1 (Line search SQP Lagrangian BFGS method). Given Xo R" and
a symmetric Bo R"", for k 1, 2,. , until convergence do

Xk+ Xk + 7"kdk
(1.3) hk+l A(Xk, Xk+I, Bk),

Sk Xk+ Xk,

(1.4) Yk Vx{(Xk+I, Ak+l)- V{(Xk, Ak+l),
{TBkSkSBk YkYk(1.5) Bk+ Bk

s BkSk ykTSk
where the line search direction dk is the solution of the quadratic programming
subproblem

minimize gd + 1/2d TBkd,
(1.6)

subject to hk + A[d O,

and the step-length ’k is chosen to decrease a given merit (line search) function. The

matrix Bk is interpreted as an approximation to vzg(Xk, Ak). The function A in (1.3)
is an updating formula for A. A common choice for Ak+ in (1.3) is the multiplier

associated with the solution dk of the subproblem (1.6). Observe that Bk+ satisfies the

secant equation Bk+lSk yek"
There is a major flaw in Algorithm 1.1. This flaw will be obvious once we invoke

the following assumptions, which are standard in the theory of quasi-Newton methods

for problem (1.1). They will be assumed throughout this paper.
ASSUMPTIONS.
A1. f and hi have second derivatives that are Lipschitz continuous in an open,

convex neighborhood D c R of the local solution x,.
A2. A(x,) has full rank.
A3. prV{(x,, A,)p > 0 for all p 0 satisfying A(x,) rp O.
Note that A2 implies that A, is unique.
The deficiency of Algorithm 1.1 is that the local convergence theory for BFGS

secant methods requires vz{(x,, A,) to be positive definite and yet satisfaction of this
condition is not guaranteed by the standard assumptions A1-A3.

When a line search globalization strategy is added to a BFGS secant method, it
is essential that the approximation Hessian matrices Bk be positive definite. The
well-known hereditary positive definiteness property of the BFGS secant update is that
positive definite Bk leads to positive definite Bk+ if and only ifykrSk >0. IfVg(x,, A,)
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is not positive definite, we cannot guarantee the condition YgkkrSk > 0 even locally, i.e.,
for Xk and Xk+l near x,, let alone globally. The desire to enforce this condition globally
will play a major role in the present research.

Alternative formulations of the SQP Lagrangian BFGS secant method that
circumvent the lack of positive definiteness of V2g(x,, A,) have been challenging
researchers now for many years. Perhaps the first alternative considered was replacing
the Lagrangian with the augmented Lagrangian associated with problem (1.1) (see
Han 12] and Tapia [24]). This latter function is

P Th(1.7) L(x,A,p)={(x)+-h(x) (x) (p>=O).

Observe that the Hessian of the augmented Lagrangian at a local solution of problem
(1.1) has the form

xL(x,, A,, p)= V2xg(X,, A,, p)+ pa(x,)a(x,)(1.8) g,(p)-= V 2

It is well known that for any augmentation parameter p greater than a threshold value
fi, H,(p) is positive definite; therefore, if Yk is defined as (we will use Yk as a generic
term and different choices of Yk will be denoted by different superscripts)

(1.9) yl= VxL(Xk+I Ak+I p)_VxL(Xk, Ak+l
we can guarantee that near the solution ylrsk > 0 for p sufficiently large.

We arrive at the (line search) SQP augmented Lagrangian BFGS secant method
for problem (1.1) by replacing yke in (1.4) withy from (1.9). The Broyden-Dennis-Mor6
theory was used by Han [12], Tapia [24], and Glad [9] to establish local and Q-
superlinear convergence in the pair (x, A) for a version of this algorithm under the
standard assumptions A1-A3. Fontecilla, Steihaug, and Tapia [8] showed that the
convergence in x is actually Q-superlinear.

Though theoretically attractive, this alternative has serious practical problems.
First, a priori knowledge of the threshold value /5 for a given problem is generally
unavailable. Second, the attempt to use large p seems to present severe numerical
problems; see the examples given by Tapia [24] and Nocedal and Overton [16]. See
Appendix B of Tapia [25] for some interesting comments on this issue. We emphasize
that y given by (1.9) has the serious disadvantage that at some iterations it may not
be possible to choose p sufficiently large so that yTsk is positive (even though it must
be possible near the solution).

Another direction taken to circumvent the lack of positive definiteness of
Vg(x,, A,) is to use the BFGS secant update in the context of reduced Hessian (or
projected Hessian) methods. In contrast to full Hessian methods, reduced Hessian
methods approximate the Hessian restricted to the null space of the Jacobian of the
constraints, where it is expected to be positive definite. Since the concern of the present
work is full Hessian methods, we refer interested readers to Coleman and Conn [4],
Nocedal and Overton 16], and Byrd and Nocedal [2] for further references on reduced
Hessian methods. Fenyes [6] and Fontecilla [7] proposed full Hessian methods that
have some of the flavor of the reduced Hessian methods.

Powell [19] proposed another modification to the (line search) SQP Lagrangian
BFGS secant method that compensates for the lack of positive definiteness in the
Hessian at the solution. Despite the fact that the true Hessian of the Lagrangian may
not be positive definite at a solution, Powell chose to maintain a positive definite matrix
by modifying yk

e whenever necessary. The modified y’ (say) has the form

(1.10) y" 0kYke + (1 Ok)BkSk,
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where the parameter Ok is contained in (0, 1]. Notice from (1.5), if Ok "--0, then Bk+ Bk;
while if Ok 1, we obtain Bk+I as the full BFGS update of Bk. For this reason, with
Griewank [10], we refer to the use of (1.10) in (1.5) as the damped update. Powell
chose Ok SO that

YlTSk T]S 7BkSk
is always satisfied for some r/ (0, 1). More specifically, the number Ok (0, 1] is given
the value

1, yTsk >---- rlSBkS,,
Ok--(1--’q)SBkSk/(SBkSk--yTsk), otherwise.

A value for B of 0.2 was proposed in [19] and 0.1 in [21]. This technique preserves
positive definiteness of Bk even far from the solution, and therefore the subproblems
(1.6) are always well posed. Powell’s damped BFGS secant method has proved to be
very successful computationally (see Hock and Schittkowski [14], for example).
However, a proof of local convergence is not known for this algorithm. Given conver-
gence, Powell [18] proves an R-superlinear rate, but only under the assumption of
uniform bounds involving the approximate Hessians. Practically, although Powell’s
damped BFGS update works very well in general, it does sometimes encounter difficul-
ties (see Powell [21]).

Recently, Tapia [25] suggested two new BFGS secant updates based on the
structure of the augmented Lagrangian. He was able to prove that the corresponding
SQP methods gave local and Q-superlinear convergence in the variable x under the
standard assumptions and the assumption that the augmentation parameter p was
greater than a threshold value ft. No guidelines or heuristics were given for choosing
the augmentation parameter p.

It is worth mentioning that all the above techniques except for Powell’s damped
update have been restricted primarily to a local framework.

The objective of the current research is to first develop effective guidelines for
choosing the augmentation parameter in Tapia’s BFGS structured augmented
Lagrangian secant algorithm (SALSA). This choice must globally produce a Yk such
that y[Sk>O SO that the positive definiteness of approximate Hessians will be
maintained. We then describe a practical implementation of SALSA, and make a
theoretical and experimental investigation of its behavior.

The bulk of our numerical study of SALSA will be accomplished by using it in
an SQP framework in conjunction with a line search on an {1 merit-function. Because
of the demonstrated effectiveness of Powell’s damped BFGS algorithm (which we will
refer to as PDA) on many problems, we compare SALSA and PDA in this context.
However, in order to demonstrate that differences observed are not purely consequences
of the line search strategy employed, we also include comparisons of the local versions
of both algorithms (i.e., without line search).

Our theoretical results are an advance over what has been shown about SALSA
and other augmented Lagrangian-based SQP methods. We analyze the algorithm and
its adaptive procedure for choosing the augmentation parameter Pk, without assuming
that this parameter is chosen greater than some threshold value. We show, under only
assumptions A1-A3 and no assumptions whatsoever on the approximate Hessians and
the choice of the augmentation parameter, that if SALSA converges, then the conver-
gence in x is R-superlinear. This is similar to, although somewhat stronger than, the
result of Powell for PDA, which is mentioned above. Additionally, our theorem implies,
as an immediate corollary, the new result that under the standard assumptions only,
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i.e., no assumptions on the approximate Hessians, whenever the BFGS secant method
for unconstrained optimization converges it converges Q-superlinearly.

This paper is organized as follows. In 2, we briefly present SALSA as Tapia
proposed it. In 3, we discuss some critical issues concerning the globalization and
implementation of SALSA and describe a complete algorithm. In particular, we develop
a choice for the augmentation parameter p, propose a merit function, and present the
complete line search algorithm. Section 4 is devoted entirely to demonstrating the
convergence rate result discussed above. Our numerical results comparing SALSA and
Powell’s damped BFGS algorithm are given in 5. Section 6 contains concluding
remarks.

2. The use of structure in the augmented Lagrangian. SALSA was designed to take
advantage ofthe structure present in the Hessian ofthe augmented Lagrangian function
for problem (1.1). By way of motivation, observe that the Hessian of the augmented
Lagrangian (1.8) displays significant structure in that there is a clear separation between
the first- and second-order information.

Recall that the Lagrangian (x, A) is given by (1.2) and that the augmented
Lagrangian L(x, A,p) is given by (1.7). We use the superscripts and L to denote
quantities associated with the Lagrangian and the augmented Lagrangian, respectively.
The superscript S is used in place of the superscript L when the quantity in question
has been derived using the structure of the Hessian of the augmented Lagrangian.

From the definitions of y and yek (see (1.9) and (1.4)),

yl yek + p(ak+lh,+l- akhk)

Ygkk + P 2 h(i)k+ 72x h(i)k+l + Ak+lAL k + 0 k 2)
i=1

ye + pAk+lAkr+,Sk + 0(o.2),

where in this case we use the superscript (i) to denote the ith component of the vector

hk and

(2.1) rk max x, ll, x, 11}.

Eliminating the second-order term of o- from y}, we have

(2.2) y ye + pAk+a+lSk.
It should be noted that the use ofy in place ofy does not prevent the local analysis
for secant methods from being carried out, since the difference between y and y is
O(o-?,).

For the sake of completeness, we present the line search SQP structured augmented
Lagrangian BFGS secant algorithm, SALSA, in its entirety instead of merely making
appropriate changes in Algorithm 1.1.

ALOORITHM 2.1 (SALSA). Given Xo R and a symmetric positive definite matrix

Bo Rnn, for k 1, 2,. , until convergence do

x+ x + rdk,

(2.3) a,+, A(x,, x,+,, B,),

Sk Xk+ Xk,
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(2.4) y V{(x,+, ht,+)- Vd(x,, ht,+)+ pA,+,A[+s,,
, B, __

Y t, Y____.Bk_Bk  s (2.5) B+I

where the line search direction d is the solution of the quadratic programming
subproblem (1.6) with B in place of B, and the step-length r is chosen to decrease
a given merit-function. The matrix B+ is interpreted as an approximation to
VL(x+,+ P)1

In SALSA, the approximate Hessian of the augmented Lagrangian B satisfies
the following structured form of the augmented Lagrangian secant equation:

(2.6) BlS y y pA

For p large enough, the local positivity of ys is guaranteed and consequently the
hereditary positive definiteness of B is achieved. Even globally, yrs can be made
positive by increasing p, as long as As O. To see this, note that

(2.7) yffs yrs
However, as discussed in 3, some back-up strategy is needed to make ys 0 when
As is numerically zero and ys0.

It is interesting to note that while we have been viewing SALSA as an SQP
augmented Lagrangian secant method, it can be equivalently viewed as an SQP
structured Lagrangian secant method. To see this recall that V2xL.
thus it is quite natural to consider B defined by

1

Now from (2.6), we see that B+ satisfies the Lagrangian secant equation

(2.8)

Moreover, B is positive definite on the null space of A, since on this space it
coincides with B. It also follows that the corresponding quadratic programming
subproblem (1.6) usingB will have the same solution. Hence SALSA can be viewed
as an SQP Lagrangian secant method with the highly desirable property that B is
positive definite on the null space of A.

In SALSA the structure in the Hessian of the augmented Lagrangian was utilized
only in the definition of y, but not in the definition of B. Tapia [25] considered
utilizing the structure in both definitions and derived what he called the augmented-scale
BFGS secant update. Essentially, he was able to show that this complete use of structure
led to cancellations throughout the SQP method and the resulting algorithm could be
viewed as an SQP Lagrangian secant method where only the pa of the BFGS secant
update corresponding to the scale was changed.

Initially, we experimented with the SQP augmented-scale BFGS secant method
and found that it does not lend itself to a line search globalization. This is due to the
fact that the Hessian approximations are not necessarily positive definite. For this
reason, we decided to restrict our attention to SALSA. However, the augmented-scale
BFGS secant update may find use in a trust-region globalization.

3. Development of SALSA. In the previous section we discussed why we believe
that the SALSA updating procedure, that is, using (2.5) with (2.4), should be a good
one. However, several important issues associated with the development of the
algorithm SALSA remain to be addressed. In this section we first discuss a weighted
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form of the augmentation, and then we take up the essential issue of choosing the
augmentation parameter p. We discuss the issues of subproblem solution, multiplier
estimates, and line search, which must be addressed for any SQP algorithm, and finally
we give a precise statement of the algorithm. We mention that the current version of
the code is given primarily for the purpose of testing the viability of SALSA and
performing numerical comparative studies. Further effort is needed to optimize each
component of this algorithm.

3.1. Weighted augmentation. The Hessian of the (unweighted) augmentation term
ph(x)Th(x) at any feasible point, in particular at a solution x,, is of the form
pA(x)A(x) r. If the constraints are badly scaled, then the matrix A(x)A(x) may be
ill conditioned (here the condition number of a singular matrix is defined to be the
ratio of its largest and smallest nonzero singular values) and can have negative effects
on the updating process through the use of Ak+A+Sk in yks. It is natural to scale the
constraints by using a weighted augmentation term ph(x)TW(x)h(x), which produces
at x, a well-conditioned Hessian matrix pA(x,) W(x,)A(x,). The matrix W(x) R
is called a weighting matrix and should be positive definite in the area of interest.
Under the assumption that A(x) has full rank for all xk, a good choice for the weighting
matrix seems to be

W(x) [A(x) ’A(x)]-
because we can write

AkWkA[= Ak(A[Ak)-A[ YkY[,
where Yk is any orthonormal basis for the range space of Ak. Clearly, the matrix YkY
always has unity condition number. Moreover, as long as a weighting matrix W(x)
and its inverse are uniformly bounded in norm, all our theoretical results remain valid.
Based on the above consideration, we therefore use the matrices YkY[ instead of

AkA in our algorithm. Specifically, we define

(3.1) Y= Y+ pkYk+ YT+Sk.
In our computational experiments, this weighting technique worked somewhat

better on the whole, and we did find examples for which it significantly improved the
robustness of the algorithm when compared to the unweighted version.

3.2. Choice of parameter p. A fundamental issue in using the augmented
Lagrangian in a secant algorithm is the choice of the augmentation parameter p, and
this is thus an issue for SALSA also. Although, as mentioned in the introduction, any
value of p greater than the threshold value/5 will make the Hessian of the augmented

TLagrangian H,(p)=-VL,=Vxd,+pA,A, positive definite, /5 depends on the
unknown matrix

The practice of choosing a large p from the very beginning has proved to be
computationally ineffective for the SQP augmented Lagrangian secant method. Not
surprisingly, as was also observed by Martinez 15], we found that the same ineffective-
ness also exists for the structured version, SALSA.

An alternative approach that we consider here is to choose Pk just large enough
so that yTSk is positive. The formulation of SALSA provides a natural framework for
doing this. As we can see from the definition of yk

s in (2.4), p can be increased whenever
needed to make yWSk sufficiently positive, as long as A+Sk O. The difficult question
here is what is meant by sufficiently positive. Suppose we choose Pk just large enough
so that ySkTSk ---S[Sk. If/3 is a very small positive constant, then B+ will be nearly
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singular (having an eigenvalue less than or equal to fl) whenever YgkkTSk <--0. If / is
reasonably large, then we get a poor approximation to H, whenever the smallest
eigenvalue of the reduced Hessian Z,H,Z,, where Z, is an orthonormal basis for
the null space of A, is much less than/3 (provided that Sk has a significant component
in the null space). However, if we impose the condition

yTsk(3.2) yL,sll-
we have a condition on yrSk that is inactive when Sk is in the null space of A+I and
the Hessian of the Lagrangian is positive definite on that null space, and avoids
near-singularity of B+I when Sk has a significant range space component Y+Sk.
Consequently, as will be shown in Theorem 3.1, imposing the condition (3.2) solves
the problem near the solution.

However, when this positive definiteness fails, as it may far from the solution, we
argue that this bound should be larger. This is because the term yyr/yrSk in the
BFGS updating formula (2.5) can get excessively large when yrSk is small relative to
Ily ll 2. To demonstrate this phenomenon, let us suppose that we are in a situation
where yTsk (0 and Y+lSkl[<< IY[[. If Pk is chosen such that yTsk is comparable
to [Y[+Skll 2, then yrSk<< llyll. On the other hand, the magnitude of llyll (i.e.,
llY+PkYk+ Y2+Skll) can be as large as the dominant term lYII. Consequently, the
rank-one matrix s st, sr

YkYk /Yk Sk can be excessively large, since its unique nonzero eigen-
value is lyllZ/yrSk. As a result, the newly updated matrix B+, could be badly ill
conditioned. To see this, observe that a lower bound for the spectrum condition number
of B+ is

ST L S ST S
Yk Ok+Yk/Yk Yk Ily lllls ll
S Bk+lSk/S sk yrsk

In deriving the above estimate, we used the facts B+s y and

yrBf+ly (yfryf)2/yfrSk.

Now it should be clear that the condition number of Bf+l will be large when yrSk is
small relative to Ilyfll I111. In experiments we have observed algorithm failures due to
this behavior. However, these failures were avoided by requiring in addition that
yTsk lys.l.

Therefore, combining this condition with (3.2) yields the following strategy for
choosing Pk at each iteration. Whenever Y+sll is suciently positive, we choose

Pk > 0 such that

(3.3) y Tsk=y Tsk+pkS[Yk+IYL- Sk>max{Iy Tsk[,PI[= Y.+ s II
where p is a positive constant. The condition of YL,II being sumciently positive
will be discussed in the next subsection. In that case we need a back-up strategy, which
will also be discussed in the next subsection.

It is straightforward to show that (3.3) is equivalent to requiring

(3.4) yrskmax{,}llY+lSkl.
In our implementation, we set 0.01. We choose Pk to be the smallest nonnegative
value satisfying (3.3), which implies that we choose Pk 0 if

(3.5) Y rSk Y + s II
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It can be easily seen that when Sk is in the null space of A[+, and Xk is near x,, which
implies yrsk > 0 under assumption A3, condition (3.5) will hold. On the other hand,
when the step has a significant range space component Yk+I Y/ISk, near-singularity
of B+, is avoided because 7- /

Sk Bk+lSk >- Ull Y+lSkll 2. Moreover, the condition y7-Sk >--
lyekT"Skl is designed to prevent the deterioration of B+I due to relatively small y7-Sk.
Our computational experiments have shown that this heuristic condition works quite
well. In addition, as a result of enforcing (3.3), y has the following nice property.

THEOREM 3.1. Under assumptions A1-A3, ifpk is chosen to satisfy (3.3), then there
is a constant M such that

(3.6) y7-Sg M lls [[ 2

for all Xk and Xk+ sufficiently close to x, and/k+l sufficiently close to A,.
Proof Let/ be some value such that H,() V{(x,, A,) + A(x,) W(x,)A(x,)

is positive definite, and let/x be the smallest eigenvalue of H,().
Case 1. rL,sll<- ,llsll=/(3;) Then for some constant C>0,

ySkT‘Sk >- yekrSk

when trg max (llx-x, ll, Ilx+,-x, ll, I1+,-,11)/x,/(3C).
Case 2. IIgL,sll=> ,,llsll=/(Bt;). Then by (3.3)

(3.7) y7-Sk - ’ Y+, s,, 2 > ’1

In either case our result holds with M --min [/x,/3, vtx,/3]. I-1

Note that the only property of the matrix Yk+ used in the proof was the existence
of 3 such that H,(3) is positive definite. This means that Theorem 3.1 also holds for
any choice of Yk such that yk--y o(llsll), or one using Ak+l in place of Yk+.

A nice feature of this result is that it shows that we can pick Pk SO that y acts as
though H,(pk) were positive definite (it satisfies (3.6)) even though we do not know
whether we have chosen Pk large enough to make H,(pk) positive definite.

3.3. A back-up strategy. Theorem 3.1 seems to indicate that we have a good
strategy for choosing the augmentation parameter and maintaining positive definiteness
of Bk in a neighborhood of the solution. In fact, it actually allows us to maintain
positive definiteness whenever Y+ISk is nonzero.

However, in the above strategy for making yTsk positive, there is one case that
the structured augmented Lagrangian approach is incapable of handling: that is, when

(3.8) Y+,sk =0 and yTsk

This is analogous to the case ySk <= 0 in unconstrained optimization. We have shown
that this will not happen when the current iterate is already close to a solution, but
globally this may happen. In addition, if yekrSk <--0 and is not zero but very
small, the choice of p given by (3.3) would be excessively large. Therefore, in these
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cases we need a back-up strategy for preserving positive definiteness, and we need a
rule for deciding between the back-up strategy and the SALSA update.

A possible option for such a back-up strategy is to just not update, i.e., set B/I B
whenever the case (3.8) occurs. However, in experiments with this strategy we have
observed that once an update is skipped, the algorithm often continues not to update
for a number of iterations without much progress, requiring a large number of iterations
to solve the problem. The problem with the not-to-update strategy seems to be its
sacrifice of a self-correcting mechanism. This sacrifice may cause problems in the
following way. Suppose the not-to-update strategy is invoked when the step Sk is very
small due to very large elements in the matrix B as well as small I]h(Xk)ll. Because

T
Sk is small, Xk/l(=Xk + Sk) will be close to Xk. Since yeTsk < 0, we would like Sk Bd/lSk
to be small. Instead, the update is skipped and B+I continues to be large. As a result,
Sk/l is again very small and has a direction close to that of Sk (because B/I B and
Xk+l Xk). At the (k+ 1)st iteration the update will be skipped again and this process
can be repeated for many steps.

Having been convinced that skipping updates is not a good strategy, we adopt
the following back-up strategy. Noting from (3.1) that y is augmented by a constant
times the projection of Sk on the range space of Ak+l, it seems natural to use Sk itself
whenever its projection on the range space of Ak+l is too small. Therefore, whenever
(3.5) is violated and

(3.9)
Twe replace Yk+l Yk+lSk in (3.1) by Sk. Here /31 < 1 is a small positive number. We

choose the value/31 0.01, which seems to work well experimentally. When using this
back-up strategy we choose Pk such that

(3.10) yTs, yeTs, + psfs _->max (lyersl, 11Y+lS 2)

is satisfied, which is analogous to condition (3.3).
Condition (3.9) is designed to ensure that the back-up strategy is eventually turned

off as Xk approaches x,. This is due to the fact that Y+lSkll is of order O(llSkll2).
This is the subject of the following result.

THEOREM 3.2. Assume A1-A3. If condition (3.9) holds, Xk and Xk+l are sufficiently
close to x. and Ak+l is sufficiently close to A,, then condition (3.5) is satisfied and therefore
the back-up strategy is not selected.

Proof Suppose condition (3.9) holds and let Zk+IRnn-’ be such that its
columns form an orthonormal basis for the null space of A[+I. It follows from
ykT+I Sk < 1 Sk and Sk Zk+IZk+ISkT + Yk+l Y’+ISk that

II/+lSll.
1 -/32

Substituting the above into V+lSkll < I1  11 we obtain

(3.11) Yff+lS < IIz+,sll + Y+lSll < IIZff+lS II=
-/31

Let

k V 2x{(Xk + ’s, Ak+ d’.
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Then we have
Tyrsk SkSk SZk+l(Z+lakZ+l)Zk+S

d-s2 Yk+( Y+l --Jk Yk+l) Y+lSk + 2s2 Yk+l( YLI kZk+I)ZL1Sk
o(llgL,s ll 3)

by (3.11). By assumption A3, for Xk and X+l suciently close to x. and Ak+I to

 lIZLls ll =

for some constant > 0. Therefore, by (3.11),

yrSk ZL,s 1 fl)[ r+lSk r+lSk

for r,sll suciently small, and condition (3.5)is satisfied.

3.4. Subproblem solution and multiplier estimates. Our procedure for computing
the solution of (1.6) is as follows. A QR decomposition of Ak is first performed, namely,

(3.12) Ak Yk Zk)(k) YkRk,

where Yk R is an orthonormal basis for the range space of Ak, Zk Inx(n-m) is
an ohonormal basis for the null space of A, and Rk is an m by m upper triangular
matrix. The solution dk Of the subproblem (1.6) is given by

(3.13) dk Ykrdk + ZkZ2dk,

where

(314) rdk grhk and Zdk r -1Zk BkZk) Z(gk +BYkrdk).

The multiplier associated with the QP subproblem (1.6) is

(3.15) oP _(A2Ak)-Ak+ A(gk+Bdk)

We use this multiplier estimate in defining y. Another possible choice for the multiplier
estimate is the least-squares estimate

LS T --1 TAk+Ak(3.16) Ak+l --( +1 Ak+lgk+

However, in our experiments we found that use ofthis value resulted in significantly
more failures than the use of (3.15). Therefore, we will use the QP multiplier estimate
to form y in our numerical tests, that is,

QP QP(3.17) y Vg(Xk+l, Ak+l) Vxg(Xk, Ak+).

3.5. Line search. In order to test the viability of SALSA in a line search globaliz-
ation framework, we need to specify a merit-function for the algorithm. Our purpose
here is not to determine the best merit-function, but to use a simple robust function
to provide some context for testing our updating strategy. We choose a merit-function
of the form

(3.18) (x, w)=f(x)+ w(i)lh(i)(x)l.
i=1

This type of merit-function was first used in an SQP algorithm by Hart [13] and was
later also used by Powell [19].
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Let 4,k(r)=4,(Xk+rdk Wk), r---->0, and let 4,(0) be the directional derivative of
4(x, wk) with respect to x in the direction dkmthe solution of subproblem (1.6). Then

i=1

which follows from the fact that dk satisfies the constraints of subproblem (1.6)

Vhi)Tdk --h(ki), i= 1, 2,... m.

It has been shown by Han [13] that a sufficient condition for 4,(0) < 0 is

(3.19) W(k’) > I(A?+,)(’)I
Qpfor all i, where Ak+l is the Lagrange multiplier associated with the kth QP subproblem.

Han[ 13] proves a global convergence result, assuming that (3.19) is eventually satisfied
for a constant w. This holds under his conditions if the weights are chosen to be
monotone increasing. However, it has been observed that the performance of this merit
function is rather sensitive to the choice of the weights w. Too large a w can also slow
down convergence. Powell [19] first used in his code VF02AD a strategy that allowed
w to fluctuate; more specifically,

w() max {](A?+P1)(i)[, 0.5(I hk+l)QP (i) [_11 ,,v (i)k_l )}"

Though this strategy has been shown [14] to be computationally successful, it does
not meet Han’s condition for global convergence. Moreover, Chamberlain [3] construc-
ted an example that shows that Powell’s strategy of choosing w can lead to cycling
instead of convergence.

We performed numerical tests using monotonically increasing weights and found
that this strategy resulted in a large number of failures with both Powell’s method and
SALSA. This was particularly true when we used nonstandard starting points that were
far from the solutions or ill-conditioned initial Hessian approximations. It seemed to
occur fairly often that an early estimate of the Lagrange multiplier would be much
larger than the true multiplier. Then the corresponding large weight, kept large by the
monotonicity requirement, would cause the line search to take very short steps,
sometimes leading to failure.

In order to have a more meaningful comparison in a realistic environment, we
used the following simple nonmonotone strategy. We define at the kth iteration

w2’)- ,(IaQ+l)()] / a), i-- 1, 2,’’’, rn,
QPwhere/*k > and 6 > 0 (here we choose 6 0.0001) and ak+ is the Lagrange multiplier

estimate obtained by solving the quadratic programming subproblem. Although a value
of /*k 1 does give a descent direction (see (3.19)), we found that we were able to
take full steps more often if/k was chosen large enough so that

4,(0) <_- -Igdl.

Consequently, the formula we used for choosing k was

txk max {1, 2g[ dk/ 2 (l(Ae+Pl)(i)l + 8}h(i)

i=1

This is somewhat similar to a condition proposed by Powell [20] in the context of a
monotone strategy. Of course, we can make no global convergence guarantees for this
nonmonotone strategy, and it is certainly possible that instances of cycling like those
discussed by Chamberlain [3] could occur. However, based on our experiments, the
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likelihood of cycling seems to be extremely low (it was never observed) for equality-
constrained problems. In addition, it should be noted that most proofs of convergence
involving quasi-Newton methods and merit-functions (except that given in [2] for the
reduced Hessian case) assume the boundedness of IInll or IIn;’ll, a property which,
even locally, does not follow from our analysis of this method. Thus even if we used
monotone increasing weights, we would have only a very weak guarantee of global
convergence.

A back-tracking strategy is used in our line search to determine a step-length rk
satisfying the sufficient decrease condition

(3.20) 4(r) =< 4(0)+ ar4,(0),

where 0 < a < . Here we choose a 0.1. We always start from r> 1. If ’(kg> satisfies
(3.20), we let ’k r(g’, otherwise,

{ { 0"54’(0)’(+’=max 0.1, min 0.9,b(0)+b,(0)r(j_b(r(
The formula on the right-hand side comes from a restricted quadratic interpolation.
We limit the number of back-trackings to 10; if j > 10, we abort the line search and
terminate the algorithm. The above back-tracking procedure is basically the one used
by Powell [19].

It is well known that the nonsmoothness ofthe merit-function b(x, w) may prevent
a step-length of one from being taken near the solution even though it is a good choice.
This phenomenon is commonly called the Maratos effect. It is certainly an issue that
should be adequately addressed in a production code, but it does not happen very
often and we therefore took no specific measures to combat it. The Maratos effect does
not appear to have been a major factor in our numerical experiments; in only a very
small number of cases was a step-length of less than one taken within the last three
iterations of a run and it never happened within the last two iterations.

3.6. Algorithm description. Now we are ready to describe the complete form of
SALSA. We suppose that all the quantities involved in the algorithms have already
been evaluated before they are used.

ALGORITHM 3.1 (SALSA).

Step 0. Choose positive constants tol > 0, v,/3, a positive integer mxiter, Xo R",
and a symmetric positive definite matrix B R. Set k 0.

Step 1. If the stopping criterion II(Zg, h)ll-<tol is satisfied, exit.
Step 2. If B is numerically indefinite, stop; otherwise solve the subproblem (1.6)

QPfor the search direction d and the QP Lagrange multiplier estimate
using (3.13), (3.14), and (3.15).

Step 3. Perform the line search to determine the step-length -. If the number of
back-tracking iterations exceeds 10, stop; otherwise, set x+ x + ’d
and Sk Xk+

Step 4. Calculate yk
e given by (3.17). If yers >= VII Y+,sII 2, set y ye. Otherwise,

set y ye + p,v, where

p (max {lyersl, vii YT+lsII}-- yeTs)/IIVII,
if YkT+,s,[[ >_--min {/3,,

t)k
sk, otherwise.
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Use the updating formula (2.5) to obtain BL
k+l

Step 5. If k > mxiter, then stop (too many iterations); otherwise, increment k by
one and go to Step 1.

Since Powell’s damped BFGS method is one ofthe most efficient methods currently
available, for the purpose of comparison we also implemented Powell’s damped BFGS
method and ran it side by side along with SALSA. Our implementation of Powell’s
damped BFGS algorithm is the following, and for simplicity we will refer to it as the
PD algorithm, or simply PDA.

ALGORITHM 3.2 (PDA). All steps are identical to Algorithm 3.1 (SALSA) except
for Step 4, where Powell’s damped BFGS update is used.

Evidently, discrepancies in the numerical performance of Algorithms SALSA and
PDA should be largely due to the use of the two different updating schemes: the
structured augmented Lagrangian BFGS update or Powell’s damped BFGS update.

4. Convergence rate of SALSA. Now we consider the convergence rate of the
algorithm developed in the previous section. In this paper we will analyze only the
local behavior of SALSA. Therefore we will assume that the sequence generated by
SALSA converges to a local minimizer satisfying assumptions A1-A3, and that a
step-length of one is eventually taken at each iteration. A proof of convergence based
on a line search on the merit-function, as in [1], would require more knowledge of
merit-functions than currently exists. As already mentioned, augmented Lagrangian
quasi-Newton algorithms have been analyzed by Han 12] and Tapia [24], [25] under
the assumption that Pk is chosen larger than the threshold value and is eventually
constant. Their analysis is similar to the theory of Broyden, Dennis, and Mor6 for
unconstrained optimization and establishes that, if Xo and Bo are sufficiently good
initial approximations, then the sequence {(Xk, hk)} converges to (x,, h,) Q-super-
linearly. Actually, Tapia [25] established that Xk- X. Q-superlinearly. Because of our
weaker and more implementable assumptions on the choice of p, we cannot prove
local convergence when Bo is a good enough approximation, but we can prove that if
the iterates converge to the solution, they converge R-superlinearly.

We would like our analysis to apply to a wider class of implementations of SALSA
than the detailed Algorithm 3.1. To achieve this we will base our analysis on the
following generalized version of SALSA, which differs from Algorithm 3.1 in that
step-lengths of one are always taken, stopping conditions are removed, and a wider
class of augmentation terms and multiplier estimates is allowed.

ALGORITHM 4.1 (Generalized local version of SALSA).
Step 0. Initialize xoR and a symmetric positive definite matrix BoR.

Set k 0.
Step 1. Solve the subproblem (1.6) for the search direction dk using (3.13)

and (3.14).
Step 2. Set Xk+ Xk -[- dk.

i].1/2Step 3. Choose the matrix A+,- A+, +, 4- o(1111), whre W/, is taken from
a bounded set of positive definite matrices whose inverses are also
bounded.

Step 4. Calculate yke= Vx(Xk+l, Ak+l)--Vx(Xk, /k+l)" If ykTSk >= llLlsll -, set
y yek. Otherwise, set y yek + pkVk, where

^T
Pk (max {[ys[, ,,llA+,sll=}-ys)/llvll,

ak+lak+lsk, if Ila/sll -> min {/31, IIsll)IIsll,
vk

sk, otherwise.



224 R. H. BYRD, R. A. TAPIA, AND Y. ZHANG

Use the updating formula (2.5) to obtain B/k+l
Step 5. Increment k by one and go to Step 1.

Note that we do not specify the Lagrange multiplier estimate Ak in Yk+ in Step
4 of the algorithm; however in theory we will require that Ak- A.. (For some choices
of multiplier estimate such as As, convergence of the multipliers is a consequence of
convergence of {Xk}, but this is not immediate for AkQP.) The form of Ak allows many
possible choices for y depending on the choice of Wk+I (see 3.1). It is easy to see
that the following choices of y are of the specified form, yk+ pkAk+ Wk+IA+ISk
O(llSkll2), and are thus covered by our analysis"

Y= Yk + PkYk+ Y2+lSk,

y Sk Yk + pkAk+ A2+ Sk

Y yk + Pk Yk Y[Sk,

Y Yk + pkAk (hk+ 1-- hk).

In the analysis to follow, we will use Yk in place ofyks and Bk in place ofB for simplicity.
The main purpose of this section will be to prove the following result.
THEOREM 4.1. Assume that the sequence {Xk} is generated by Algorithm 4.1, and

assumptions A1-A3 hold. If Xk "--) X, and ik "--) t, then Xk -’) X, R-superlinearly.
In order to prove this convergence theorem, however, we first define some useful

quantities and prove the intermediate results, Lemmas 4.1-4.4. After proving the
theorem we will then point out an interesting application to unconstrained optimization.
Note that Theorem 4.1 is similar to the rate of convergence result proved by Powell
for his damped algorithm, except that this result makes no boundedness assumptions
on the approximate Hessians. Our analysis uses some of the techniques developed by
Powell in his proof.

By assumptions A1-A3, we know that there is a value t -> 0 such that the matrix
Wk+l} thisVZL(x,, A,,/) is positive definite. Given the uniform boundedness of {

value may also be chosen so that

(4.1) s[(y + A+,,+,sk) > 0

for Xk, Xk+, and Ak sufficiently close to their solution values. For purposes of analysis,
we select one such fi and we define the matrix H,= VL(x,, A,,/3), which will be
used as a weighting matrix. We define two quantities which measure the accuracy of

Bk along the step direction Sk" the ratio of quadratic forms,

s[Bs
(4.2) qk rs k H.s
and

SBkSk(4.3) cos Ok _1/2 1/ BkSk

the cosine of the angle between BkSk and H,Sk, measured in the H1/2 weighted norm.
These two quantities, which ideally have value one, thus measure how close the
magnitude and direction of BkSk correspond to the magnitude and direction of H,Sk.
We now show that these two quantities provide rough bounds on the ratio of IlSkl] to
the error, and on the ratio of successive errors. We will also use the notation ek Xk- X,
in what follows.
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LEMMA 4.1. Given assumptions A1-A3, there exist constants 1 and Ye such that

if xk is sufficiently close to x., and Sk solves (1.6), then

(4.4) 1+
qk <_ <_

cos 0 ek II- Te COSOk
"[-

and

(4.5)
COS Ok

Proof. By the way the step is computed, IIB,sll IIznsll IIZgll. Therefore,

sBs ss
IIt--ki -Skll SkBk-----Sk I[Zgll

SBkSk T
S k H,Sk

BkSk H, Sk S BkSg
Z gk

for some constant Y’I, since H, is positive definite. Thus

IIsll vl
cos o IIZgkll.
qk

Looking at the normal component of the step we see that

IIs, >--Ilak(A[Ak)-lA[skl[ II-Ak(A[Ak)-lhkl[ >-- .llh,
for some constant . Then, in the neighborhood of a minimizer satisfying assumptions
A1-A3, we have

IIx, x.II v(ilZg, + IIhll).

y cos Ok

and the left inequality of (4.4) follows immediately.
To establish the other side note that

SSkSSk sBkSk
T

Sk Sk

S BkSk
Therefore

Yk BkSk)ZkZk BkSk + Yk

(lls,ll IIZgl[ + YSk[[

< xs IIBs___lJIIxll SBkSk
IIzg, + V2 SBkSk Ilh, ll.

and since H, is positive definite,

H, Bs H, s
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from which the right inequality follows immediately. Inequality (4.5) follows from
(4.4) upon noting that, by the triangle inequality,

Actually, the previous lemma could have been proved with any positive definite
matrix replacing H, in the definition of qk and cos Ok. However, in the next lemma
the use of H, is essential to establishing the more precise result that if qk and cos Ok
are sufficiently close to 1, then the ratio of successive errors can be made arbitrarily small.

LEMMA 4.2. Under the conditions of Lemma 4.1,

(4.6) ek+1 0(11 ek
2 + Z B H,)s II)

{ q
-2q+ 1 IIsll(4.7) o Ilell+ \cos2 0

Proof. First we decompose the error into two parts and consider each separately.
Observe that

z[H,e,+ z H, ek + sk)ll

Ilz[VL(xk, A,,3)- VL(x,, A,, t3)+ B,s,]

/ z[(n,- n)s + o(11 e =)

IIZ[[VL(x, A,, )--gk +(n,- n)s]ll + O(11 ell =)

The range space component of the error is given by

(4.8) a[e+ A[e + a[s

(4.9) h + O(llell =) h O(II e I1).
The total error is related to these two paas by

TIle+ll A[ Ae+
and by assumptions A1-A3 the matrix

is bounded for all x in some neighborhood of x,. Therefore

(Z[H*ek+ll)=O(llekl[2+llZ[(B-H,)sll),
which is just (4.6).

To establish (4.7), note that

IIH;’/=(B H,)s 2 2

which, since H, is nonsingular, implies that the right-hand side of (4.6) is of the same
order as the right-hand side of (4.7). [3
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Having established the effect of the quantities qk and cos Ok on the length of the
computed step and the error at the next point, we now consider the issue of how these
two key quantities are related to the BFGS update To that end we define, for any
positive definite matrix B, the quantity

0(B) =trace (H-I/2BHI/2)-log det (H-I/2BH-I/2),
which may be considered as a measure of the deviation of B from H,. Note that q
is a strictly convex function over the set of positive definite matrices, and it has a
unique minimizer at B H,, as is discussed by Byrd and Nocedal [1].

We now show that {Pk} is bounded and that the update has an important self-
correcting property with respect to q. Close to the solution if qk or Ok deviates
significantly from 1, and if Sk is close to the null space, then q(B) is decreased (i.e.,
Bk+ is closer to H,). The self-correction relation (4.10) established below is analogous
to the one of Lemma 7 in [18] except that it uses the function in a manner similar
to equation (2.9) of [1] instead of a weighted Frobenius norm.

LEMMA 4.3. If A1-A3 are satisfied, then for all Xk and Xk+l sufficiently close to x,
and all hk+l sufficiently close to h,, there exists an upper bound for the augmentation
parameter Pk chosen by Algorithm 4.1. In addition, for any bounded choice of Pk, if Bk
is positive definite, the updated matrix produced by the algorithm satisfies

(4.10) O(Bk+l)(Bk
qk

lOgqk+l+y4k+Y3cos2 Ok
where k max {]]ek]}, ]]ek+]], Ak+l- A.]]}, and 3 and 4 are constants.

Proof By Theorem 3.2, sufficiently close to the solution, the back-up strategy is
not used, and the value of Pk chosen in Step 4 of Algorithm 4.1 is the smallest value
satisfying (3.3), or equivalently, (3.4). Since the value is such that sufficiently close
to x. (4.1) holds, then it follows that a value of fig aS large as 2 + u will satisfy (3.4).

By the definition of , and since det (Bk+)= (y[Sk/S[BkSk) det (Bk),

BssB y(B+)=O(B)+trace H/ yrs H/
(4.11)

IIH-/BsII y[H-lyk
S[BkSk + y[s 

Tysk Sk BkSk-log
s[H.Sk + log

S kTH.sk

(4.12)

By Steps 2 and 3 of the algorithm,

Yk H,Sk Ak+IAk+IS + pA+,Ak+lSk" + O(o-,lls,ll)
TH,sk + Ak+,(pkWg+l- pI)Ak+lSk + o( s II).

This means that

y[Hlyk yfSk + yfH’Jg+,(pkWk+l I)A[+lSk + O(k [[Sk 2)
y[Sk + S[Ak-I(pkWk+I--I)A[+lSk

T+Sk Ak+l(PkWk+I I)A[+HIAk+I(PkWk+I I)

A[+Sk +
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so that using Theorem 3.1, the fact that A+s= h+O(llsll), and the uniform
bound on Wk+l,

(4.13) yTHlyk_ ()2ys- 1 + 0 +

In addition,

so that

y[sk s[H,sk + s[Ak+l(pkWk+-I)A[+s. + O(o- s I1=),

(4.14) -log y[s____=_log 1- O + O(o-k)s[H,Sk

(4.15) =O [[hll
+O()

IIsll
for rk and IIhll/llsll sufficiently small. Since, by Theorem 3.1, y2sk/s[H,sk is bounded
away from zero, (4.15) also holds if either o-k or IIhll/llsll are not small. Substituting
(4.13) and (4.15) into (4.12) and using (4.2) and (4.3) we get

Ok+l<fk
COS2qk0k -lOgqk+l+O(o’k)+O|llll;ll]2.[h,. \

\ k/11

To analyze the iterates produced by the algorithm we would like bounds on the
ratios [[sll/llel and Ile+l[I/llell. Such bounds would hold at each iterate if we had
bounds on the quantities IIBkll and IIZB-1ZkII, as is shown in [18], but we have not
assumed and cannot establish such bounds on Bk. However, the self-correcting property
of Lemma 4.3 based on the departure of qk and cos Ok from 1, can be used together
with the bounds in Lemma 4.1 to bound the average behavior of any large subset of
the iterates.

LEMMA 4.4. Assume that the sequence {Xk} is generated by Algorithm 4.1 and that
assumptions A1-A3 hold. If Xk-- X, and Ak- A,, then there is a constant such that
for any k> 0 and any subset S of {1,..., k},

(4.16) [i-is
In addition, for any p e (0, 1) there are constants fll and f12 such thatfor any k > 0 the set

(4.17) k je[1, k]" ,llell=....
contains at least pk elements.

Proof Summing up the recursion (4.10) established in the previous lemma, we
have that

[
j=0 COS20j

og q + +4+ r\/
Since IIA(x)ll is uniformly bounded near x,, the quantity Ilhll/llsll is bounded above
for all k so that

j=0 COS20j
log q + 1 ] + ky’,
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for some constant 3". Alternatively,

(4.18) [ q -logq-l]<=ky’.
j=0 COS20j

Now note that by Lemma 4.1 for any j (since we may assume without loss of
generality that 3/2 > 1),

ej+l
log 3/ ( 1 +log

Ilejll COS Oj

/
log y2 + log | qj +

COS Oj\
+ 1) -log qj

<_-log3,2+
q

+q-logq
COS Oj

-< log 72 nt- qJ
nt- 2q 3 log qj

COS Oj

<----log T2+3( qj
--log qj).COS Oj

Therefore,

log 3 L
--<3 s=0 CO Oj

log q 1 ] + k(3 + log 3/2)

log q 1 ] + k(3 + log 3/)/2)

--< (33/’+ 3 + log 3/2)k

by the fact that all terms in the sum are nonnegative and by (4.18). The nonnegativity
of the terms in the sum follows from the fact that

q
1 -log

qJ )q
log qj 1 (-log COS20j + S"’-(4.19)

cos2 0 co 0 cos2 0j

and, by the properties ofthe logarithm, both expressions in parentheses are nonnegative.
The first result follows by taking the exponential of both sides of (4.19), and

letting/3 3/2 eer’+3. To establish the second result, we apply to (4.18) the same argument
as in the proof of Theorem 2.1 of Byrd and Nocedal [1]. The relation (4.18) implies
that for any k, at least pk of the (nonnegative) terms in the sum are less than or equal
to 3/’/(1-p). For these terms (4.19) implies a positive lower bound on cos 0 and upper
and lower bounds on q. Then the existence of the constants/31 and/32 in (4.17) follows
from Lemma 4.1. [3

Now we are ready to prove our main result, which we restate here.
THEOREM 4.1. Assume that the sequence {x,} is generated by Algorithm 4.1 and

assumptions A1-A3 hold. If x, - x, and h, - ,, then xk x, R-superlinearly.
Proof Suppose that the convergence is not R-superlinear. Then there exists a

positive constant r and a subsequence Y{ such that

(4.20) Ilell > rk for all k
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We will derive a contradiction from this assumption. Consider the recursion established
in Lemma 4.3:

qk
-log qk0+ --< 4’ cos: O

Let

(4.21) k j[1, k]" s-=
and let 7rk =-lkl, where 1. denotes cardinality.

Case 1. {rk}kX converges to 0.
Note that for k Y{’, Lemma 4.3 implies that

j=o COS20j--log qj + 1 + y40"j "lV O’j I "31- kTrkT

for a constant 3’5, since IIhjl[/[[ll is uniformly bounded above. Therefore,

1 qJ
log qj 1 < 4 -- 1)o3 + 37"k’)/5(4.22)

=o cos2---- o+=o
Since we are assuming that {e} and a subsequence of {} converge to 0, the right-hand
side and, thus, the left-hand side, of (4.22) converge to 0 for this subsequence. Therefore
for any 6 > 0 there exists ko such that if k > ko and k Y{, then

cos =?
Since each summand is nonnegative, this implies that q/cosa 0- log q- 1 N for at
least k/2 values of j N k

Now note that

cos 0 cos 0 cos 0
and both quantities in square brackets are nonnegative, so that by choosing 6 sufficiently
small we can make [q 1] and 1 -cos 0j arbitrarily small for half the iterates. By Lemma
4.1 the quantity IIs ll/llejll is bounded above for those iterates. Now consider (4.7), and
note that the quantity (q,/cos20g-2qg + 1) 1/2 is zero when qg =cos 0g 1 and is
continuous at that point; so by (4.7), Ile / ll/llejII can be made arbitrarily small for
those iterates.

Therefore, we have that for any e > 0 there exists ko such that if k > ko, k Y{’, then
e+lll/II ell < e for k/2 values ofj =< k. Let S {j =< k: e+lll/Ilej]] < e}. This implies that

using the bound (4.16).
By choosing e small enough we see that ([[=1 (lle/ll/llell)) ’/ is arbitrarily small

for all sufficiently large k Y{’, thus contradicting (4.20) in Case 1.
Case 2. There is an infinite subset Y{’c Y{ and a constant > 0 such that 7rg->

for all k Y{’.
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Apply Lemma 4.4 with p> 1-(/2) (note that =<1). Consider k’t and k,
the set of iterates defined by (4.17). Now define the set

-k {j k (q k" j- 1 k}.

The number of elements in k that are not in ffk is no. more than the number of indices
j k such that j or j- 1 is not in k, which is at most twice the cardinality of the set
1, k] k. Therefore,

(4.23) k 2(k pk)

=(+2p-e)k=rk,

where r + 2p- 2 is positive by our choice of p.
For any j fig, by (4.17) and (4.21),

Ilell /=
1

Expanding this h, we get

h(x)[I h(x-,)+ n[-,S-lll + 611s-,ll2= 61ls-,ll 2

for some constant y6. Applying (4.17) at j-1 gives

e 3/= < y6
s_ = < Y6 e_ =

Thus for the at least rk indices in ff, we have

(4.24) ell rvl]e-[ 4/3,
where y7=( y6/)2/3.

Now since the sequence converges we can choose ko so that rllell’/ (/2)’/

for all j ko- 1, where r is as in (4.20) and, without loss of generality, may be assumed
to satisfy r/2 < r/2 < 1. Therefore, for any k > ko such that k f’, we have, using
Lemma 4.4, (4.24), and (4.23),

Ilell
=o Ile-ll

Ileo_ll (rl[ e-ll 1/)
j ff[ko,k]
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For k sufficiently large this violates the assumption (4.20) for Case 2. Thus the
convergence must be R-superlinear.

Although we have assumed in Theorem 4.1 that both sequences {Xk} and {Ak} are
convergent, it is interesting to note that if Ak is given by the least-squares multiplier
estimate (3.16), then convergence of {Ak} follows from convergence of {xk}, so the
assumption of multiplier convergence is not needed in Theorem 4.1.

Theorem 4.1 establishes an R-superlinear rate of convergence, and we do not now
see any way to strengthen the result to show Q-superlinear convergence for our
algorithm. However, if we instead choose pk to be fixed and sufficiently large, we can
prove the following.

COROLLARY 4.1. Consider a modification of Algorithm 4.1, where in Step 4, for
sufficiently large k, iOk is chosen to be equal to a constant greater than satisfying (3.3)
for all large k. Then ifxk -- X, and lk "--) W., it follows that Xk X, Q-superlinearly. That
is,

(4.25) Ilx +’-x*ll- 0.
IIx -x,

Proof Note that as long as Pk satisfies (3.3) and is bounded, then Lemma 4.3
holds, and thus Theorem 4.1 holds also. Then by Theorem 4.1 we still have R-superlinear
convergence, which implies

(4.26) x x, < ,
k=0

However, the modified algorithm is equivalent, for large k, to the fixed p version of
SALSA analyzed by Tapia in [25]. It then follows from (4.26) and Theorem 7.2 of
[25] that convergence of Xk is Q-superlinear. [3

A corollary in the unconstrained case. It is interesting to note that if we apply
Theorem 4.1 in the case of unconstrained optimization, it implies a new result about
the convergence of the unconstrained BFGS method.

COROLLARY 4.2. If x. is a local minimizer of the function f(x) such that 72f(x,)
is nonsingular, and the sequence {Xk} generated by the BFGS method with step-length 1
converges to x,, then the convergence is Q-superlinear.

Proof Note that Algorithm 4.1 applied to a problem with no constraints is simply
the BFGS method. By Theorem 4.1, if the iterates converge to the solution, they do
so R-superlinearly. This of course implies that

(4.27) IIx x, <.
k=O

By Theorems 3.4 and 3.5 of Dennis and Mor6 [5], this implies that the sequence
converges Q-superlinearly.

Recently, Griewank 11 has shown us an alternative proof of Corollary 4.2 using
techniques developed in [10].

5. Numerical experiments. The algorithms described in 3 have been programmed
and tested on a SUN 3/50 Workstation in double precision FORTRAN with a machine
epsilon of about 2 10-16. The tolerance for the stopping criterion was chosen as
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tol 10-6 and the allowed maximum iteration number was mxiter 100. All the other

parameters used in the algorithm are as specified in 3. In particular, v =/31 =0.01.

We now give some details about our numerical experiments that are not stated in the
description of the algorithms.

5.1. Experiment description. In our implementation, we always set the initial
Hessian approximation to a scalar multiple of the identity matrix. A pre-update scaling
proposed by Oren and Spedicato [17] for use with the BFGS secant method for
unconstrained optimization has been adapted to both algorithms SALSA and PDA to
give this scalar. Following Shanno and Phua [23] we perform the pre-update scaling
only at the first iteration.

In the unconstrained case the scaling factor is chosen so that the spectrum of the
initial approximation Bo overlaps the spectrum of the true Hessian of the objective
near Xo. Now in SALSA, we are approximating the Hessian of the augmented
Lagrangian and in PDA we are approximating the Hessian of the standard Lagrangian.
These facts indicate that we should set B 7I where /> 0 is a pre-update scaling
factor that for SALSA would naturally be given by

(5.1) q ySorso/ SSo.
For PDA it is appropriate to use

(5.2) r/
1.1,

ygoTSo > 0

otherwise.

Observe that according to our construction of SALSA, the factor /given by (5.1) will

always be positive and therefore SALSA will always take advantage of the pre-updating
scaling. However, from (5.2) we see that this is not the case for the factor based on
PDA. In order to ensure that any differences between the numerical performance of
SALSA and PDA were not due to this difference in pre-update scaling, we used choice
(5.2) for both SALSA and PDA in our experiments. This decision puts SALSA at a

slight disadvantage, as numerical experimentation showed that choice (5.1) led to

slightly better performance for SALSA than did choice (5.2).
As can be seen from the algorithm description, the algorithms SALSA and PDA

are forced to terminate in the following three situations:
1. B is numerically indefinite. This is the situation when the Cholesky factoriz-

ation of Z[BkZk cannot be carried out or s[Bks _-<0;
2. the number of back-trackings in the line search exceeds 10;
3. the number of iterations exceeds mxiter.

All three of these cases will be called irregular terminations, in contrast to the regular
termination that occurs when the stopping criterion is satisfied. In addition, the
algorithms are stopped if a matrix Ak is found to be numerically rank deficient.
However, this situation only occurred once in the entire sequence of experiments.

A set of 44 test problems has been chosen from Hock and Schittkowski [14] and
Schittkowski [22]. A precise description of these problems can be found in the above
two references. All the problems are numbered as in these references. Problems with
numbers less than 200 (29 problems) are from Hock and Schittkowski [14] and the
rest (15 problems) are from Schittkowski [22]. For those of the problems having
inequality constraints, only the constraints active at the solution are included. Linearly
constrained problems have been excluded from our test set.

Most of the test problems are so well conditioned that the identity matrix is often
too good an approximation matrix to really test the robustness of an algorithm. In
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order to test the robustness of algorithms SALSA and PDA, from each given standard
test problem we construct four scaled variants. We first define a diagonal matrix Dq by

(5.3) D,=I+(1 i-1)n-1
(10-q-I)’ i=l,2,...,n,

where q R is a control parameter. In our tests, for each given objective function f
and constraint function h, we solve the following five problems

minimize f Dqx
(5.4)

subject to h Dqx O,

for q 0, 1, 2, 3, 4. Obviously, q 0 corresponds to the original problem and q > 0 to
the scaled variants. If the Hessian matrix of a function f(x) is H(x), then after the
diagonal scaling, the Hessian off(Dqx) is DqH(x)Dq. Since the condition number of

2Dq is 10:zq and if H(x,) is well conditioned, then for q large, in general, DqH(x,)Dq
will be relatively ill conditioned compared with H(x,).

The starting points Xo are chosen as

(.) Xo x + ( 1)(x x,),

where xs are the standard starting points given in 14] and [22]. However, for Problems
12, 316-322, 336, and 338, we use Xo--(10-4, 10-4) instead of the given Xo=0
because A(0) has zero columns and therefore is not of full rank. It is easy to see that

The number y is thus used to control the distance Ilxo-x, and was given different
values as described in 5.2. For each problem, we let the integer q vary from 0 to 4.
The total number of test cases is 220.

In the sequel, by one function evaluation we mean an evaluation of the (m +
1)-vector If(x), h(x)]. Similarly, one gradient evaluation represents an evaluation of
the n x(m+ 1)-matrix [g(x)A(x)]. Since the algorithms require only one gradient
evaluation per iteration, the number of iterations needed for a run is always one less
than the number of gradient evaluations, because iterations are counted from 0.

5.2. Numerical results. It is interesting to see how the two updating methods,
SALSA and PDA, behave locally without a line search. After deactivating the line
search subroutine as well as the pre-update scaling (because without a line search the
information obtained from the first iteration is usually unreliable), we ran both SALSA
and PDA on the 220 test cases, always using step-length one and starting from the
standard starting points xs given in [14] and [22] (i.e., we set 3/= 1 in (5.5)). It turns
out that the standard starting points are fairly close to the solutions because for all
the problems at least one of the two algorithms converged for at least one value of q.
We will call this test (220 test cases) the local test.

We also tested SALSA and PDA with the line search procedure described in 3.5
and with the pre-update scaling (5.2) on the same set of test problems. As already
mentioned, the standard starting points as given in [14] and [22] are generally fairly
close to the solutions. In order to test the algorithms in a realistic global environment,
we set 3’-- 10 for the starting points defined in (5.5) but with a few exceptions. Because
for all the q-values both algorithms failed to converge for Problem 72, we still set 3’
for this problem. We ran the two algorithms with the above prescribed starting points
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TABLE

Average numbers offunction and gradient evaluations.

q=0

SALSA PDA

23 21

Local test

q 1, 2, 3, 4

SALSA PDA

32 31

q=0

SALSA PDA

24" 29 27"29

Global test

q=1,2,3,4

SALSA PDA

28" 33 30"37

and with the line search subroutine on the 220 test cases for the pre-update scaling
(5.2). We will call this test (220 test cases) the global test.

Detailed information on both the local and the global tests that used the pre-update
scaling (5.2) can be found in Tables 3-6 in the Appendix. In Table 1, we list the
average numbers of function and gradient evaluations required by SALSA and PDA.
To distinguish the standard test problems with its scaled variants, we present the results
for q =0 (standard) and for q > 0 (scaled) separately. The average number for each
category is taken over all test cases in that category for which both SALSA and PDA
converged. For the local test, since the number of function evaluations is always equal
to the number of gradient evaluations, only one number is given for each category.
For the global test, in each category the average number of function evaluations is
given, followed by the average number of gradient evaluations separated with a colon.
The rest of the table should be self-explanatory.

As one can see from Table 1, the numbers of function and gradient evaluations
required by SALSA and PDA are comparable for test cases where both algorithms
converged. Therefore, we infer, based on our numerical experiments, that as far as
efficiency is concerned, SALSA and PDA appear comparable.

However, we observe that SALSA has displayed a somewhat higher degree of
robustness. This can be seen from Table 2, where the irregular termination behavior
of SALSA and PDA is summarized. As can be seen from the table, for the total number
of 440 test cases, PDA had more irregular terminations than SALSA did (59 versus
42). However, since most of PDA’s irregular terminations occurred in the local test,
it does seem that the line search and the scalings helped to narrow the gap in robustness
between SALSA and PDA.

We close this section by providing some additional observations obtained from
our numerical tests. Among all the updates made by SALSA in our tests, the back-up
strategy was used about 24 percent of the time. Of course, the choice of/31 in (3.9)
affects how often the back-up strategy is used and a decrease in the value of/31 will

TABLE 2

Number of irregular terminations.

q=0

SALSA PDA

4 9

Local test

q-- 1,2,3,4

SALSA PDA

20 26

q=0

SALSA

Global test

PDA

2 6

q=1,2,3,4

SALSA PDA

16 18



236 R. H. BYRD, R. A. TAPIA, AND Y. ZHANG

result in less usage of the back-up strategy. As a comparison, we also ran SALSA using
Powell’s damped BFGS update as a back-up strategy instead of the one described in
3.3. Very similar results were obtained, though Powell’s damped BFGS update, as

the back-up strategy, was used slightly more often, and the number of function
evaluations was slightly increased.

6. Concluding remarks. SALSA appears to have certain theoretical advantages
over PDA. On the one hand, if a value for the augmentation parameter happens to be
picked up that is greater than the threshold value, under standard assumptions, it will
have local and Q-superlinear convergence. Local convergence has not yet been estab-
lished for Powell’s damped BFGS method. On the other hand, if the augmentation
parameter happens to be smaller than the threshold value, we have established, under
much weaker and more realistic assumptions than those that were assumed by Powell,
that SALSA will, if it converges, converge at an R-superlinear rate, as has been proved
for Powell’s damped BFGS method. As an immediate corollary, we have that if the
BFGS secant method in unconstrained optimization converges, it gives Q-superlinear
convergence.

Our numerical experiments have shown that for a fairly large set of test problems
the overall numerical performance of SALSA was moderately better than that of PDA
in terms of robustness as measured by the number of irregular terminations. The higher
degree of robustness of SALSA is likely due to the fact that Bk is not involved in yks,
but is involved in y’ (see (3.1) and (1.10)).

Based on the established convergence results and our computational experiments,
we have been led to the conclusion that in addition to its strong theoretical properties,
the structured augmented Lagrangian BFGS secant method, if properly implemented,
also performs experimentally at least as well as Powell’s damped BFGS secant method.

Appendix: Tables. Detailed information on our numerical experiments is given
here.

In Tables 3-6, the problems are numbered after Hock and Schittkowski [14] and
Schittkowski [22] and are specified in the first column, along with the corresponding
numbers of variables and constraints (n’m).

For each value of q listed in the tables are ng’nf, the numbers of gradient and
function evaluations, respectively, as well as the final values of IIVd(Xk, Ak)ll 2 when
the algorithms terminate.

The irregular terminations are indicated by boxes around the values of

IIV{(Xk, Ak)II2 that are greater than tol= 10-6. The symbols "Inf" and "NAN" in the
tables stand for "Infinity" and for "Not a Number" under the IEEE floating point
standard as implemented in the operating system SunOS 4.0.3. Basically, both indicate
that a floating point overflow has occurred.

The three types of irregular terminations as listed in 5 can be distinguished as
follows. If the number of gradient evaluations is 101, then the algorithm was stopped
because the maximum number of iterations was exceeded. If a pair ng’nf is followed
by an asterisk "*," then the algorithm was stopped because the maximum number of
back-tracking steps in the line search was exceeded. Otherwise, the irregular termina-
tions were due to the numerical indefiniteness of the Hessian approximation matrix.
For Problem 72 in the local test of Powell’s Damped BFGS Algorithm (PDA), the
blank entry indicates that the algorithm was terminated because the matrix Ak was
found to be rank deficient.
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TABLE 3

SALSA without line search.

Prob.#

6 (2:1)
7 (2:1)
10 (2:1)
11 (2:1)
12 (2:1)
26 (3:1)
27 (3:1)
29 (3:1)
a9 (4:2)
40 (4:3)
4a (4:2)
4 (5:2)
4’ (5:3)
s6 (7:4)
0 (a:)
61 (a:2)
a (a:2)

(a:)

(4:a)
2 (4:)

(:2)
(a)
(:a)

so (:a)
(:a)

oa (:2)
100 (7:2)
0 (s:4)
0 (s:)

(:1)
10 (4:2)
a (2:1)
al (2:)

ao (2:1)
ao (2:)
al (2:)
a2 (2:)
aa (a:2)
aa6 (a:2)
aaa (a:2)
a (4:1)
aa (9:6)
a (lO:V)

q=0 q=l q=2 q=3 q=4

9:9 .2D-09

15:15 .2D-07

12:12 .1D-06

8:8 .2D-07

51:51 .6D-09

34:34 .5D-06

34:34 .6D-06

13:13 .3D-08

13:13 .8D-06

8:8 .5D-07

12:12 .4D-07

101:101 "Eq’00
68:68

14:14

11:11

11:11

8:8

10:10

7:7

6:6

21:21

43:43

8:8

11:11

7:7

10:10

33:33

51:51

27:27

43:43

25:25

18:18

60:60

59:59

62:62

59:59

49:49

44:44

25:25

25:25

48:48

56:56

.4D-07

.5D-06

.8D-06

.3D-11

.6D-06

.7D-07

.3D-06

.4Do07

.2D-06

.4D-06

.4D-07

.1D-06

.8D-08

.6D-08

.3D-06

.3D-06

.4D-06

.1D-06

.2D-07

.2D-08

.2D-09

.4D-06

.9D-11

.2D-06

.8D-06

.3D-11

.7D-08

.2D-08

.4D-O6

7:7 .3D+47
101:101 .2D+04
26:26 .4D-10

17:17 .4D-08

14:14 .6D-09

12:12 .1D-06

12:12 .1D-07

46:46 .5D-06

31:31 .5D-06

22:22 .5D-07

14:14 .4D-07

14:14 .2D-06
33:33 .9D-06

17:17 ,3D-07

16:16

23:23 .3D-07

101:101 .3DT02
19:19

11:11

13:13

27:27

27:27

14:14

31:31

101:101

51:51

15:15

33:33

22:22

6:6

28:28

101:101

29:29

9:9

22:22

60:60

54:54

60:60

59:59

70:70

71:71

39:39

28:28

75:75

43:43

41:41

14:14

16:16

.3D-06

.5D-09

.4D-08

.2D-07

.9D-07

.5D-06

.3D-06

.2D-06

.8D-08

.4D-07

.2D-06

.5D-06

.2D-07

.2D-07

.4D-07

.3D-07

.3D-08

.6D-08

.3D-07

.4D-08

.4D-06

.3D-07

.7D-07

.2D-09

.2D-07

.5D-06

.2D-07

21:21 .7D-10

17:17 .3D-06

15:15 .3D-07

17:17 .4D-06
35:35 .1D-06
36:36 .1D-05

8:8 .9D-06

31:31 .7D-06
19:19 .4D-06
6:6 .2D-07

39:39 .5D-07
29:29 .1D-06

36:36 .8D-06

10:10 .5D-07

24:24 .7D-07
14:14 .6D-06

14:14 .2D-06
28:28 .3D-07

101:101 ’

27:27 .5D-06

18:18 .2D-06

15:15 .3D-07

23:23 .3D-10

33:33 .2D-06
43:43 ,8D-06

4:4 .2D-06
34:34 .2D-07
24:24 .9D-06
6:6 .4D-11

57:57 .2D-06

38:38 .2D-06

52:52 .1D-06

11:11 .9D-06

39:39 .2D-08
15:15 .2D-07

15:15 .9D-07
37:37 .8D-08

101:101

19:19 .3D-07

101:101 -31:31 .1D-06
32:32 .3D-06
49:49 .3D-07

32:32 .2D-06

101:1014:4
37:37 .2D-06

101:101

89:89

22:22

25:25

41:41

48:48

43:43

53:53

53:53

53:53

64:64

28:28

76:76

36:36

.1D-09

.2D-O6

.4D-08

.4D-07

.8D-07

.8D-09

.3D-10

.3D-lO

.4D-08

.3D-06

.2D-O6

.2D-07

101:101

21:21 .1D-07

20:20 .4D-06

40:40

50:50

37:37

29:29

83:83

39:39

101:101

24:24

47:47

.2D-07

.4D-06

.1Do06

.2D-07

.1D-08

.1D-06

I01:I01

61:61

29:29

30:30

37:37

36:36

59:59

44:44

43:43

46:46

50:50

37:37

72:72

36:36

24:24

26:26

15:15

.3D-06

.5D-07

.6D-07

.4D-08

.1D-07

.6D-O9

.2D-07

.2D-06

.7D-06

.3D-06

.4D-07

.1D-05

.5D-08

.8D-07

.1D-07

31:31 .2D-07
21:21 .1D-07
16:16 .8D-06
25:25 .8D-09

25:25 .8D-06
47:47 ,6D-06

4:4 .2D-08
41:41 ,4D-07

10:10 .5D-07
6:6 .3D-11

88:88 .2D-06

38:38 ,3D-06

79:79 ,7D-06

12:12 .5D-06

37:37 .6D-06
16:16 .2D-06

15:15 .8D-06
40:40 .4D-07

101:101 ’63:63 .2D-06

43:43

43:43 .2D-06
8:8 .6D-07

75:75 .5D-08

6:6 .8D-07

6:6 .8D-07

29:29 [.4D+O71
52:52 .6D-06

101:101 1.5D+051
61:61

38:38

17:17

27:27

28:28

28:28

33:33

37:37

44:44

51:51

46:46

72:72

30:30

59:59

32:32

16:16

.6D-06

.7D-07

.2D-06

.3D-06

.5D-11

.3D-11

.1D-06

.1D-07

.2D-08

.6D-08

.2D-06

.8D-09

.1D-07

.2D-06

.1D-09



238 R. H. BYRD, R. A. TAPIA, AND Y. ZHANG

TABLE 4

PDA without line search.

8 (2:1) 13:13 .5D-09
7 (2:1) 15:15 .4D-08
0 (2:1) 12:12 .1D-06

(:) 8:8 .D-07

(1) 11 .D-11

(3:1) 34:34 .5D-06

3 (4:2) 13:13 .8D.06
40 (4:3) S:S .2D.0r
4 (4:2) 12:12 ,4D.07

46 (5:2) 62:62 .6D-06
47 (5:3) 4:54 .1D-06

60 (3:1) 11:11 ,8D-06

61 (3:2) 11:11 .3D-11

(:) 8:8 .D-o
65 (3:1) 14:14 .1D-06

8 (8:2) r:r .3D-08

l (4:3) : .4D-0r

2 (4:2) 21:21 .4D-06

(5:2) 44:44 .3D-06

78 (5:3) 8:8 .4D-07

(5:3) 11:11 .1D-06

80 (5:3) 7:7 .8D-08
81 (5:3) 9:9 .8D-08

93 (6:2) 35:35 .3D-06

100 (7:2) 50:50 .5D-06

10 (8:4) 27:27 .4D-06

108 (8:6) 29:29 .5D-08

216 {2:1) 26:26 .1D-09
zl9 (4:2) 18:18 .2D-or
38 (2:1) 37:37 .3D-06
sir (2:1) it:it .D+02
ls (2:1) it:it ’.iD+03’
19 (2:1) 18:8 .8D+02
z20 (2:1) 15:15 .1D+03
21 (2:1) 15:15 .2D+02
3 (2:1) 55:55 .1D-05
33 (3:2) 25:25 .1D-Or
336 (3:2) 32:32 .8D-10

4: o:o I.ro+ool
373 (9:6) 25:25 .3D-06
375 (10:9) 14:14 .2D-07

q=0 q=l q=2 q=3 q=4

21:21 .8D-0814:14 .3D-08
21:21 .2D-10
13:13 ,2D-06

13:13 .5D-07
24:24 .2D-10

31:31 .5D-06
22:22 ,5D-07

13:13 .9D-07
14:14 .2D-06
39:39 .4D-08
16:16 .5D-08

89:89 ,5D-06

29:29 .9D-07

7:7 .7D-06
20:20 .7D-07
15:15 .8D-06
15:15 .5D-09
22:22 .8D-06

28:28 .5D-08

15:15 .6D-09

37:37 .1D-06

17:17 .8D-06

22:22 .8D-06

20:20 .2D-06

20:20 .1D-06

27:27 .3D-07

I01:I01

28:28 .5D-06

92:92 1.6D+14
32:32 .ID-08

9:9 .2D-07
20:20 .9D-08
40:40 .2D-07

37:37 .5D-06

33:33 .9D-08

22:22 "2D+03
22:22 .4D+02
37:37 .7D-07

45:45 .8D-12
32:32 .ID-07

54:54 .2D-06

13:13 .2D.+061
6:6 .2D+84

14:14 .5D-06

15:15 .ID-07

18:18 .ID-11
47:47 .1D-06
17:17 ,8D-10

18:18 .3D-06
39:39 .2D-09
35:35 ,5D-06

12:12 ,59-06

25:25 .2D-07
16:16 ,8D-06

6:6 ,2D-07

44:44 .4D-08

23:23 [-
65:65 .4D-07
10:10 .5D-07
28:28 ,2D-08

19:19 .4D-08

21:21 .2D-09

32:32 .4D-06

101:101 .2D+07

52:52 .2D-07
20:20 .ID-08
24:24 .8D-08
28:28 .9D-06
43:43 ,8D-06

4:4 .2D-06
29:29 ,4D-07

18:18 .2D-08
6:6 ,4D-11

63:63 .1D-06

39:39 .9D-06
64:64 .2D-06

12:12 .8D-06

27:27 .ID-06
22:22 .3D-07

19:19 .4D-07

98:98 .3D-07

75:75 .7D-08

23:23

101:101

27:27

14:14

42:42

35:35

54:54

5:5

37:37

84:84

57:57

26:26

23:23

29:29

28:28

28:28

29:29

34:34

41:41

39:39

28:28

50:50

15:15

23:23

21:21

16:16

.2D-06

.3D-06

.9D-07

.5D-07

.7D-07

.2D-06

.4D-11

.3D-06

.3D-10

o5Do06

.6D-07

.7D-07

.ID-05

.2D-07

.1D-07

.3D-07

.2D-07

.1D+02

.1D+71
.1D-07

.4D-06

51:51 .6D-06

31:31 .2D-06

54:54 .5D-06

84:84 .1D-06

I01:I01

92:92 .4D-06

34:34 .4D-01

47:47 .1D-06

101:101 [’.3D+00
51:51 [.29+14
37:37

35:35

31:31

31:31

30:30

30:30

29:29

28:28

35:35

39:39

65:65

16:16

35:35

26:26

22:22

.3D-09

.1D-06

.1D-07

.2D-O9

.2D-07

.1D-07

.1D-08

.1D-07

.4D-08

.3D-07

.1D-07

’.,6D-I-61
.2D-06

.3D-07

26:26
46:46

22:22

32:32

30:30

46:46

4:4

35:35

10:10
6:6

87:87

43:43

87:87

13:13

37:37

24:24

22:22

95:95

101:101

73:73

43:43

39:39

8:8

.2D-13
,2D-08

.3D-08

.ID-06
,2D-06

.9D-06

.2D-08

.2D-07

.4D-07

.3D-II

.6D-06

.8D.07

.3D-O6

.8D-06

.3D-06

.6D-07

.5D-08

.3D-06

.5D-09

.7D-07

.1D-06

101:101

6:6 .8D-07

6:6 .8D-07

44:44 .1D+08
60:60 .3D-o6

lO1:1Ol

101:101

50:50

18:18

32:32

32:32

32:32

31:31

30:30

29:29

27:27

51:51

82:82

18:18

22:22

30:30

20:20

.5D-O9

.2D-o6

.2D-06

.2D-o7

.2D-07

.3D-07

.2D-o7

.4D-06

.5D-o8

.3D-O6

.5D-o8

[.113-o2

.2D-06

.5D-06
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TABLE 5

SALSA with line search.

Prob.#

6 (2:1) 13:19 .2D-07

7 (2:1) 18:20 .8D-08
10 (2:1) 17:19 .2D-10

11 (2:1) 11:12 .3D-07

12 (2:1) 23:31 .9D-08
:26 (3:1) 32:34 .9D-06
:2r (3:1) 51:63 .2D-06

29 (3:1) 27:32 .3D-07
39 (4:2) 18:20 .3D-06
4o (4:3) 10:11 .1D-06
4,3 (4:2) 26:37 .2D-06

r (n:a) nr:al .tD-O
a (7:4) 20:27 .9D-07

a0 (a:t) 23:2 .4D-O

81 (3:2) 25:36 .2D-10

68 (3:2) 9:9 .6D-09
85 (3:1) 24:34 .3D-06

aa (3:2) 8:8 .2D-09

71 (4:3) 9:10 .6D-07

7 (4:2) 26:27 .3D-06

rr (:2) r8:9o .8D-o6
78 (5:3) 28:39 .1D-06

7 (S:3) 7:8 .9D-07
80 (5:3) 9:9 .7D-06

a (5:3) t9:22 .4D-06

93 (6:2) 30:35 .2D-06

100 (7:2) 82:93 .1D-06

104 (8:4) 25:26 .8D-06

106 (8:6) 40:42 .1D-08

216 (2:1) 17:20 .4D-10

219 (4:2) 39:49 .9D-08
316 (2:1) 25:28 .9D-07
317 (2:1) 14:21 .2D-09

18 (2:1) 19:22 .4D-07

19 (2:1) 22:33 .2D-07
320 (2:1) 13:15 .1D-05
a (2:1) 5:6 .SD-O
322 (2:1) 19:22 .2D-06

335 (3:2) 23:30 .2D-07

336 (3:2) 20:27 .8D-07

338 (3:2) 9:9 .1D-07

(4:) 84:2 .9D-06

ara (9:) 0:206 1.39+01]
aTn 00:9) 11: .D-06

q=0 q=l q=2 q=3 q=4

15:16 .3D-07

20:21 .5D-07
18:20 .1D-05

15:18 .2D-06

23:28 .2D-09
31:31 .8D-06

31:39 .6D-07

15:15 .3D-07
25:27 .5D-07

22:23 .9D-06

29:42 .8D-06

25:29 .7D-06

22:23 .1D-07

40:45 .3D-07
25:26 .8D-07

17:20 .8D-07
10:10 .2D-08

44:65 .7D-06

18:27 .3D-07

10:10 .4D-08

31:31 .3D-06

24:26 .2D-06

11:12 .6D-06

20:21 .1D-07

18:18 .4D-06

24:24 .9D-07

84:108 .5D-07

53:60 .2D-06

28:31 .1D-06

40:63*

16:18 .1D-06

47:59 .4D-07

23:29 .2D-06

42:59 .3D-06

21:25 .2D-07

31:45 .1D-05
22:33 .1D-06

16:19 .ID-09

19:23 .1D-12

79:176 .3D-011
21:25 .2D-07

15:17 .2D-06

32:39 .8D-07

101:203

15:16 .5D-07

26:30 .6D-09

26:28 .2D-09
17:17 .1D-06
21:26 .3D-09

20:27 .8D-11
34:35 .7D-06
61:72 .ID-07

19:22 .5D-09
22:22 .4D-06

7:7 ,8D-08

37:52 .8D-06

41:47 .3D-06
40:44 .4D-06

41:80

31:33 .1D-06

14:16 .1D-06

11:12 .4D-07

29:35 .7D-06

o: I.,+ol
11:12 .3D-06

32:35

29:30 .4D-06
41:43 .6D-06
22:23 .6D-07

32:36 .6D-07

42:48 .3D-06

72:108 .4D-07

55:61 .1D-06

33:38 .8D-06

37:52

14:14 .4D-07

36:37 .3D-06

16:18 .3D-08

16:17 .2D-06
1;:18 .1D-07
19:20 .3D-08
25:29 .2D-07

26:35 .5D-06

14:16 .3D-06

42:56 .3D-07

29:45 .1D-05

20:28 .2D-07

93:166 .1D-06

34:41 .6D-06

16:17 .3D-06

29:31 .8D-08

24:24 .8D-06
19:19 .3D-07
21:26 .1D-07
38:63 .2D-08
47:48 .8D-06
17:17 .8D-06
23:25 .7D-06
28:28 .5D-07
7:7 .7D-12

47:69 .4D-08
60:70 .213-06
36:38 .2D-06

12:12 .2D-07
35:36 .1D-05
16:17 .1D-06
12:13 .2D-07
31:36 .7D-08

6:21"

12:15 .7D-09

89:114

34:35 .9D-06
54:77 .6D-06

40:49 .5D-07

65:100 .6D-06

93:103 .4D-06

101:205

68:76 .4D-06

14:30"

60:65 .9D-06

13:16 .2D-07
43:45 .5D-06

17:19 .2D-08
16:17 .5D-07

16:17 .1D-06
18:18 .2D-07
19:19 .9D-06

25:26 .3D-06

17:18 .6D-07

28:36 .6D-09

31:52 .1D-07

22:33 .4D-06

101:150

42:51 .2D-07

16:16 .6D-06

38:43 .6D-06

28:32 .4D-07
19:19 .3D-06

30:34 .1D-08

30:43 .3D-07
53:54 .6D-06

4:4 .2D-07

29:32 .3D-06
14:14 .6D-06
7:7 .5D-12

55:81 .3D-06

89:99 .9D-06

69:76 .8D-06

15:15 .5D-06
41:42 .4D-06

17:18 .2D-09

13:14 .1D-07
34:39 .2D-07

8:37" .8D+001
16:23 .3D-06

39:42 1’.79+001
39:40 .3D-08
8:8 .3D-06

59:72 .8D-07

6:6 .6D-06

6:6 .6D-06

37:172 [.2D+04
75:86 .5D-07

26:48* .aD+0i
80:98 .3D-08

13:21 .1D-05

50:52 .5D-07

17:19 .7D-09

16:17 .2D-07

16:17 .8D-08

17:17 .4D-06

20:21 .3D-07

22:24 .6D-06

21:21 .3D-08

22:27 .6D-06

19:57" -2
30:46 .4D-06

101:188

48:58 .4D-06

18:18 .8D-10
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TABLE 6

PDA with line search.

Prob.
(n: m) ng nf IlVell

(2:1) 13:16 .3D-lO

7 (2:1) 17:21 .5D-06

10 (2:1) 17:19 .2D-10

II (2:1) 11:12 .3D-07

12 (2:1) 23:28 .2D-10

26 (3:1) 32:34 .9D-06

27 (3:1) 46:55 .2D-07

39 (4:2) 18:20 .313-06

40 (4:3) 10:11 .1D-06

43 (4:2) 26:39 .3D-07

46 (5:2) 101:126 .1D-03

47 (5:3) 58:62 .6D-06

56 (7:4) 18:25 .9D-06

60 (3:1) 24:27 .4D-07

61 (3:2) 18:21 .2D-06

63 (3:2) 9:9 .6D-09

65 (3:1) 25:37 .8D-06

66 (3:2) 8:8 .2D-09

71 (4:3) 9:10 .6D-07

72 (4:2) 26:27 .8D-06

77 (5:2) 80:89 .2D-06

78 (5:3) 24:32 .2D-08

79 (5:3) 17:18 .9D-07

80 (5:3) 9:9 .7D-06

81 (5:3) 18:20 .7D-08

93 ’,6:2) 29:34 .8D-07

1013 (7:2) 83:96 .2D-06

104 (8:4) 25:26 .8D-06

216 (2:1) 17:20 .4D-10

219 (4:2) 49:57 .2D-07

316 (2:1) 33:63 .3D-06

317 (2:1) 16:23 .2D-06

318 (2:1) 14:18 .5D-06

319 (2:1) 17:23 .7D-07
320 (2:1) 16:20 .6D-06

321 (2:1) 17:20 .2D-06

322 (2:1) 12:14 .4D+01
335 (3:2) 25:31 .3D-06

336 (3:2) 21:25 .4D-08

338 (3:2) 9:9 .1D-07

355 (4:1) 101:136 .2D-0.1.
373 (9:6) 101:223

375 (10:9) 11:11 .5D-06

q=0 q=l q=2 q=3 q=4

ng nf IlVell
14:17 [:D-o5
35:42 .3D-09

18:20 .1D-06

16:18 .7D-08

23:29 .5D-07

31:31 .8D-06

50:69 .2D-06

15:15 .3D-07

20:20 .413-06

22:22 .9D-06

29:42 .5D-07

26:30 .4D-06

22:23 .1D-07

33:36 .5D-07

23:24 .1D-07

15:16 .5D-06

10:10 .2D-08
27:42 .8D-09

18:24 .8D-06

10:10 .4D-08

32:33 .2D-06

23:24 .1D-06

11:12 .6D-06

20:21 .2D-07

18:18 .4D-06

23:25 .6D-07

87:111 .3D-07

53:60 .8D-06

28:31 .1D-06

32:42

16:18 .ID-06

80:115 .6D-08

23:29 .2D-06

30:48 .3D-06

19:24 .4D-07

18:22 .3D-06
15:17 .6D-07

16:19 .ID-09

20:26 .4D-07

42:64 .8D-09

21:28 .3D-07

15:16 .1D-09

35:42 .4D-07

101:199 "4D+11
17:17 .7D-06

ng: f IlVell
25:25 .1D-13

34:38 .2D-06

18:18 .6D-06

23:28 .5D-07

23:29 .5D-07

36:37 .6D-06

101:132

21:23 .9D-06

31:32 .2D-07

7:7 .8D-08

41:59 .1D-06

101:134

41:47

48:58*

32:33

17:18

12:12

29:35

26:35

12:13

35:62*

29:30

29:34

21:22

27:28

33:34

33:41

54:59

36:40

45:55

14:14

52:60

23:30

24:38

22:28

26:40

29:43

26:31

14:16

35:45

36:66

23:29

93:166

34:41

17:17

.3D-06

1.3D+3
.6D-07
.3D-lO

.6D-06

.2D-07

.3D-06

.2D-O8

.4D-06

.9D-07

.5D-07

.2D-06

.3D-06

.6D-06

.2D-06

.5D-07

.4D-07

.6D-06

.8D-07

.2D-07

.9D-06

.2D-06

.1D-07

.8D-09

.3D-06

.5D-09

.1D-08

.1D-06

.6D-06

.5D-06

.4D-12

.3D-07

.2D-09

.3D-10

.9D-09

.8D-06

.3D-06

.2D-06

.4D-07

.7D-12

.3D-06

ng :nf
29:34

36:41

23:23

28:32

27:35

47:48

18:18

22:25

28:29

7:7

56:83

99:133 .8D-06
36:38 .2D-06

12:12 .2D-07

36:38 .2D-06
20:20 .9D-08

15:15 .3D-08
36:44 .7D-06

36:43 .6D-06

16:19 .3D-09

48:72*

34:35 .9D-06
67:102 .1D-07

48:54 .2D-07

62:95 .3D-07

90:94 .7D-06

59:74 .1D-06

61:66 .9D-06

14:30* .2D-Ol
63:68 .1D-05

17:19 .2D-09

46:85*

26:31 .2D-07

24:28 .4D-06

25:31 .8D-07

25:36 .1D-07
24:33 .2D-07

32:52 .1D-06

26:37 .5D-06

36:41 .1D-06

24:34 .9D-07

28:41 .6D-07

101:230

42:52 .4D-06

20:20 .3D-07

32:33 .3D-12

35:39 .6D-06

25:25 .9D-09

34:39 .1D-07

32:41 .3D-10
53:54 .6D-06

4:4 .2D-07

28:31 .4D-06

19:20 .4D-06
7:7 .5D-12

62:92 .3D-06

101:135

72:94 .9D-06

15:15 .5D-06

41:42 .4D-06
21:22 .8D-08
18:18 .1D-07
35:49 .3D-06
36:50 .1D-07

29:38 .2D-06

43:43

38:39 .5D-07
8:8 .3D-06

48:57 .8D-07

6:6 .6D-06

6:6 .6D-06

62:138

66:70 .2D-06

24:40*

64:92 .6D+21
27:35 .5D-06

47:62 .2D-07

27:34 .2D-07

33:48 .3D-07

29:46 .2D-09

27:36 .2D-07
29:40 .9D-11
29:43 .2D-06

29:43 .2D-08

26:31 .4D-07

26:44 .1D-09

12:22 .3D-06

101:155

48:58 .4D-06

22:22 .4D-06
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A STRUCTURE-EXPLOITING ALGORITHM FOR NONLINEAR
MINIMAX PROBLEMS*

ANDREW R. CONNt AND YUYING LI$

Abstract. In this paper, some basic concepts are generalised which characterise the best linear
Chebyshev approximation in one variable to general nonlinear minimax problems. A new method for
solving a nonlinear minimax problem is presented, which exploits the structure and characterisation of
the solution whenever possible. The algorithm is globally convergent with a superlinear convergence
rate. Numerical results indicate the efficacy of the new method.

Key words, nonlinear Chebyshev approximation

AMS(MOS) subject classifications. 41A50, 65D99, 65F20, 65K05

1. Introduction. We want to solve a discrete nonlinear minimax problem, which
is written as

(1.1) min max f(x),
a:E{R iEM

where M is a finite index set. This is equivalent to finding the minimum value for the
maximum function (x) maxieM f/(x).

It is clear that a discrete Chebyshev problem

(1.2) min max Ik(x)[
xE{R l<i<m

which is a major class of discrete minimax problems, could be regarded as a special
case of a general minimax problem (1.1) with

M-{1,2,...,m,m+l,..-,2m}, f+m(X)=-f(x), i-1,...,m.

For simplicity, we describe our algorithm mainly in terms of the discrete Chebyshev
problem (1.2) written in the form of (1.1). The extensions required for the general
problem (1.1) are mentioned. In this paper, we are content to find a local minimum
of (1.1) and we assume that a local minimum for (1.1) always exists. We also assume
that each fi(x) is twice continuously differentiable.

Numerical methods for the discrete nonlinear Chebyshev/minimax problem are
less prolific than for the linear problem. It is well known that the maximum func-
tion, (x) maxiM f/(x), is not differentiable at kinks that arise whenever fi(x)
fj(x), i,j E M, j. Therefore, traditional gradient-type methods cannot be
applied directly.

The existing methods are essentially based on successive linear programming or
nonlinear programming techniques applied to an equivalent nonlinear programming
problem. Examples include [1], [13], [20], [22], [23], [24], [27], [29], [30], [36], and [38].
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The classical Chebyshev theory provides us with characterisations for the best
linear Chebyshev approximation. These properties uniquely determine a solution in
many instances and thus requiring approximations with these special features is likely
to result in a more efficient technique. Indeed, such has been the experience with clas-
sical Remez algorithms for best continuous/discrete linear Chebyshev approximation
(see, for example, [35]).

In this paper, we first generalise the characterisation of the best linear Chebyshev
approximation to a solution of a nonlinear minimax problem. The generalisation is
useful computationally because we can force the approximate solutions to have these
properties and thus expedite the solution-finding process. This is particularly bene-
ficial for those problems arising from the discretisation of continuous approximation
problems.

In developing our algorithm, we determine a suitable descent direction based
on the structure of a solution (which consists of functions in general that are not
necessarily close to the current maximum function). The new approach proposed is
different from the existing methods in that one attempts to use the structure and
characterisation of a solution of the minimax problem explicitly.

For clarity and brevity, we omit the proofs of some theorems. The interested
reader is referred to [26] for details.

2. Structure of solutions to minimax problems. The continuous Chebyshev
approximation problem on an interval [a, b] can be described as

min max If() (x,)l,
xE tE[a,b]

where f(t)and (x,t) are given functions.
nAssume (x, t) -i=1 xii(t). It is well known that, under the naar condition,

the absolute error function If(t)- -= xii(t)l of the best linear Chebyshev approx-
imation achieves the maximum value on n + 1 points with the signs of the errors
alternating [31]. Any ordered n q- 1 distinct points have been termed a reference and
an approximation with the errors alternating signs on a reference has been called a

reference function [35]. If a reference function has the same magnitude of errors on
the reference, it is further called a levelled reference function.

The famous Remez algorithm finds the best Chebyshev approximation by con-
structing levelled reference functions at each step until a levelled reference function
with the maximum error is obtained. For discrete linear Chebyshev approximations,
the concept of reference and reference function has proven to be useful in developing
computationally efficient algorithms (e.g., [4] and [6]).

Under some conditions, If(t)-(x, t)l of the best nonlinear Chebyshev approxima-
tion achieves the maximum value at k points with the signs of the errors alternating
[32]. Since the conditions are rather restrictive and k is not known a priori, there
seems to be no computational algorithm that attempts to exploit the structure of the
solution for a nonlinear Chebyshev problem.

In this section, we introduce the concepts of cadre and reference set for nonlinear
minimax problems. They are generalisations of the corresponding concepts for linear
Chebyshev problems.

DEFINITION 2.1. The vector set C {Vfi }=0 is called a cadre if and only if:
1. rank([Vfo,--., Vf]) 1;
2. for any {Vfjl,... Vfjz} c C, rank([Vfjl,..., Vfjz])= 1.
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This term was used by Descloux [18] to describe a linear Chebyshev solution
when the Haar condition is not satisfied. A cadre can be equivalently defined by the
following lemma.

LEMMA 2.2. C {Vfij }=0 is a cadre if and only if rank(C) and there exist
multipliers {hi } such that

(2.1) EAJVfiJ =0 and ikj O, j-O,...,1.
j=0

We refer to {Aj}, normahsed by Ej:0 AJ 1, if E:0 AJ 0 and o 1 other-
wise, as cadre multipliers. The relation (2.1) is also called the characteristic relation
(cf. [31]).

Cadre multipliers are different from the Lagrangian multipliers used in optimiza-
tion. The Lagrangian multipliers are usually associated with a stationary point and,
under certain nondegeneracy assumptions, the nonzero multipliers are associated only
with activities (see the following page for a definition of this term and the term e-

active). The cadre multipliers, however, are defined for any cadre and the functions
in a cadre are not necessarily e-active. Hence, we deliberately use the term cadre mul-
tipliers instead of just multipliers in order to differentiate them from the Lagrangian
multipliers.

DEFINITION 2.3. The functions {fi(x)}_o are said to be locally forming a

reference set of a minimax problem (1.1) if C {Vfi }j=o is a cadre such that

1. The cadre multipliers {Aj }j=o satisfy Aj > 0, j 0,...,1;
2. The functions {f(x)}j=o all have the same sign.

The reference set is further called a levelled reference set if the value of each function
is the same, viz.,

(x) (x) for any ij, ik E C.

From the optimality conditions of (1.2) (e.g., [37]), we obtain an equivalent char-
acterisation for a local minimum of (1.2) that relates to the structure of the best linear
Chebyshev approximation.

THEOREM 2.4. Suppose x* is a local minimum for a minimax problem (1.1).
Then, there exists a set of l+ 1 functions {f (x)}=0, which is a levelled reference
set at x* on the cadre C {Vfj (x*)}:0 with the maximum deviation.

A reference set is a generalisation of the alternating sign property of a best Cheby-
shev approximation. Our experience with the numerical methods for linear l prob-
lems [6] suggests that it is very important to exploit computationally the above prop-
erties of a solution. The algorithm proposed in this paper is developed under this
principle.

3. The model algorithm. The proposed algorithm is a descent method with
a line search. The special features of the suggested algorithm, however, are that the
search directions always decrease the maximum function and attempt to enforce the
characterisation of a solution at the same time. Since a levelled reference set with
the maximum deviation characterises a solution to a minimax problem, we attempt
to compute the solution by constructing approximate solutions with such properties.
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Assume )/Y {i0,il,"" ,it} is an index set and all the functions in )/Y form a
reference set that is not levelled. Denote

A [Vfio Vfil Vfio Vfi,.],
[f,o (x) (x), f,o (x) (x), f,o (x) (x)],

and i0 E jr(x, 0). Here, A(x, 0) denotes the indices of the active functions, which
are the functions achieving the maximum value at the current point x. In other
words, 4(x, 0) {i e M[(x) f(x)}. More generally, we define the set of e-active
functions jr(x, e) to be the set of functions that achieve the maximum deviation within
a tolerance of e, a small positive constant that may be reduced by the algorithm. That
is, A(x, ) {i e MI(x)- f(x) <_ e}.

From the following two lemmas, it is possible to determine descent directions
that attempt to construct a levelled reference set in the neighbourhood of a cadre or
reference set.

LEMMA 3.1. Suppose the functions in )/Y form a reference set that includes all
the current active functions. Then, the direction defined from )/Y by

(3.1) v -A(ATA)-le(x)

is a descent direction for all the active functions provided the reference set is not
levelled.

In [29], a similar result, that the vertical direction v is a descent direction when
the Lagrangian multipliers are nonnegative, is stated.

If a unit step along v is taken, (I)(x) + ATv 0. Thus the functions in 14; would
all have the same value as the representative function, a function chosen from ,4(x, e)
at the start of the iteration, up to first order.

LEMMA 3.2. Suppose C {Vfio, Vfl ,..., Vfi } is a nonreference set cadre with
cadre multipliers {Aj }j=o summing to one and fio (x) achieves the current maximum
deviation for (1.1). Then, the direction v defined on 14; {i0, il,’", it} by

(3.2) [Vfi aocrjVfij]Tv --(o croajfij), ij e /V, ij 7 i0, Cry sgn(f),

decreases all the active functions, assuming Vi; includes all the active functions at x.
If {fi }0 are linear functions at x +v, {fi}o form a reference set. Thus, whenever

the f’s do not constitute a reference set, moving along v, which is defined by (3.2),

[Vf aoayVf]Tv --(f cr0ayf), ij )/Y, ij io,

attempts to construct such a set.
We build up cadres using the concept of working sets. A working set is a func-

tion index set that includes all the indices of the current maximum functions. We
emphasize, however, that the working set W is not generally an active set. In 5, we

describe the details of setting up a working set.
The search direction is determined from the working set. If a cadre has not

been located, in addition to decreasing the maximum function, the search direction
is constructed to level the functions in the working set, when this is possible. The
motivation behind this levelling comes from the fact that the structure of the solution
requires the error curve to be levelled on the extreme points.

The suggested model algorithm is now outlined.
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MODEL ALGORITHM
Step 1. Suppose an initial point x is given. Set k -- 0.
Step 2. [Set up a working set]

The new working set Wk is determined. Check if there is a cadre Ck

whose indices form a subset of 142k. If there is no such cadre, go to
Step 4.

Step 3. [Construct a levelled reference set]
Check reference set conditions. If the cadre corresponds to a reference
set, compute a descent direction by levelling the reference set. Other-
wise, find a descent direction that attempts to construct a reference
set. Go to Step 5.

Step 4. [Descend and level]
A search direction dk is found that decreases all the e-active functions
and levels the functions in the working set 142k, if possible.

Step 5. [Line search]
A line search is performed on (x) along the direction dk

Xk+l +-- Xk -[- .kkdk; k k + 1.

Step 6. [Termination]
If optimal, stop. Otherwise, go to Step 2.

Step 3 of the model algorithm is one of the major parts in which the character-
isation of the solution is exploited. From (3.1) and (3.2), we can compute a descent
direction when a cadre is located (see also 6). Next, we discuss how to identify cadres
(4), how to construct a working set (5), and how to compute a search direction when
there is no cadre (6). We also present details of the computation, including handling
degeneracy (8).

4. Identifying cadres. Given a set of functions {rio ,’", fi,. }, we discuss whether
there exists a cadre within this set. We divide cadres into two types, depending upon
whether

-.Aj =1 or -.Aj =0,
j=0 j=0

where {/y }j=o are cadre multipliers. The cadre that defines a reference set always
belongs to the first type.

It is straightforward to prove the following lemma.
LEMMA 4.1. Suppose {Vfi Vfi1,..., Vfi Vfi } are linearly independent.

Then, the rank of the vector set {Vfio, Vfil,..., Vfi} is at least 1.
The following lemma gives, under certain assumptions, necessary and sufficient

conditions for the existence of a cadre with the sum of cadre multipliers being zero.
LEMMA 4.2. Suppose A [Vfio -Vfi ,’", Vfio -Vfit_l] is of full rank and that

zTVfio O, where the columns of Z form a basis for the null space of AT. Then,
there exists a cadre C c_ {Vfio, Vfi ,"’, Vfi ) with cadre multipliers summing to zero

if and only if [Vfio Vfi ,..., Vfio Vfi] is rank deficient.
Proof. Suppose C {Vfo,...,VfkE} is a cadre and {k0, kl,...,k} c_ {i0,

il,...,it} with

AjVfk =0, Aj O, Aj O,
j=0 j=0
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Then it is obvious that

(4.1) E Aj (Vfio v/k,) o.
j=0

From (4.1) and the assumption that {Vfio -Vfil,..., Vfio -Vfh_l} are linearly
independent, we know that is E {ko,"" ,k}. Hence, Al 7 0 and we have

1-1

(Vf,o vf,) i (Vfo vf,),
j--1

after padding with zeros if necessary. On the other hand, if we assume that {Vfio

Vfil ,..., Vfi Vfh_ } are linearly independent and {Vfio Vfi ,..., Vfi Vfh_
Vfi -Vfh } are linearly dependent, we have

l--1

Vf,o vf,, (Vf, vf,).
j--1

From Lemma 4.1 and the assumption that A is full rank, we have that

rank({Vfio, Vfi," Vfi,_ }) >_ 1.

Moreover, from zTfio O, and the argument that follows, we can conclude that

(4.3) rank({Vfio, 7fi ,..., 7fil_l} 1.

The above is true because, if {Vfio, 7fi ,’’’, 7fil_l} are linearly dependent, then
there exist {Aj } that are not all zero such that

l-1

,jVf O.
j=o

1--1 l--1If j=0 AJ 0, without loss of generality, we can assume j=o Aj 1.
1-1Ao 1 j=l Aj. Hence

Thus

l-1

Vf,o a(Vf,o vf).
j=l

We conclude that ZTTfio --0, which is a contradiction.
l-1 l-1If -j=o AJ -0, we have o ’j=l Aj. Hence

l-1

(Vf,o vf) o,
j=l

which is again a contradiction to the assumption that A is full rank.
Thus, using (4.2), we obtain

(4.4) EiyVf =0 and
j=o j=o
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Define C { Vfij j 0, j 0,..., u}. Using (4.4),

rank(C) _< ICl- 1.

From (4.3), we know that

rank(C) _> ICI- 1.

Hence

(4.5) rank(C)- ICI- 1.

Moreover,

# 0, Vfi, E C with E J=0"

Using Lemma 2.2, C is a cadre with the sum of the cadre multipliers being zero.
Now, we present a lemma that tells us how to identify cadres with cadre multipliers

summing to one.
LEMMA 4.3. Suppose {Vfio Vfil Vfio Vfi } are linearly independent.

Then there exists a cadre C c_ {Vfio, Vf ,..., Vfh } with cadre multipliers summing
to one if and only if the orthogonal projected gradient, zTVfio, is zero, where

A=[Vfo-Vfil,’..,Vfo-Vfh], zTA O.

Proof.
Lemma 4.1,

Since {Vf Vfil,’", Vfo Vfh } are linearly independent, using

(4.6) rank({Vfio, Vfi ,’’’, Vfil}

__
1.

The orthogonal projection of Vfo on the null space of AT is zTVfio The vector

zTVfo is zero if and only if there exist {Aj }j=o such that

(4.7) AVfio + E AVf, 0, E 1.
j=l j=0

Suppose (4.7) is satisfied. From (4.6) and (4.7), rank({Vfi0, Vfil,’", Vfh}) 1.
Let C {Vfi 0, j 0, 1,-.., 1}. Then, as in the argument for (4.5), C has rank
]tT]- 1. From Lemma 2.2, C is a cadre. Moreover, the sum of the cadre multipliers is
one.

On the other hand, if there is a cadre C c_ {Vfo, Vfi1,..., Vf} with cadre
multipliers summing to one, then, following Lemma 2.2, there exist {Aj } such that
(4.7) holds and then, zTVfio O.

Lemmas 4.2 and 4.3 together enable us to determine whether there exists a cadre.

5. Establishment of the working set. A working set is a function index set,
which is used to determine the current descent direction. Since we want the search
direction to decrease all the e-active functions, this working set 142k is chosen to include
all the e-active functions at the current point x. Nonetheless, there is flexibility in
constructing such a set. We have chosen to build up the working set by selecting the
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functions that determine the maximum function through several iterations. This is
motivated by the fact that it is the extreme points that are important in determining
the best approximation in the Chebyshev sense. Thus we require that

(5.1)

Moreover, the current e-active functions are given priority over the functions in the
old working set when forming the new working set.

However, since adjustment of the functions in the working set is necessary when
the current working set is not approaching a reference set (essentially to account for
the alternating sign property) we use )/;k to denote the set after possible modification
and the rules for changing the set will be described precisely later. Thus, we more
correctly require

(5.2)

Assume, at the kth iteration, that a representative function f(x), which can be
any function ft,(x) such that # E A(xk, e), is selected. Suppose Wk {#, il,..., it}.
The following Jacobian matrix corresponding to Wk,

(5.3) Ak [Vfu Vfil ,’", Vfu Vfi],

is required numerically to have full rank. More specifically, our implementation ac-
counts for this numerical rank. Conceptually it is equivalent to having some tolerance
on the smallest singular value of Ak.

In implementation, we consider the projected gradient zTvft numerically zero if

IIzTvf(xk)II

where the columns of Z are an orthonormal basis for the null space of AkT and T
k is

a small positive constant. Hence, if we identify cadres according to Lemma 4.3, we
have a near cadre.

Since we need the QR decomposition (see, for example, [21, Chap. 6]) of the
matrix Ak in computing the direction (see 6), we build up the current working set
Wk as follows.

CONSTRUCT )/k:
WStep 1. Set Q -- Inn, +-- {#}, where # E A(xk,e). t - O. t-

A(x, ).
Step 2. If4\Wk , go to Steep3. Otherwise, let Q2 be the last n-t

columns of Q and j e Jt\Wk. If IIQ2T(vf,-Vfj)I <_ TO, set

A- ft. \ {j}, go to Step 2. Otherwise, go to Step 4.
Step 3. If )/k- \ Wk , stop. Otherwise, let Q2 be the last n- t columns

of Q. If IIQT2 vfII <_ Tkc, stop. Otherwise choose j e )?k- \ Wk. If

IIQ2T(vf, Vfj)ll <_ T0, set )/k- )/;k- \ {j} and go to Step 3.
Otherwise, continue.

Step 4. Let a Vf Vfj. Add the column a to Ak and update Q and R
accordingly. Set:

Ak-[Ak,a], WkWkU{j}, t-t+l.

Go to Step 2.
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Thus the working set is the largest subset of )/k-lu.A(x, e) (largest in the sense
of the corresponding Jacobian matrix Ak being full rank), where the indices of the
current e-active functions have been entered preferentially.

Following the procedure of constructing a working set, it is clear that, if the
current point is nondegenerate (a current point xk is degenerate when there is a cadre
C {Vfio,Vfl,...,Vfz} such that {io,il,...,i} c A(xk,0)) and there is no cadre
with cadre multipliers summing to zero, the Jacobian corresponding to all the e-active
functions is of full rank. Therefore

A(x, ) _
W.

Moreover, if IIzTWII Tk, where Z Q2 for some Q, then a cadre (or a near cadre)
with cadre multipliers summing to one is found.

6. Determining the search direction. Assume the working set at the current
point xc is

l/Y(Xc)={io,...,it} and #-i0.

The desired search direction, in addition to being one of descent, attempts to enforce
the characterisation of a solution.

Before a cadre with multipliers adding to one is located, we would like the search
direction to decrease all the active functions and level all the functions in the working
set, if possible. It is clear that d x xc, where x attempts to solve

(6.1)

min f(x)
xE

subject to

f,(x) f (x) O, i e V(x),

in the required direction. Note that # is in fact a function of x and we use it to
denote the current representative function as long as no confusion arises.

Dropping the subscript on xc to simplify the description, one may approximate
(6.1) as follows:

(6.2)

min Vfz(x)Td + 1/2dTGd
subject to

(I)(x) + ATd 0,

where

A IV/, (x) Vfl (x), Vf, (x) Vf (x), , Vf, (x) Vf (x)],
(x) [f.t (x) 1 (x), f, (x) 2 (x),..., ft (x) l (x)] T,

and G is a matrix such that zTGz is positive definite, where the columns of Z form
an orthonormal basis for the null space of AT.

When close to a stationary point, ZTGZ is chosen to contain the curvature in-
formation of the functions in the working set in the null space of AT (see 7 for
details).
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From the construction of the working set l/Y(x), we know that A is of full rank.
Following [11], the solution to (6.2) may be written as

d--+v,
+

v -A(ATA)-lO(x).

It has been suggested in [11] that one could ignore the computation of ZTGv
altogether without significantly effecting the rate of convergence. In this case, an
approximate solution to (6.2) can be written as

d=h+v,

where

(6.3)

and

h -ZB--ZT(Vfu (x)),
v -A(ATA)-lO(x),

B ZTGZ.

It is clear that h is in the null space of AT while v is in the range space of A.
The direction in the null space of AT will be called the horizontal direction and the
direction in the range space of A will be called the vertical direction. We also point
out that, given l/Y, Z, and B, the value of h and v is independent of the choice of
(see [15] for details).

We now prove that a nonzero horizontal direction h is a descending direction for
all the functions in

LEMMA 6.1. Assume )/Y is the working set that defines the search direction. As-
sume further that B is positive definite and that there is no cadre C {Vfio, , Vfi, },
with the cadre multipliers summing to one, such that {i0,’",it} c_ 142. Then the
horizontal direction decreases all the functions in 142 equally (up to the first order);
otherwise (i.e., there exists a cadre with the cadre multipliers summing to one), the
horizontal direction h defined from 142 is zero.

Proof. The horizontal direction defined in (6.3) is

h -ZB-IZT(Vf(x)), # io,

where ZTZ In-t, ATZ 0. Since B is positive definite and

hTVfu (x) --(zTvfu (x) )TB-I(zTvfu (x) ),

it follows that

hTVf(x) < 0 iff zTVf : O.

Since there is no cadre C {Vfio,..., Vfi,} with the cadre multipliers summing to
one such that {i0,’", it} c_ l/V, we have, from the definition of 142 and Lemma 4.3,
zTvfu 0 and h is a descent direction for the representative function fu (x).

Furthermore, since

ATh-0 and VfijTh-- vfTh, ij E )42,
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any function in the working set )/Y will be decreased by the same amount (up to first
order) as the representative function f.

On the other hand, assuming there exists a cadre with cadre multipliers summing
to one, by Lemma 4.3, the result follows.

In conclusion, the horizontal direction h is a projection of the negative gradient of
the representative function onto the null space of AT. It is always a descent direction
as long as )/Y is not a cadre with cadre multipliers summing to one. As a descent
direction, it decreases the functions in the working set by the same amount (up to
first order). The horizontal direction h defined on the cadre with the cadre multipliers
summing to one is always zero.

No cadre. When a cadre is not located, vertical directions are descent directions
in most cases.

Whenever this is the situation, we perform the levelling process, i.e., set the
search direction d v + h. In the case in which the vertical direction is ascending,
the vertical direction is discarded and the horizontal direction alone is taken as the
search direction; specifically, we define

dk hk+vk ifVfTvk<O,(6.4)
[ hk otherwise.

Our numerical experience shows that an ascent vertical direction is a rare occurrence.
This may be explained by the fact that the working set is constructed to approach a
reference set. In the event that ascent does occur, we consider this as an indication
that the working set is not approaching a reference set. This may be caused by some
function, which will eventually not be maximum, being included in )/Yk. Thus the
next working set will not always include all the functions of the current working set;
instead, we define

- W \
{j0}I+-{ 0

I+, if vfTvk >_ 0, where
if A(xk, e) C )/Yk and
otherwise.

A cadre is located. If there exists a cadre with multipliers summing to zero,
the cadre does not correspond to a reference set. In this case, although v corresponds
to levelling, we emphasize decreasing the maximum function. In particular, it is
not necessarily desirable to level functions that do not correspond to a reference set.
Thus we simply take dk hk. (Note that h 0, since there is no cadre with cadre
multipliers summing to one.)

If the functions in the working set, )/Yk, form a (near) reference set, the vertical
direction vk defined by (6.3) attempts to level the functions in the working set while
the horizontal direction hk (again defined by (6.3)--hk 0 only if }/Yk contains an
exact cadre with cadre multipliers summing to one) makes the gradients approach an
exact cadre. From Lemma 3.1, vk is a descent direction. Thus dk hk + vk is a
descent direction (note that hk is a descent direction).

Suppose a cadre with multipliers summing to one has been located within the
working set. Then the vertical direction v defined by (3.2) is a descent direction for
the maximum function. Moreover, we can write (3.2) as

v -( where
(6.6) A [Vf 0-o0-1Vfil ,’", Vf aoalVfi],

If, o-0o-1 ,..., fz 0-00-1f/]T.
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We also modify the working set for the next iteration as follows. The cadre
multipliers associated with the functions in the working set are used to construct
the working set for the next iteration. The functions with positive multipliers are
considered to be the functions which should be in the working set, i.e., the correct
functions. For the functions with negative multipliers, we would like to put its negative
function into the working set. However, because of nonlinearity and the fact that the
cadre and reference set are both local properties, we prefer not to do so. Instead, the
functions with negative multipliers are simply deleted from the working set, since the
functions corresponding to negative multipliers will no longer remain e-active when
the direction v is taken and the multipliers sum to one. Thus we define

\ { < 0 }.
The multipliers are thus used as a means to construct the working set and more than
one function may be removed.

If the functions in the working set are all active and the multipliers sum to one,
moving along the vertical direction initially decreases all the functions with the neg-
ative multipliers faster (up to first order) than those with positive multipliers. This
comes from the following lemma (for the proof, see [14]).

LEMMA 6.2. Suppose V {#, il,’", it} consists only of indices of the currently
active functions. Assume further that C {Vf, Vfi ,..., Vfi } is a cadre. Assume
the direction v is determined from )/Y, as in (3.2). Then:

1. all the active functions with negative multipliers will be decreased more rapidly
than all the other active functions, if the cadre multipliers sum to one, i.e.,

Y5=0 Aj 1;
2. all the active functions are decreased equally (up to first order) provided the

cadre multipliers sum to zero, i.e., =0 AJ 0.
This corresponds to (possibly multiple) dropping of active functions for the equiv-

alent nonlinear programming problem.
Now, consider a general nonlinear minimax problem written as

min max f(x).
xe" ie{ l,...,m}

The search direction can be computed in exactly the same way except that the refer-
ence set, after a cadre has been located, could not be established as before. Since there
exists no negative function of a given function, the vertical direction that determines
which active functions should be dropped is not defined. Thus we now discuss how
the definition of the vertical direction is modified for the general minimax problem.

If the current maximum deviation (xk) is positive, we assume that for any given
f/(x), there exists an imaginary fi+m(X) -f(x). The working set k is chosen
such that

-(xk) < f, (xk) <_ (xk) for any ij E Yk.

Hence locally we can treat the problem as a Chebyshev problem and the vertical
direction, defined as for the Chebyshev problem, is a descent direction.

If the current maximum deviation (x) is nonpositive, we define a descent di-
rection in a way similar to a general nonlinear programming approach [13]. In this
case, if there exists some cadre multiplier that is negative, we simply remove the
corresponding single function from the working set and update the projection matrix
and recompute the search direction from the new projector. Under the assumption of
linear independence, this will give a descent direction [13].
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7. Approximation of the Hessian. In order to obtain a horizontal descent
direction at each iteration Bk, an (n- l) (n- l) matrix is assumed to be sufficiently
positive definite.

For problems whose solutions are on a smooth valley, i.e., the number of active
functions is less than n / 1, the second-order information from the nonlinear active
functions becomes significant for the fast final convergence of the algorithm. When
close to x*, Bk should be a good approximation to the projected Lagrangian Hes-
sian zkTGkzk, where Gk -j=01 jkv2fi(xk), the columns of Zk form a basis for

the null space of AkT, and )jk is an approximation to the Lagrangian multipliers
(which are defined by the first-order optimality conditions of the equivalent nonlinear
programming problem; see, for example, [13] or [38]).

If we assume the second-order sufficiency conditions hold at x* and let Ak be a
good approximation to the cadre multipliers A* at a solution x* (which are equal to the

Lagrangian multipliers at a solution), then the matrix zkTGkzk, for xk sufficiently
close to x*, is positive definite, as follows from continuity arguments.

A first-order method, for example, of [10], solves the problem whose solution is
at a vertex (i.e., with n + 1 linear independent activities) with a fast asymptotic rate
of convergence since, once the correct activities are determined, one is merely using
Newton’s method (or a quasi-Newton method) to determine the unique intersection of
these activities, with the corresponding quadratic (or superlinear) rate of convergence.
First-order directions are usually good descent directions when one is far away from
a stationary point and the computation of a first-order direction is cheaper than a
second-order direction.

We choose to use the first-order direction if it gives a good improvement in the
sense of constructing reference sets. Computationally, we consider that the first-order
direction fails to improve the establishment of reference sets when the working set
has not been changed for consecutive iterations (this may be a result of having the
correct set but in this case it is reasonable to want to accelerate convergence by using
a second-order direction). We arbitrarily set 3 in our implementation. When
failure occurs, we use the second-order information of the representative function or
of all the functions in the working set, depending on how close we are to a stationary
point of the subproblem.

Let ibase denote the number of consecutive iterations for which the working set
remains unchanged. Suppose p is a small positive constant used to measure the
closeness to a stationary point. The matrix Gk may be set up as follows:

(7.1)
if ibase >_ 7 and IlzkTvf.II > ,
if ibase >_ 7 and IlzkTvf.

_
p,

otherwise,

where Ajk is an approximation to the Lagrangian multipliers. We note that when

IIzkTvfII <_ p, it is reasonable to expect a suitable approximation to the Lagrangian
multipliers.

Also, when Gk I, the search direction is a first-order direction.
In our algorithm, however, we use a quasi-Newton method to update an approxi-

mation to the projected Hessian matrix B. Suppose Zk is the orthogonal matrix such
that zkTAk 0, where Ak is defined as in (5.3). In the implementation, we have

used the extended BFGS updating given below. Bk is initialised to be zkTGkzk
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when necessary, where Gk is approximated according to (7.1) by finite differences.
The extended BFGS updating follows:

Bk+l Bk 1
kT k ksr S sr

where

z+lr(z+ x)8r

y Z+1TVf (xk+1) ZkT. V.(x).

Assume Bk is positive definite. Then Bk+l remains positive definite if -kT" kr Yr
0. For unconstrained minimization, this condition is ensured by a line search. For
constrained minimization, however, it cannot be satisfied in general. We have chosen
to skip the update if the above condition is not satisfied.

8. Degeneracy. For a discrete Chebyshev problem, degeneracy handling is an
important part of a useful algorithm. This is because, for example, in the linear case,
it is not unusual for many residuals to achieve the maximum deviation. In this section,
we discuss the handling of degeneracy in our algorithm.

We define a current point xk to be degenerate when there is a cadre C
{Vf,, Vfl ,’", Vf} such that {#, il,..., i} c A(xk, 0).

Denote

Wk {it, i1,.’., il }, Ak [Vf, Vfil,’", Vf Vfi,].

If xk is a degenerate point, the following difficulty may occur. There is more than
one cadre C {Vfv, Vfi,..., Vfi, } satisfying ]/Vk c ,4(xk, 0). Thus it may not be
possible to define a search direction such that it decreases the functions in all the
cadres, although we know how to define a descending direction on one cadre.

If we consider the cadres that correspond to subsets of active functions, then there
can be three types of degenerate points:

Type A. There only exist cadres with cadre multipliers summing to zero;
Type B. There exists a unique cadre and its cadre multipliers sum to one;
Type C. There exists more than one cadre and at least one with cadre multipliers

summing to one.
A point x* is a stationary point if and only if there exists at least one reference

set consisting of active functions only.
We identify cadres by a tolerance of 7"k; the (numerical) degeneracy identified

depends on the tightness of Tk. Thus when degeneracy is encountered, we reduce it
by

(S.1) Tck+l
Tck
2

Numerically, the degeneracy of Type A can only occur when IIZkTVfll>Tkk
and ]/Yk C Jt(xk, e) [15]. For the degenerate points of Type A, there cannot be any
reference set consisting of only the active functions. This is because, for any reference
set, each of the corresponding cadre multipliers is positive and the sum of them is one.
Thus the current point cannot be optimal. For this type of degeneracy, the horizontal
direction h defined on the current working set decreases all the e-active functions, up
to first order, by the same amount.
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Degeneracy of Type B occurs when I]ZkTfttl]_T,kk 4(xk, e) )/Vk, and there
exists zero multipiers [15]. For the degenerate points of Type B, it is possible that
a reference set exists within the active set. If there is such a reference set, then the
current point is already a stationary point. Otherwise, since there exists a unique
cadre, the vertical direction v defined on the cadre by (3.2) attempts to construct a
levelled reference set. Moreover, other maximum functions not in the cadre can also
be decreased at the same time.

If IIZkTVfk <- Tk and )/V C Jt(xk, e), degeneracy of Type C occurs [15]. For the
degenerate points of Type C, we do not know how to determine a descent direction
without additional computation. Following a similar approach to [7] and [17], we solve
the least squares problem:

min
j=0

2

subject to

E0j 1,
j=0

j-0,.-.,1, It=i0.

Assume {A} is the solution to (S.2). Analogous to the proof in [7], dk defined by

J

is a descent direction unless dk 0, in which case we are optimal. Moreover, it is
not difficult to prove that (8.2) can be solved via a least squares problem with only
simple nonnegativity constraints [15].

9. Summary of the algorithm. Now we give a more detailed description of
the algorithm.

Initialization: Suppose an initial point x is given. Set k - 1, e - e0,

Step 1. [QR decomposition]
Find the working set )IVk C_ lYk-1 U 4(xk, e), Jacobian Ak, and its
QR decomposition. Assume the columns of Zk form a basis for the
null space of AkT.
If jt(xk, ) C_ )/Yk and IIzkT’fttll Tkc, go to Step 2;
If .4(xk, ) C_ 14;k and IIzkTvfII > Tk, go to Step 3;
Set e -0.1e;
If ,4(x, e) 14;k and IIzTvfII > T, go to Step 4;
If A(xk, e)

_
)iVk and IIzkTvf,

_ , go to Step 5;
We note that the first and last instances imply that we have a cadre
of type 1 (-j=0 AY 1), and the third implies that we have a cadre

of type 0 (=0 AY 0).
Step 2. [Cadre "found" with iec Ai- 1]

If ]4;k is a reference set, obtain Bk ZkTGkZk, where Gk is defined
as in (7.1); Compute the horizontal direction hk and the vertical
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Step 3.

Step 4.

Step 5.

Step 6.

direction vk from (6.3); Set the search direction dk hk q-vk and
,__ W.

Otherwise, compute the vertical direction according to (6.6) and set
}/k using (6.7). Modify Tck by (8.1)ir degeneracy is encountered. Set
dk=vk. Go to Step 6.
[Cadre not found]
Obtain Ba as an approximation to ZkTGkZk, where Gk is defined
as in (7.1). Compute the horizontal direction hk and the vertical
direction vk from (6.3). Compute the search direction dk using (6.4).
Set up da according to (6.5). Go to Step 6.
[Cadre "found" with ec 0]
Compute dk _zkzkT k ]k wk. kVf. *- Modify T by (8.1) if
degeneracy is encountered. Go to Step 6.
[More than one cadre and at least one with Yiec Ai 1]
Compute the search direction dk using (8.3). Obtain 1/k from (6.7).
Modify %k by (8.1).
[Line search]
Perform a safeguarded line search. Set k k + 1. If Ildkll2 < Ts
and Wk includes a levelled reference set, stop. Otherwise, go to
Step 1. r

We use quotes around "found" to emphasize that %k is nonzero. The safeguards
and details of the line search are given in [15].

10. Numerical testing. In this section, we compare the new algorithm with
four other typical methods: [8], [13], [23], and [38].

The numerical results are for both minimax problems and discrete Chebyshev
problems, all written in the form:

(10.1) min max fi(x).
xE iEM

The method of Conn. The method of [13] basically applies the active set strategy
of nonlinear programming to the equivalent form of a minimax problem. It is
globally convergent algorithm with a superlinear convergence rate.

At each iteration, an equality-constrained quadratic programming subproblem
is solved to determine the search direction. The subproblem is established upon
all the current e-active functions. The finite difference of the derivatives is used to
approximate the second-order information.

This approach essentially corresponds to the sequential equality-constrained qua-
dratic programming (EQP) approach for nonlinear programming problems, using pro-
jected Hessians. However, once the search direction is determined, the line search is
done directly on the nondifferentiable maximum function

Although there have been relatively fewer numerical results for general nonlinear
minimax problems than for linear problems, to date, the available numerical results
seem to indicate that the following method [23], which is a combination of a linear
programming (LP) approach and a quasi-Newton method for a nonlinear system of
equations, works well on most types of minimax problems.

The method of Hald and Madsen. At each iteration of the first stage, the method
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of [23] requires an exact solution to a constrained linear minimax problem

min max {fi(xk) + Vfi(xk)Td}
de iE[M]

subject to

Ildll _< Ak

in order to find the search direction. A trust region method has been incorporated to
ensure convergence.

If a solution is suspected of going through a smooth valley, i.e., the number of
active functions at the solution is less than n + 1, a switch to a second stage is made.
Then a nonlinear system of equations established by the Kuhn-Tucker conditions for
the active functions is solved by some quasi-Newton method.

The entire Lagrangian Hessian is approximated by some modified secant updates.
It is possible for the maximum (x) to be increased. A return to the first stage might
be necessary.

Under certain conditions, the method of [23] is globally convergent with a quadratic
or superlinear final convergence, depending upon whether a Newton or a quasi-Newton
method is involved.

The first stage of the method essentially corresponds to a sequential linear pro-
gramming approach (SLP), stabilized via a trust region, for nonlinear programming
problems.

The method of Womersley and Fletcher. The method of [38] is similar to that
of [13]. It is a descent method which uses an active set strategy, a nonsmooth line
search, and a quasi-Newton approximation to the projected Hessian of the Lagrangian
function.

Global convergence of the algorithm has been proved. Under certain conditions,
superlinear convergence occurs.

Like that of [13], this method could be considered as belonging to the class of
sequential equality-constrained quadratic programming (EQP) approaches.

The method of Charalambous. In the approach of [8], the original minimax prob-
lem is defined as a modified least pth objective function which under certain conditions
have the same optimum as the original problem.

10.1. Computational costs comparison. At each iteration, the methods of
[13] and [38] and the new algorithm require the computation of a search direction
obtained by solving an equality-constrained quadratic programming (EQP) or an
equality-constrained linear programming (ELP). Comparable line searches have been
used in the methods of Conn and Womersley and Charalambous and Fletcher, whereas
Hald and Madsen used the trust region method. For our new algorithm, determining
a cadre and dropping one function in the working set, when a nonreference set cadre
is found, requires no extra work compared with the methods of [13] and [38]. When
more than one function in the working set is dropped, an equivalent number of QR
updates are required. Since these functions should be dropped and function evaluation
typically is more expensive than a single QR update, in general, this extra work is
well justified. The amount of computation per iteration required by the above three
methods (i.e., [13] and [38] and the new method) is roughly the same.

The amount of work required by each iteration of [8] is roughly the same as
performing a quasi-Newton step for an unconstrained function.

At each iteration of [23], in stage one, a linear programming problem of size at
least n IMI is solved up to optimality. At each iteration of stage two, if it is ever
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entered, the computation required is similar to the methods of [13] and [38]. However,
in general, most of the iterations are spent in stage one.

Loosely speaking, comparison of computational costs of one iteration of the new
algorithm and that of [23] is similar to the comparison between one iteration of EQP
and IQP methods.

A solution of EQP can be obtained by solving two linear systems of equations.
The size of each linear system is at most n. A solution for IQP, however, usually
requires iterative methods (i.e., inner iterations). Although the number of iterations
are bounded by the number of unknowns and constraints, it is potentially very large
and it could even become prohibitive for a discretised Chebyshev problem because
the number of the constraints of its associated IQP can be much larger than those of
the usual nonlinear programming problems.

Therefore, considering the amount of work required per iteration, the method of
[23] is considerably more expensive than the others.

For nonlinear programming problems, the advantage of the IQP approach com-
pared to EQP, however, has been the iterative search for the correct active set. Like-
wise, one would expect that the advantage of the method of [23] over that of [13] and
[38] and the new algorithm is similar to that of the successive IQP method over the
successive EQP approach for nonlinear programming problems; namely, it can iden-
tify the correct active set faster. This advantage probably is the case for the methods
of [13] and [38]. The new algorithm, however, is not a pure active set method. It
can also identify the correct active set quickly. It achieves this not by an iterative
search but by recognising the structure of the optimum and constructively building
up the reference set. Through exploiting the structure of the Chebyshev problem and
minimax problem, we are able to retain the advantages of both the EQP approach
and the IQP approach.

Finally, we remark that for a degenerate point of Type A or B, there is no extra
work required compared with that for a nondegenerate point. For a degenerate point
of Type C, we must solve a least squares problem with nonnegativity constraints.

10.2. Numerical results. We present some limited numerical results in this
section.

For our numerical testing, the initial parameters required by the algorithm are
set as

Tc
0 0.05, T0 10-12 1/2Ts= 10-5 p=0.5, e0=0.1.

The algorithm terminates when the following three conditions are satisfied"
1. Ildkll2

_
2. ]/yk C_ A(xk, e);
3. A >_ 0, for all j E 142k.

Thus, at termination, there exists, approximately, a levelled reference set with
the maximum deviation.

The test problems include both nonlinear minimax problems and nonlinear Cheby-
shev problems.

We implicitly write a nonlinear Chebyshev problem

min
l<i<m

in the general minimax form

min fi (x),
l<i<2m
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where fi+m(X)= -fi(x), for i= 1,...,m.
Consider the following nonlinear programming problem:

min F(x)

subject to

g(x) > o, 2,-..,m,

and the minimax problem:

min max f(x)
xE <i<m

subject to

fl (x) F(x),
f(x) F(x) aigi(x), 2 <_i <_m,

where

a>_O, 2 <_i <_m.

It is straightforward to show that for sufficiently large ai, the optimum of the minimax
problem coincides with that of the nonlinear programming problem (see [2]).

We have tested some nonlinear programming problems through the above trans-
formation. The a parameter is set as

ai 10.0, 2 _< _< m,

which we know, a priori, is sufficiently large.
We have listed the results for the following minimax testing problems (their ref-

erences are also indicated): Charalambous and Bandler 1 and Charalambous and
Bandler 2 [9], Freudenstein and Roth [36], Colville problem 2 [12], Barrodale, Powell,
and Roberts [5], Wong 1, Wong 2, and Wong 3 [10], Rosen and Suzuki [33], aosenbrock
[34], Transmission Problems [3], Davidon [16], Enzyme [25], E1 Attar [19], Hettich [36],
Bard [36], Watson [36], and Osborne [36]. The starting points used are the same as
that specified in the references.

The results for the problems Davidon, Enzyme, E1 Attar, and Hettich, under the
column [23] are taken from [28], which describes essentially the same method as that
of Hald and Madsen.

In Table 10.1, we report the number of function evaluations required by our new
algorithm under the column NM. For each problem, we have used the nomenclature
of the cited reference. The results of other methods, using a comparable stopping
tolerance, are listed for comparison where available.

The column under the column nact indicates the number of maximum functions
at the solution.

The Rosenbrock problem is degenerate at the solution. The Watson problem is
degenerate at the starting point. The Watson problem with n 20 is also degenerate
at the solution obtained. For the other test problems, numerical degeneracy does not
occur.

The reported results use extended BFGS updates. Similar results were obtained
using exact derivatives. From the limited numerical results, we observe that, compared
with [8], [13], and [38], the overall number of function evaluations required by the new



A STRUCTURE-EXPLOITING ALGORITHM 261

TABLE 10.1
Number of function evaluations" BFGS updates.

Problems n m nact I] NM HM CN WF CL

II 1123]l[13]113811[8]
Charalambous & Bandler 1 2 3 2 11 11a 18
Charalambous & Bandler 2 2 3 3 6 11a 8
Freudenstein & Roth 2 2 2 11 15
Colville 2 15 21 12 49 41 275
Barrodale, Powell et al. 5 21 5 21 10
Wongl.1 7 5 3 25 23 106
Wongl.2 7 5 3 33 29 77
Wong2 10 9 7 24 27
Wong3 20 18 13 33 49
Rosen & Suzuki 4 4 3 12 18 64
Rosenbrock 2 2 4 31 21
Transmission 1 6 11 4 52 21 67
Transmission 2 6 11 4 25 46 80
Davidon 4 20 3 20 27
Enzyme 4 22 5 11 18
E1 Attar 6 51 7 25 12
Hettich 4 5 4 11 195
Bard 3 15 3 10 9
Madsen 2 3 2 17 13
Watson6 6 31 7 24 12
Watson20 20 31 39 22 39
Osborne 5 33 5 10 31

12

80 413
38
53 107
37

37

120
318
66

78

The results are obtained by using the codes in [23].
The algorithm stopped because of roundoff error without obtaining a solution.

algorithm is much less. We also recall that the amount of computation per iteration
required by all but [8] to determine the search direction and stepsize are comparable.
If one considers in more detail the number of function evaluations required and the size
and complexity of the matrices being updated it would appear that the new method
is more efficient than [8]. Hence, the new method appears to be more efficient than
that of [8], [13], and [38].

The only method that seems to be competitive with the new algorithm is that
of [23]. The number of function evaluations required by these two methods is com-
parable. However, we recall that the amount of remaining computation required per
iteration demanded by the method of [23] is significantly more than the proposed
method. Thus our new method still appears to be preferable.

We have also tested our new algorithm on a real application problem. The prob-
lem has 80 functions, in terms of a general minimax problem, with 40 variables. The
number of activities at the solution is 39 (out of 80). Our algorithm solved it success-
fully in 50 function evaluations while the method of [23] failed to locate a solution.

11. Summary. The algorithm presented is a globally convergent algorithm with
superlinear convergence rate [26]. It has been developed based on the principle that
a minimax problem, in particular the Chebyshev problem, has special properties that
can be computationally exploited in both the linear and nonlinear cases.

In this paper, we generalise the characterisation for a best linear Chebyshev ap-
proximation to nonlinear minimax problems. These generalisations are implementable
computationally. We then present an algorithm which profits from this exploitation.
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Typically, the algorithm attempts to find a cadre by focusing on the functions
that have achieved maximum values through iterations, i.e., functions in working
sets. These functions are then levelled by vertical directions whenever possible. If
a reference set has been located, it is then levelled by vertical directions (which are
descent directions) and thus a solution is quickly determined. If, however, the cadre
does not correspond to a reference set, a descent direction is then defined as an
attempt to construct one. Since, at any solution, there exists a levelled reference set
with the maximum value, it is clear that the computational procedure is meaningful
and we believe our numerical results indicate its promise.

We point out that it is possible for the Maratos effect to occur for the new
algorithm as presently implemented. However, we have not experienced this effect
during our numerical testing. Moreover, the algorithm can be slightly modified to
guarantee that there is no Maratos effect. One only needs to reevaluate the functions
at the point xk + hk and compute the vertical direction using the updated values when
one is close to a stationary point (see [15] for more details).

Finally, we point out that the algorithm can be extended to solve the constrained
minimax problem (see [15] for more details).
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LARVICIDE IN RUNNING WATERS*
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Abstract. In some regions of the world black flies are the vector of serious endemic diseases
such as onchocerciasis or river blindness. The object of this paper is to present theoretical and
numerical solutions to the control of black fly larvae in running waters. The problem is modelled
by a diffusion-transport partial differential equation with impulse controls and state constraint. We
present the solutions for the one-dimensional case.
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1. introduction. Black flies (Simulium damnosum) are known not only for being
a nuisance in causing economic losses in different areas of human activities, but also
for transmission of pathogens and parasites to man and animals. In some areas,
black flies are vectors of a filarial worm (Onchocerca volvulus) that causes a serious
endemic disease whose final stage is known as river blindness. "Onchocerciasis, or
river blindness, is one of the major endemic, parasitic diseases which in addition to
causing untold human suffering is a major obstacle to socioeconomic development. It
is found in the Americas, in the southwestern part of the Arabian peninsula, and in
East, Central, and West Africa. It is estimated that between 20 and 30 million people
are infected by onchocerciasis throughout the world" (see OCP [13]).

The strategy chosen was to break the chain of transmission by destroying the
vector at its most vulnerable state, that is, the larval state. To control black fly larvae
in running waters, special products have been developed with targeted toxic effects.
Helicopters are used to periodically spray the rivers at prescribed sites over very large
geographical areas. To reduce the costs of operations, it is important to determine the
amounts of product and locations of the injection sites to minimize the total quantity
of sprayed larvicide while maintaining a given level of mortality along the river to be
treated.

Black fly larvae are found at specific breeding sites in rivers. Since we have to
control the mortality level over long distances, we have to take into account the trans-
port, the diffusion, and the decay of the larvicide. The behaviour of the concentration
of larvicide along the river can be modelled by a diffusion-transport partial differential
equation. Biologists have established that for the types of larvicides used the rate of
mortality is proportional to the "dose": the time integral of the concentration up to
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infinity. In this problem the state variable is the spacial distribution of the dose, which
is the solution of a partial differential equation over the river. The injections of insec-
ticide appear as impulse controls at points along the river (one-dimensional model)
or along lines corresponding to the paths followed by the helicopter (two-dimensional
model). The one-dimensional model is used to treat a segment of river while the
two-dimensional model is used for a complex site.

The control problem consists of finding the best locations to inject the larvi-
cide while maintaining a minimum dose and minimizing the total amount of larvicide
sprayed in the river. So it is an impulse control problem for partial differential equa-
tions with state constraint. On top of this there is an interesting logistic problem,
which consists of scheduling helicopters and managing fuel and larvicide caches over
a large network of rivers.

The object of this paper is to present a modelization of the problem and a numer-
ical solution of the optimal control problem in dimension one. A mixed discontinuous
finite element formulation (Lesaint and aaviart [II] and Raviart [14]) has been used to
solve the diffusion-transport equations. A special technique has also been developed
to get around the combinatorial problem that naturally arises from the discretization
of the impulse control problem. Numerical results are presented using real data.

The modelization of this type of problem is related to the problem of the local-
ization of industrial sites or plants along rivers where the objective is to minimize
ecological damages to the environment. For more details the reader is referred to the
book and papers of G. I. Marchuk [12] and his team.

2. One-dimensional equations and susceptibility model.

2.1. Equations for the concentration. First consider a one-dimensional river.
Denote by c(x, t) (kg/m3) the concentration of larvicide at time t > 0 (second) and at
point x (meter) downstream of the origin 0. It is the solution of the diffusion-transport
equation (Taylor [15], Aris [1], Khalig [10], Marchuk [12])

(2.1)
Oc Oc 0 (E(x)OC)

N

.= A(xi)" xE, t>0,

where V(x) is the "mean velocity" of the water in m/sec; A(x) > 0 is the cross-
sectional area of the river in m2; E(x) >_ 0 is the dispersion coefficient in m2/sec;
R(x) >_ 0 is the loss coefficient in sec-1; N > 0 is the number of sites to be visited;
xl, x2,... XN are the locations of the sites such that

def def
xo O <_ x <_ x2 <_ <_ XN <_ XN+ L

for some finite L > 0; t, t2,... tN are the times at which the sites are visited:

def
t0

def
0 tl t2 tg tN+l T

for some finite T > 0; and i(t) and (x) are the Dirac delta functions at t t and
x xi, respectively. In each site xi the helicopter sprays mi kg of product. We assume
that the mixing of the product is instantaneous and produces a uniform concentration
in the vertical section A(xi) of the river at xi. The initial condition is

(e.4) 0) e
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2.2. Susceptibility model. The biological aspects of this work rest on exper-
imental data and observations. They are used to construct and validate what the
biologist calls a "susceptibility model," which provides the relationship between the
mortality rate P (a percentage) of larvae and concentrations of larvicide over periods
of time. Laboratory and field experiments have established a direct relationship be-
tween the mortality rate of larvae and the dose u(x), which is the time-integral of the
concentration of larvicide over t > 0:

(2.5) u(x) c(x,t)dt

for the biological larvicide B.t.i. (see Guillet, Escaffre, Prud’hom, and Bakayoko [8]
and Guillet, Hougard, Doannio, and Escaffre [9]). So to obtain a given mortality rate
of P percent, it is sufficient to specify a minimum level up for the dose and to require
that at each point of the river

(2.6) u(x) >_ up, xe [0, L].

The total mass M[a, b] of larvicide going through the segment [a, b] is given by

(2.7) M[a, b] u(x)A(x)V(x) dx u(x)Q(x) dx

where

(2.8) Q(x) V(x)A(x)

is the flow in m3/sec at the point x.

2.3. Equations for the dose. Assuming that the concentration c(x, t) in each
point x goes to 0 as t goes to c, we obtain the following equation for the dose u(x):

(2.9) -xx E(x)-x + V(X)x + R(x)u c(x)+ E m__j__

i=1
A(xi)

i(x), x e .
The dose is a cumulating variable over time. Therefore, the injection times, ti’s, com-
pletely disappear in the above equation. This considerably simplifies the formulation
of the initial problem and yields a new time-independent problem on ]1(. In practice,
for a fixed segment of river, all injections take place within a fixed time framework
[0, T] of at most 24 hours. Yet the amount of time it takes to build up the dose is a
function of the various parameters entering into the equations. When the flow is too
slow in a specific area, this area receives special attention. Such sites usually become
"compulsory sites." In extreme cases complementary surface treatment is required.
All this is taken into account when partitioning the river into sections.

2.3.1. The problem without diffusion. When there is no diffusion (that is,
E 0), we assume that the boundary condition

(2.10) c(O, t) co(t), t > O,
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is given at x -0. Equation (2.9) reduces to

il
mi(2.11) V(x)

du
g

x + R(x)u c(x)+ A(X) 5i(x), x e ,
with the boundary condition

def jO
c

(2.12) u(O) uo co(t) dr.

For R e n2(o,n), Y e HI(O,L), and Y- e n(o,n), then, Y- e H(O,n) and
system (2.11)-(2.12) has a unique solution given by

u(x) uo e-: R()/v()e + e-2 R()/V()e c0(Z)
y(z)

dz

,= d(x,)V(x,)

It will also be convenient to give a variational formulation of system (2.11)-(2.12)
on a fixed segment [0, L], L > 0 finite, and consider more general right-hand sides.
For this purpose we introduce the following continuous bilinear form:

b0: (L2(0, L) ) H(O,L) R,
(2.14) foL [ d

(vv) + Rv] dx + uLV(L)v(L)u

THEOREM 2.1. Assume that R E L2(O,L), V HI(0, L), and V- L(O,L).
Then for any in H (0, L), the variational equation

2(U, UL) e L2(0, L) x R, Vv e HI(0, L), bo((u, uL),V)-"

has a unique solution. When is of the form

(2.16)
L No 1 mi v(xi) q-uV(O)v(O)(, v) c(x)v(x) dx + A(xi

the function u in (2.15) coincides with the solution of (2.11)-(2.12) almost everywhere
and UL is the right-hand side value u(L+) of the piecewise smooth function u.

Proof. See the appendix for the proof.

2.3.2. The problem with diffusion. When E(x) > 0, (2.9) has a unique
solution in the Sobolev space H (R) under the following conditions.

THEOREM 2.2. Assume that co in L2(R), E and R in L(I), and V in W,()
verify the conditions

i dV
(2.17) a > 0, Vx e , R(x) --x (X) >_ a, E(x) >_ .
The bilinear form

du dv du
a(u, v) E(x)-x -x -b V(x)-x v q- R(x)uv dx
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is continuous and coercive on HI(]I() and finding a solution to (2.9) is equivalent to
the following variational problem: to find u in Hi(R) such that for all v in U(I),

N

(2.19) a(u, v) c(x)v(x) dx / A(x) v(xi).

The variational equation (2.19) has a unique solution in H(R), which coincides with
the solution of (2.9).

Proof. For the proof, see the Appendix. [5

This first existence result gives the dose for an infinite river. However, for op-
erational and numerical reasons, the user is generally interested in simulating only a
finite segment [0, L], L > 0, of the river. To do that, we have to specify in x 0 and
x L "transparent conditions" that do not perturb the physics of the problem too
much. Thus, in addition to the hypotheses of Theorem 2.2, we now assume that E
and R are continuous and that

E(x) E(O), Y(0), R(x) R(O) > O, W <_ O,(2.20) E(x) E(L), Y(x) Y(n), R(x) R(L) >_ O, Vx >_ L.

So, upstream of x 0 and downstream ofx L the river is uniform with constant
parameters E, V, and R. Then on the part]-cx, 0] (respectively, [L, oc[ ), we have
the asymptotic condition u(-oc) 0 (respectively, u(+c) 0) and it is easy to
verify that at x 0 (respectively, x L) the following identity holds:

du
(2.21) E(0)x(0 + fl(0)u(0) C0

(respectively, E(L)du )-x(n) + z(n)u(n) CL

where

and

Co e--ff[x/v()+aE()R()-v()]Yc(y) dy,

CL e--iz- [x/’V(L):+4E(L)n(L)+V(L)] (y-L)cO(y dy

(0) 1/2 Iv/V(0)2 + 4E(0)R(0)+ V(0)],
/(L) 1/2 [v/V(L)2 + 4E(L)R(L) V(L)].

The idea is to consider (2.9) on ]0, L[ with the boundary conditions (2.21). The
following theorem now gives the connection between the solution of (2.9) on I and
(2.9) on ]0, L[ with the boundary conditions (2.21).

THEOREM 2.3. Assume that, in addition to the hypotheses of Theorem 2.2, E and
R are continuous and verify assumptions (2.20). Then the boundary value problem
(.4)

d( du) du
N

dx E(x)x + Y(x) -x + R(x)u c(x) + E=l 5(X)A(x)m x e [O,L],

du
E(0)xx(0 + (0)u(0) Co, E(L)

du
x(L) + (L)u(L) CL
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is equivalent to the following variational problem: to find u in HI(0, L) such that for
all v in HI(0, L)

L N

b(u, v) c(x)v(x) dx + E A(xi) v(xi) + Coy(O) + CLv(L),
i--1

where b is the coercive continuous bilinear form

(2.26)

L du dv du
b(u,v) E(x)-x-x + Y(x) -x v + R(x)uvdx

+ (L)u(L)v(L) + (0)u(0)v(0).

Problem (2.25) has a unique solution in HI(O, L), which coincides with the restriction
to [0, n] of the solution of (2.9) on .

Proof. For the proof, see the Appendix. [3

Remark 2.1. In system (2.1)-(2.2) we have assumed that all the injection points
xi belong to ]0, L[ and avoided the points x 0 and x L. However, this is not a
limitation in the variational formulations (2.18) and (2.25). Such injections will not
appear in (2.9), but rather in the boundary conditions (2.21):

(2.27)

du mo-E(0) xx (0) + fl(0)u(0) A(0---- -4- Co,

E(L)dU mL
ax--YY-- (L) + (L)u(L) A(L---- -4- CL.

3. Optimal control of the one-dimensional model. In this section we
assume that the initial condition c(x) is zero. So Co CL 0 everywhere in 2.

3.1. Problem formulation. Consider a segment [0, L], L > 0, of river to be
treated in N > 0 ordered sites xi’s and assume that the dose verifies (2.9) with the
appropriate boundary conditions: (2.12) without diffusion and (2.21) with diffusion.

The following three problems will be discussed.
PROBLEM l. Given the number of sites N and the positions N {Xi 1 < i <

---+ {m m > 0, 1 < i < N} that minimize the total massN}, find the masses mN
of sprayed product

N

(3.1) M(N, ZN, N) Emi
i--1

under the state constraint

(3.2) u(x) k Up, 0 <_ x <_ L,

where u is the solution of the state equation (2.9) with its appropriate boundary
conditions. [3

PROBLEM 2. Given the number of sites N, find the positions g {Xi 1 <
< N} and the masses N {mi mi > O, 1 < i < N} that minimize the total

mass of sprayed product (3.1) under the state constraint (3.2), where u is the solution
of the state equation (2.9) with its appropriate boundary conditions. [3
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PROBLEM 3. Find the number of sites N, the positions N {Xi 1 <_ i <_ N},
and the masses N {mi mi >_ 0, 1 <_ <_ N} that minimize the total mass of
sprayed product (3.1) under the state constraint (3.2), where u is the solution of the
state equation (2.9) with its appropriate boundary conditions.

If there is no upper bound on the number of sites to be treated, the optimal
solution is not given by a finite vector of pairs (xi, mi) but a measure on ]0, L[. There
the masses mi go to zero as the number N goes to infinity and it can also be verified
that in each point

(3.3) u(x) up, 0 <_ x <_ L.

Of course, Problem 3 is an asymptotic version of the problem. In practice, the heli-
copter can only treat a finite number of injection sites and there is an upper bound
on the number of sites and a lower bound on the amount of product that is sprayed at
each site. Several other constraints are present" compulsory site, upper bound on the
dose to minimize damages to the environment, etc. However, Problem 3 will provide
a lower bound on the total amount of product necessary to treat a given segment of
river.

3.2. Solution of the optimization problems. In this section we introduce
sets of hypotheses under which the optimization problems (Problems 1-3) have a
solution. In some cases we even give the exact form of the solution, which will help in
testing the numerical algorithm.

3.2.1. The case without diffusion. When E 0, we have seen in 2.3.1 that
the problem has an explicit solution given by (2.13). We assume that at time 0 there
is no larvicide in the segment of river (co 0, u0 0). We have the following explicit
solution.

THEOREM 3.1. Assume that the hypotheses of Theorem 2.1 are verified. Let
E- O, V(x) > O, R(x) >_ O, A(x) > 0 be continuous and

(x+l (R(y)/V(y)) dy(3.4) Vi 1,... ,N, Q(xi+l) <_ (xi)eJx

Problem 1 has a solution only if xl O. The distribution of masses

(3.5)

is a minimizing solution of Problem 1. Moreover, the corresponding dose t satisfies

(3.6) t(x up, 1 <_ i <_ N + 1,

and the total mass of sprayed larvicide is

(3.7)
i-1 i-1

If conditions (3.4) are verified with strict inequalities, then the points xi’s are distinct,
that is, 0 xl < x2 < < XN-1 < XN < L and the solution (3.5) is the unique
minimizing solution.

Proof. For the proof, see the Appendix.
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Hypothesis (3.4) is verified when the volume of water per second is not increasing
as we go downstream. If there is an important new inflow of water at one point that
significantly changes the concentration, then the problem has to be set up as a system
of two or more segments of river with appropriate mixing conditions at the points of
junction.

It is also possible to find the best positions of the N sites.
THEOREM 3.2. Assume that, in addition to the assumptions of Theorem 3.1, V

and A (and hence Q VA) belong to CI([0, L]) and

Q(y) < Q(x)e$:(()/u())d, Vx, y, 0 <_ x < y <_ L and Q(L) > O.

Then the solution of Problem 2 is given by n and t in Theorem 3.1 and the optimal
positions of the N sites must verify the conditions

0-’- Xl X2 Xi--1 Xi XN XN+I L

and the following set of equations

Q(xi) Q(xi_l)(3.9) ei-l-1-
a(xi)Q(xi) Q’(xi)(ei_l)+ 2<i<N,

a(x)Q(x_ Q(x_

N

(3.10) H ei ef: a(y)dy

i--=1

where

R(U)(3.11) a(y) V(y)’ ei e, a(y) dy, 1 <_ i <_ N.

Proof. For the proof, see the Appendix. 7

In the general case eN will be one of the zeros of a polynomial of degree N such
that e > 1, 1 _< _< N. When Q is constant the e’s are constant and we obtain

xi-I 1 0
L

(3.12) a(y) dy - a(y) dy, 1 <_ <_ i.

If, in addition, a is constant, then

L
(3.13) xi+l- xi , 1 _< _< N.

Remark 3.1. For a fixed N _> 1 the required total mass of product is

(3.14) MN E Cni up Q(O) + E Q(xi) [e,,
(R(u)/v(u))d 1

i--1 i--1

and necessarily for N > N,

(3.15) inf MN,

_
inf MN.mx m,x
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Assume that as N goes to , max(xi+l -xi 1 _< _< N} goes to zero. Then as N
goes to c,

r R(x) (+ x,)}MN up Q(O) + Q(x)
V(xi)

i--1_
Q(O) + ()(1

This is a lower bound on the amount necessary to satisfy the constraint (2.6). O
Going back to formula (3.5) we obtain as N goes to cx and Ix+l x --+ 0,

R() (x+ z,) i > em upQ(x)
V(x)

ml Up Q(O)V(0) (x2 Xl) -- Q(0)and the optimal control becomes a measure

R() ](3.17) dm(x) up Q(x)v(x +Q(O)5o dx,

which consists of a regular part over [0, L] and a singular part, the Dirac delta function
50, at x 0. Recalling that for each N, fi is the solution and (x-) up, then it is
expected that as N goes to

(3.18) u(x) up for almost all x e [0, L].

This essentially provides the solution to Problem 3 and we shall now make the above
considerations more precise.

As suggested by the previous asymptotic estimate, it is wise to enlarge the space
of controls for Problem 3 to the space of positive measures: that is, elements m in

C([0, L])’ such that

L

(3.19) Vv > 0, v e C([0, L]), v(x) din(x) > O.

The state (u, ui) is now a solution of the variational problem: to find (u, ui) in
L2(0, L) R such that for all v in U(O,i),

(3.20) v(x)bo((u, UL) v) dm(x)A(x)

where b0 is the bilinear form (2.14). The associated cost function becomes

(3.21)
L

M(m) dm(x).
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Since HI(O,L) c C([0, L]), problem (3.20) is well posed and has a unique solution
(u, UL) in L2(0, L) R and Problem 3 can be formulated as follows:

L

(3.22) inf dm(x).
O_<C([O,L])

u()>_up,uL >_UP

The variable UL can be viewed as the right-hand side value u(L+) of u. When u is
continuous at x L, ui u(L). As such the constraint ui >_ up must be verified.
For A E C([0, L]) it is easy to verify that the solution u(x) up and ui Up

corresponds to the measure mp defined by

(3.23) jo
L

v(x) dmp(x) bo((up, up), Av),

where

(3.24) bo((up, up),Av)--uP[oL R(x)A(x)v(x) dx + V(O)A(O)v(O)]
But A _> 0 and R _> 0. So for V(0) >_ 0, mR is positive. Therefore, (u, UL) (up, up)
is a feasible solution that turns out to be minimizing under reasonable hypotheses
on A.

THEOREM 3.3. Assume that the hypotheses of Theorem 2.1 are verified, A
C([0, L]), A >_ O, Y(O) >_ O, and R >_ O, and that

(3.25) M(U, UL) e L2(O,L) x R, u >_ O, UL >_ O= bo((u, uL),A) >_ O.

Then (u, UL) (up, up) i8 a minimizing solution of Problem 3, the distribution mp

of larvicide is given by the measure

(3.26)
w dmp bo((up, up), Aw), Vw e C([0, L])

R(x) }Q(x) V(x) w(x) dx + Q(0)w(0)

and the total amount of product used by the expression

(3.27) ]i
L

dmp bo((up, up), A),

where

(3.28)
bo((up, up),A) uP{oL

Up {0
L

R(x)A(x) dx + V(0)A(0)

R(x) }Q(x)
V(x)

dx + Q(O)

If condition (3.25) is verified with a strict inequality for all positive nonzero (u, ui)
(u >_ O, UL >_ O, and (u, ui) (0, 0)), then the above solution is unique and condition
(3.8) is verified.

Proof. For the proof, see the Appendix. E]

At this juncture it is useful to clarify the connection between the positivity con-
dition on the bilinear form b0 and previous conditions, such as (3.4) or (3.8), on the
flow Q.
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COROLLARY 1. Assume that the hypotheses of Theorem 3.3 are verified. Then
the following conditions are equivalent:

’ (U, UL) e L2(0, L)
(i) bo((u, UL), A) >_ 0;

U_0, UL

__
0

(3.29)
d
(VA)+RA > 0

(ii) -xx
V(L)A(L) >_ 0;

a.e. in [0, L],

(3.30)
d R

(iii) --xQ + VQ >- 0

Q(L) >_ 0;

a.e. in [0, L],

f Q(y) < Q(x)e$: (R()/u(z))d V x,y, 0 < x < y < L,
(3.31) (iv)

Q(L) >_ O.

COROLLARY 2. Assume that the hypotheses of Theorem 3.3 are verified. Then
the following conditions are equivalent:

(3.25’)
V (U, Un) e L2(O,L) ],

(i) bo((u, UL), A) > 0;

U

__
O, UL

__
O, # (o, o),

(3.29’)
d

(ii) --x (VA) + RA > 0

V(L)A(L) > 0;

a.e. in [0, L],

(3.30’)
dQ R

(iii) -dx +Q
Q(L) > o.

> 0 a.e. in [0, L],

Moreover, any of the above conditions implies

(3.8) (iv)
Q(y) < Q(x)e$:(R()/U(z))d V x,y, 0 < x < y < L,
Q(L) > O.

Remark 3.2. Condition (3.30) is verified for a river where there is no inflow of
water:

dQ
Q(x) >_ 0, -X-x(X) _< 0, Vx e [0, L].

This means that losses of water are permitted, but an important inflow of water at a
point would have to be explicitly modelled by an appropriate balance condition.
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3.2.2. The case with diffusion. When E is not zero, we no longer have an
explicit solution and Problems 1 and 2 are best solved numerically. Problem 3 can be
solved by the method of the previous section. So we choose as the space of controls
for Problem 3 the space of positive measures m in C([0, L])’. The state u is now the
solution of the variational problem: to find u in Hi(0, L) such that

v(x)(3.32) b(u, v)- din(x), Vv e HI(O L)A(x)

where b is the bilinear form (2.26). The associated cost function is expression (3.21).
Problem 3 can be formulated as follows:

L

(3.33) inf din(x).
O_mEC([O,L])

u()_>up

As in 3.2.1, it is easy to verify that the solution u(x) up corresponds to the
measure mR defined by

(3.34)

where

L

v(x) drnp(x) b(up, Av),

(3.35) {/0 }b(up, Av) up R(x)A(x)v(x) dx + Z(L)A(L)v(L) + Z(0)A(0)v(0)

If R _> 0 and A _> 0, it is positive for all v _> 0. Therefore, u up is a feasible solution
that turns out to be minimizing under reasonable hypotheses on A.

THEOREM 3.4. Assume that, in addition to the hypotheses of Theorem 2.3, A
belongs to Hi(0, L) and that

(3.36) Vw E Hi(0, L), w >_ 0 b(w, A) >_ O.

Then u up is a minimizing solution of Problem 3, and the distribution mp of
larvicide is given by the positive measure

(3.37) w dmp b(up, Aw),

where

Vw e C([0, L]),

{/0b(up, Aw) up R(x)A(x)w(x) dx

1
+ [v/V(L) + 4E(L)R(L)- V(L)]A(L)w(L)

}+ x Iv/V(0): + 4E(0)R(0) + V(O)]A(O)w(O)

The total amount of product used is given by the expression

(3.39) drop b(up, A),
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and

up R(x)A(x) dx

1
+ [v/V(L)2 -4-4E(L)R(L)- V(L)]A(L)

zl }+ [v/V(0)2 + 4E(0)R(0) + V(0)IA(0)

If condition (3.36) is verified with a strict inequality for all w > O, the above solution
is unique.

Proof. For the proof, see the Appendix.
Remark 3.3. The minimizing distribution mR of larvicide contains a distributed

term on [0, L] and two impulses at x 0 and x L.
COROLLARY 3. (i) If A belongs to HI(0, L), condition (3.36) can be restated as

follows:

(3.41)

VW E HI(0, L), w _> 0,

b(w,A) E(x)-x (X + V(x)A(x) -x + R(x)A(x)w dx

/ (L)A(L)w(L) +/(0)A(0)w(0) > 0.

IrA belongs to H2(0, L), and E and V to HI(O,L), condition (3.36)is equivalent to

(3.42)

]dx L dx + VA + RA >_ 0 for almost all x E [O,L],

1
E(L)A’(L) + [v/V(L)2 + 4E(L)R(L) + V(L)]A(L) >_ O,

1
E(0)A’(0) + x[V(0)2 + 4E(0)R(0) + V(0)]A(0) Z 0.

(ii) If, in addition to the hypotheses of Theorem 3.4, A is constant and

(3.43)
dQ R

-d--- +Q -> 0, Vxe[0, L],

then (3.40)is verified. In particular, if A, E, R, and V are positive constants, (3.42)
is verified and

L

(3.44) drop upA[LR + v/V2 + 4ER]. [3

Remark 3.4. Setting E- 0 in (3.40), we recover expressions (3.27)-(3.28).
4. Numerical approximation. In the remaining sections of this paper we

assume that the initial concentration co of larvicide in the river is zero and hence
Co -co -0.

4.1. Approximation of the state equation.

4.1.1. The case without diffusion. When E 0 we have the explicit solution

(2.13) and there is no need for an approximation of system (2.11)-(2.12).
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4.1.2. The case with diffusion. Problem 3 has an explicit solution. Problems
1 and 2 require a numerical method to solve the diffusion-transport equation (2.24)
with impulse controls. When the transport dominates, it is well known that classical
finite elements do not produce good results. Mixed finite elements combined with
the technique of Lesaint and Raviart [11] produce better results by introducing the
right amount of numerical dissipation. Their generalization to dimension 2 uses the
elements of Raviart and Thomas (cf. Raviart [14]).

In a mixed method a separate approximation is used for the variable u and its
derivative du This amounts to introducing a new variable p:-.

du
(4.1) E-I(x)P- d---"

Its substitution in the system of equations (2.24) yields the boundary conditions

(4.2) + o, p(L) + (L)u(L) 0

and the equation

mi hi(x), x e [0 L].(4.3)
dp - V(x) du N

-d-- -x / R(x)u-
A(xi)

du in (4.3). This term will beFor numerical reasons we keep the transport term V3-5
treated % la Lesaint and Raviart [11]" in order to introduce a sufficient amount of
numerical dissipation.

To solve (4.1)-(4.3) numerically we could choose a partition of the interval [0, L]
such that the positions of the sites {xi 2 _< i _< N} coincide with nodes of the
partition. However, our objective is to find the best positions of the sites without
making the partition an integral part of our optimization problem. Let {j 0 _< j _<
J} be a uniform partition of the interval [0, L],

L
(4.4) j jh, 0 <_ j <_ J, h -,
for some integer J > 0 and consider the system of equations (4.1), (4.2), and

(4.5)
dp

+ V(x)
du

J

+ R(x) f +
j=0

for some coefficients cj in R, Dirac delta functions 5 at y, and an arbitrary function

f in C([0, 5]).
Again it is important to recall that we do not want to necessarily put the injection

points at the discretization nodes {j } and solve a combinatorial problem with a very
fine partition and a large number of variables. So when the injection mi occurs at a
point xi inside the interval Iy [j_l, j], we distribute the impulsion between the
two adjacent nodes y_ and j by introducing a weighting function

/(), I1-< 1,
(4.6)

O, otherwise,
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where, for instance, J() can be chosen as

J() 1/2[I + cosr’], (I- Ic:l)e(1 + 21cI), or 1 -I<:I,

The first two choices are continuously differentiable in ]- 1, 1[ and , respectively.
To make the connection between the original equation (4.3) and the mesh-dependent
formulation (4.5), assign the coefficients

N

(4.8) Cj A(x) h
0 <_ j <_ J.

Note that for each i,
J

B
h

With this type of formulation the state now continuously depends on the position of
the injection point inside a given interval Ij.

We now give a discontinuous mesh-dependent formulation for the underlying prob-
lem (4.1)-(4.2)-(4.5). Since the approximation will be discontinuous at each node, we
are naturally led to introduce traces {Uj 0 <_ j _< J} at each node y. On each
interval Ij -[j-l,j] we write (4.1) in the following weak form:

]ij {E-l(x)pq + U-xx } dX + Uj_lq(_l) Ujq(-) 0

Vq E HI(Iy), 1 <_ j <_ g

with boundary and jump conditions

(4.10) -p(0+) +/(0)U0 co, p() + (L)Uj cj,

(4.11) p(-) -p(-) cy, 1 _< j _< J- 1.

It is easy to verify that for the continuous problem

U0-u({0+), u({-)=Uj =u({f), l_<j<J, Uj-u({),

and that the Uj’s are indeed the traces of the function u at the discretization nodes
y’s. Equation (4.5) is also written in weak form but the term in u is treated % la
Lesaint and Raviart [11]""

(4.12) -x + R(x)
d

[V(x)w] } dx

-J- lt(;)V(j)w(;) lt(;_l)V(j_l)W(+._l) fij fw dx, VW e HI(/j),

where u(0-)defu0. So the solution (u, p) can now be discontinuous at each and

(4.13) Uli and PlI in Hl(Ij).
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The above framework was introduced in order to be able to choose a mesh-
dependent discontinuous approximation such that

(4.14) uli, wlx e p0(/), PlI, qlI e PI(I),

where Pk(Ij) is the space of polynomials of degree less than or equal to k >_ 0 on

Ij. When the cy’s are zero, there are no jumps and p is continuous at each node
y. In dimension 2 this would correspond to the elements of Raviart and Thomas (cf.
Raviart [14]) with a continuous normal trace. Here we have relaxed that continuity to a
prescribed jump condition given by (4.11). This relaxation is incorporated in the global
formulation by introducing Lagrange multipliers Wy’s, 0 _< j _< J, to specify the jumps.
The complete weak formulation becomes: to find {uj E P(Ij), pj pl(/), 1 _< j <_
J} and {Uj l, 0 _< j _< J} such that for all {w P(I), q pl(I), 1 _< j _< J}
and {Wj , 0_<j

_
J},

j E-(x)pq + U-x dx Ujq(-) + Uj_q(_)

+ --x + Ru w- U-x
(4.15) + ?.t(;)g(j)w(;)- ?.t(-ff_l)V(j_l)W(?_l) }

J-1

+
j--1

+ I-P(0+) +/0U0 c0]W0 + o(y) + jUj cj]Wg O.

It is important to note that (4.15) not only provides a weak formulation of (4.1), (4.2),
and (4.5), but also the weak formulation of the adjoint system of equations that will
be used in the construction of the adjoint state: the elements u, p, and U will play
the role of test functions and w, q, and W will be the adjoint state variables.

The complete discretization of the state equation is obtained by using the trapeze
quadrature formula for the approximation of the integrals in (4.15). The step by step
derivation of (4.16)-(4.19) can be found in the Appendix. The piecewise constant
function u is represented by the sequence {uj 1 <_ j <_ N} where uj I is the
constant value of u on the interval I. The linear functions p pl(ij) are represented
by their values p(-_) and p(-) at the left and right boundaries of the interval I.
Similar notation is used for the piecewise constant function w and the piecewise linear
function q.

The final algorithm for the state yields a linear system of the form

(4.16) Ag hf + Cff

for the (J + 2)-vectors 7 {U0, u,... ug, Uj} and f {0,/1,’" fj, 0}, and the
(J + 1)-vector 5’ {co, Cl,..., cg}, and all the other variables can be obtained by
explicit formulae. In other words, we have reduced the size of the linear system (4.15)
by isolating variables that can be computed from the vectors 7 and ’:

(4.17a) Uy uj+ + uj 1
2 +--jcj, l<_j<_J-1,
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(4.17b)
E(ul -Uo),(o+) e-
Ej

[Uj+l uj] --() - 2Ej
[Uj uj],p()

p(? p(; ,
2’

l<j<J-1.

Note that
1 o() + p(f)] Ej

[uj+l uj]-h- l<_j<J-1.

The matrices A and C are specified by the following system of equations:

(4.18)

where j =/(L), 0 (0),

(4.19)
Ej E(j), V V(j), 0 < j < J,

Rj R(j_I)+R(J)2 fJ Y(J-)+Y()2 1 _< j _< J.

The right-hand side of the final system (4.16) is precisely the Raviart-Thomas system
(cf. Raviart [14]) where the impulsions appear on the left-hand side. A jump occurring
at the point j is distributed between the two neighbouring intervals Ij and Ij+.

4.2. Approximation of the optimization problem.

4.2.1. The case without diffusion. Again, everything here is explicit and can
be solved directly. We shall use the optimal solution for E 0 as an initial guess for
the optimization problem with diffusion.

4.2.2. The case with diffusion. Problem 2 can now be formulated as a non-
linear optimization problem where the optimization variables are the N-vectors
(m,m2,... ,raN)- and :--(Xl,X2,-.. ,XN)T"

N

(4.20) Min
i--1

subject to the state equation

(4.21) Ag- Cg,

(4.22) Uy uy+l + ui 1
2 + -jcj, l<j<J-1,
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where 7 is the (J + 2)-vector (Uo, ul,..., uj_, Uj)T, is the (J + 1)-vector
5’= (co, c,... cj)T with components

mi B(J-xi) 0<j< J,(4.23) cj A( h

the matrices A and C are specified by the set of equations (4.18), and the functions

B by one of the functions (4.7). Note that - 0 in (4.16) since f 0 in 2.3.2.
In addition, we have the following constraints on the optimization variables

(4.24) m _> 0, 1 _< _< N,

and constraints on the state variables

(4.25) Uj >_ up, 0 <_ j <_ J,
(4.26) uj >_ up, 1 <_ j <_ J.

The variables p(-) and p(q) do not enter into the (discretized) optimization
problem and can be recovered from (4.17b)

(4.27)

Eo 2Ej
[Uj uj],p(0+) 2-----(Ul U0), P(;) T

p(ffp(ff) + l<_j<_J-1.

In the above formulation, the constraint on the dose becomes the constraint (4.25)
on the traces and we have also required that the L2-function u between two consecutive
nodes verifies the constraint (4.26). It is readily seen from identity (4.22) that if the
set of constraints (4.26) plus Uo >_ up and Uj >_ up are satisfied, then the set of
constraints (4.25) is also satisfied. However, the converse is not true and (4.25) is a

weaker condition than (4.26) plus Uo >_ up and Uj >_ up. So there is a certain amount
of flexibility in the way in which we wish to deal with the state constraints. We can

either choose the weak condition

(4.25) Uj >_ up, 0 <_ j <_ J,

or the strong condition

(4.28) uj

_
Up, 1 <_ j <_ J, Uo

_
Up, UJ

__
Up.

However, for completeness in the subsequent computations of various derivatives, we
shall keep the full constraints (4.25) and (4.26). Then the appropriate terms will be
deleted in the final expressions depending on the choice between condition (4.25) and
(4.28).

Finally, in the above analysis we have not used the constraints

(4.29) 0 _< x _< L, 1 _< <_ N,

since any amount of product used outside the interval [0, L] will increase the objective
function without increasing the dose. If for some reason our thinking was not correct,
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it will be interesting to discover how the algorithm can take advantage of the possibility
of spraying larvicide outside of [0, L].

As we shall see in 5 we have used a penalization technique for the inequality
constraints combined with a simple descent method to solve this problem. We now
complete our analysis by specifying the penalized objective function

(4.30)

N N

+
i=1 --1

1
J

1 j0
L

+ o([U Uj]+)2 + ([up u(x)]+)2 dx,

for el > 0, e2 > 0, 3 > 0 and providing the gradient of Mc with respect to the masses
and positions.

At this juncture it is useful to restate the penalized nonlinear optimization prob-
lem, which we shall actually use in the numerical computations:

(4.31)

N
1

N

Min Em + E([m]-)2
i--1 i--1

1
g

h
g }nt--2 jo([Up UJ]+ )2 nt- -3 jl([uP uj]+

subject to the state equations

(4.21) Ag- Cg

(4.22) Uj u+ + u 1
2 +-jcj, l<_j<_J-1,

where 7 is the (J + 2)-vector 7- (U0, u,..., tJ-1, UJ) -l- and g is the (J + 1)-vector
g= (co, c,... cj)- with components

N

(4.23)
= A(x) h

O<_j<_J.

The partial derivatives of Mc with respect to mi and xi can be obtained by using
a Lagrangian method. The Lagrangian is defined as the sum of M plus the weak
formulation (4.15). In this definition the test functions appearing in (4.15) will play
the role of the Lagrange multipliers. For convenience, we introduce the notation

(4.32) Y (Ul, uj, Pl,"" PJ, Uo,"" Uj),

(4.33) P (w,... ,wj, ql,... ,qj, W0,"" ,Wj),

and denote the above Lagrangian by L(,2, Y, P). The penalized cost can now be
expressed as follows:

(4.34) M(, .) inf sup L(, ., Y, P)
Y p
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and the partial derivatives are given by

(4.35) OM OL
0, ’) (’’ ? p) OM OL

Ox ( ) ( ’?’P)

where the pair (]Y,/) is the solution of the saddle point equations of the convex-

concave differentiable Lagrangian functional (Y, P) - L(, Z, Y, P). Partial deriva-
tives with respect to the P variables yield the set of equations (4.15). So 1 coincides
with the solution of the variational equation (4.15) for the state. Partial derivatives
with respect to the Y variables yield a set of variational equations for the adjoint
state or adjoint variables . Its solution is unique. For theoretical justification of
the techniques the reader is referred to Correa and Seeger [4] and for applications to
the computation of shape derivatives, to Delfour and Zolsio [5], [6]. The detailed
computations can be found in the Appendix. As in the case of the state equations,
some of the adjoint variables can be explicitly expressed in terms of a shorter vector.
More specifically, the adjoint variables are given by the following equations:

(4.36) A* Ca+ h,
--’+ (Vo "tl "tj rj), (0, gl, gJ-l, gJ, 0), andwith the vectors w

J= (do, dl,..., dj_, dj), and the matrices A and C from system (4.16), where A* is
the transposed matrix of A and

dj --1 [up-Uj]+, 0<j_ _<J,
2
1

gJ
3

[up Uj] + 1 < j < J.

Moreover,

(4.38) Ij j + J+ h
2 +-jdj, l<_j<_J-1,

(4.39)

Note that

l_<j_<J-1,

1 [() + (_)]
Ej

[ffvj j+l] 1 < j < J 1.- SEquation (4.36) only contains the vector w since the c)j and the other ly’s can be
explicitly computed from identities (4.38)-(4.39).

The partial derivatives of M are

OM 1 1
J

f
Omi

1 +--[mi]- E I?VJB J
-x 1 < < N,(4.40)

1 A(xi) h
j=0

J

(4.41) Ox hA(x)
j=0

h
1 _< _< N,

where B’(() is the derivative of the function B(().
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5. Numerical experimentation. We have chosen a segment of the Amoutchou
river in Togo, West Africa. The estimated parameters are:

V 0.25m/sec, R 1.1 10-4sec-1,
Up 0.5kg sec/m3, L 12 103m,

E 10m2/sec, A 6.8m2,
J--120, h-100m.

5.1. Case without diffusion (theoretical results). For E 0 the theoretical
optimal masses and site locations are tabulated in Table 5.1 as a function of the number
of sites N for N 1, 2, 3, and 20 and N c (the asymptotic solution).

TABLE 5.1
Optimal masses and positions for E --O.

N ml xl m2 x2 m3 x3

Unit kg m kg m kg m

1 166.9 0.
2 11.91 0. 11.06 6000
3 4.941 0. 4.090 4000 4.090 8000

20 1.107 0. 0.2568 600 0.2568 1200

M()
kg

166.9
22.97
13.12
5.986
5.34

5.2. Case with diffusion by penalization. For a diffusion E 10 m2/sec we
have computed optimal masses and site locations for N 1, 2, and 3 sites and the
theoretical optimal total mass for the asymptotic solution (N oc). The starting
points were obtained from the cases without diffusion (see Table 5.2).

TABLE 5.2
Initial masses and positions for E 10m2/sec.

N ml Xl m2 x2 m3 3

Unit kg m kg m kg m

1 166. 10.
2 11.9 10. 11.0 6005
3 4.93 10. 4.08 4006 4.08 8003

M()
kg

166.
22.9
13.1
5.34

With a penalization parameter e 10-3, el e2 e, and 3 he, the results
are as presented in Table 5.3.

TABLE 5.3
Optimal masses and positions for E 10m2/sec.

N Number of ml

Unit iterations kg

1 850 122.
2 800 10.3
3 500 4.41

Xl

m

399.
199.
199.

m2 x2 m3 x3 M()
kg m kg m kg

9.40 6250
3.55 4279 3.55 8275

The distribution of the dose for each N is given in Figs. 5.1 and 5.2.

122.
19.6
11.5
5.37

5.3. Case with diffusion by the simplex method. For the sake of comparison
we have used the simplex method to determine the minimizing masses for a fixed
number of sites and fixed locations of the spraying sites. The optimal site locations
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FIG. 5.1. Dose as a function of x for N 1.

FIG. 5.2. Dose as a function of x for N 2 and 3.
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were determined by a systematic search over all discretization nodes, that is, every
50m.

The first observation is that the simplex method failed for the 12km river that
contains 240 50m elements. So we considered a shorter 6km river with three injection
points.

5.3.1. Gradient method with penalization. Two cases were considered:
(a) B(a)= 1- lal,

111 + cos(Tra)].(b) B(a)=
For the two cases, the results are similar for approximatively 1000 iterations

starting from a total initial mass of 4.438kg and the optimal positions of the case
without diffusion, E 0.

TABLE 5.4
Gradient method with penalization.

xi mi

Unit m kg

1 49.5 1.997
2 2110.0 1.147
3 4250.3 1.066

Total 4.210

(b)
xi mi

rn kg

49.9 1.989
2092.2 1.139
4249.9 1.080

Total 4.208

5.3.2. Simplex method for the masses. We have limited the search to ten
nodes downstream of the optimal injection points of the case with no diffusion (E 0).
Moreover, we have introduced an upper bound

mi _< M3, i- 1, 2, 3,

where M3 is the total optimal mass for E- 0.

TABLE 5.5
Simplex method for the masses.

X mi

Unit rn kg

1 50. 2.06103
2 2300. 1.06984
3 4300. 1.06829

Total 4.19916

The simplex method gave an improvement of 0.2 percent over the gradient method
(compare Tables 5.4 and 5.5). However, the gradient method works for a 12km river
while the simplex method fails. Moreover, it is faster. For the simplex each mini-
mization of the total mass for fixed locations requires 20 seconds of computing time
(122+3 unknowns, 120+2+3 inequality constraints, and 122 equality constraints).
For the gradient method one iteration (state equation, adjoint state equation, gradi-
ent evaluation, and display of the solution) requires 0.3 second. So for 1000 iterations
the total time was 300 seconds, to be compared with 20,000 seconds for the simplex
method.

By increasing the number of gradient iterations to 2000 with a tighter control
over the descent parameters we achieved the results in Table 5.6, which improved the
simplex solution by 1.6 percent.
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TABLE 5.6
Gradient method with 2000 iterations.

xi mi

Unit m kg

1 49.95 1.944
2 2199.6 1.094
3 4219.0 1.094

Total 4.132

The closest simplex solutions were at (50m, 2200m, 4200m) with 4.226kg and at
(50m, 2250m, 4200m) with 4.2044kg.

A. Appendix.

V-I E HI(0, L).
system

A.1. Proofs.
Proof of Theorem 2.1. Clearly, V HI(O,L) and V-1 L(O,L) imply that

Under the assumption V-1 HI(O,L) and R L2(0, L), the

dv l IR(x)_dV ] g
L2(0, L

(A.1)
d-- + V(x) ---x (X) v

V(x)
e

1
v(n)-- V(L)gL e R

has a unique solution in HI(O,L). System (A.1) is equivalent to

d
(Y(x)v)-4- R(x)v g,

dx
V(L)v(L) gL

and the map

d
(g(x)v)+ R(x)v, g(L)v(L)) HI(O,L) L2(O L) x ]v -- -x

is an isomorphism. As a result, its adjoint is also an isomorphism and for any t in
H1 (0, L)

3(U, UL) e L2(0, L) , such that Vv e H(O,L)

u -(V(x)v) + Rv dx + uLV(L)v(L) <e,V>H

h a unique solution. The lt part follows by a standard argument.
Proof of Theorem 2.2. It is sufficient to prove that the continuous bilinear form

(2.18) is coercive. For all v in Hi(R)

dv I dv2 1 d
iVy2

I dVv2"
2

Hence

(A.2) a(v, v) E
dv 2 1 d

[vv2] + [R_ l dV] v2 dx.
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By hypotheses

V e Wl,c() and v e gl(]) Yv2 e Wl,l(I)N HI()

and recall that for any function q in HI(),

lim (x) 0.

Therefore, the integral of the middle term in (A.2) is zero and by hypothesis,

dv

Proof of Theorem 2.3. (i) System (2.24) is clearly equivalent to the variational
equation (2.25) with the bilinear form defined in (2.26). To establish the existence
of a solution to (2.25) it is sufficient to show that the continuous bilinear form b is
coercive. So for u in Hi(0, L),

Noting that the right-hand side of (2.25) is a continuous linear form on Hi(0, L), the
existence and uniqueness of the solution follows by the Lax-Milgram theorem.

(ii) Now we show that the solution of (2.25) on [0, L] is the restriction of the
solution of (2.19) on . To do that we use test functions with support in ]-cxz, 0[,
]0, L[, and ]L, cxz[ in (2.19), solve in x, 0[ and ]L, cx[, and use the continuity of u
at 0 and L to obtain a variational equation in ]0, L[ that coincides with (2.25). Then
the result follows by uniqueness of the solution.

Substitute v e H01(-cx, 0) in (2.19) to obtain

(A.3)
d2u du

E(O) + V(O) x + R(O)u  o(x)
o, ),
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where the boundary conditions arise from the fact that u E HI() implies that
u(-cx) 0 and u is continuous at x 0. But system (A.3) has a unique solution
given by o /; co(Y) eo+(X_Z)e(y_z),u(x) u(O)eo+: + dz dy

E(O)

where

E(0)0+ (0),

In particular,

(A.4) E(O)
du /_xx (0-) fl(0)u(0+) eYco(y) dy fl(0)u(0) Co.

Similarly, by choosing v e H(L, oc) in (2.19) we obtain

E(L)
d2u du

+ Y(n)-x + R(L)u co(x)

u(c) 0, u(n+) u(L-).

Its solution is given by

u(x) u(L)e-- (x-L) dz dy e-- (x-z)e-+ (y-z) co(y)
E(L)

dy,

where

E(L)- (L), 4E(L)R(L)

In particular,

(A.6)
d

E(L)-x (L+ -(L)u(L-) + e-+ (Y-L)co(y) dy -(L)u(L) + CL.

The variational equation (2.19) is the sum of three terms

a+b+c=O,

where

du dv du
va E(O)-x-x + V(O)-x + R(O)uv- c(x)v dx

b E(x)
du dv du

v
N

+ y(x)x + R(x)v- cO(xlv-
i--1

A(xi)
v(xi),

c E(L)
du dv du
-x-x + Y(L)xV + R(n)uv c(x)v dx.
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In view of (A.3) and (A.5),

a E(O)du (0-)v(0) ((0)u(0) C0)v(0),

c -E(L)
du
-x (L+)v(L) ((L)u(L) CL)v(L),

and finally

L N

O a + b + c b(u, v) fo c(x)v(x) dx mi

=1
A(xi)

v(xi) Cov(O) CLv(L),

which is precisely the variational equation (2.25). Hence the restriction to [0, L] of the
solution u of system (2.9) coincides with the solution of (2.25) on [0, L]. [3

Proof of Theorem 3.1. Denote by ui the solution of

(A.7) V(x)
du

+ R( )u 5(x

u(0) o,
x>O,

where 5(x xi) is the Dirac delta function in x xi. Then

(A.8)
0,

ui(x) 1

V(x )

0<x<xi,

e-- fxi (R(y)/V(y)) dy, Xi

__
X,

and the solution of (2.11)-(2.12) with co 0 and u0 0 is given by

N

(A.9) u(x) m

i=l
A(xi) ui(x), x > O.

We shall use the notation _> 0tosaythat for all i, 1 _< i_< N, mi _> 0. Since
A(x) > O, R(x) >_ O, and V(x) > 0, then for all _> 0, u(x) >_ O, 0 <_ x <_ L. Now
since u is decreasing on each interval ]xi_l, xi[,

Vx, O <_ x <_ L, u(x) >_ up C== x O, u(xT) >_ up > O 2_<i_<N+1.

Therefore,
0 Xo Xl

__
X2

__ __
XN

__
XN+I L.

Denote by u > Up the condition

(A.10) U(Xhl _> up, 1 <_ < N

and introduce the notation

Q A(x)V(x), e eJ (U()/V(v))dy, 1 _< i _< N.

Given the corresponding solution u of (2.11)-(2.12) must verify u >_ up, that is,

j=

l<i<N,
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or in matrix form,
A _> ?p,

where p is the N-vector with components equal to Up. The matrix A is positive,
lower triangular, and invertible, and

h--1

-Qlel 0 0 0
-Q Qee 0 0
0 -Q3 Q3ea 0

0 -QN QNeN

Let be the solution of the equation

A =gp

and let fi be the corresponding solution of (2.11)-(2.12). Then

i l,pQlel

n --upQ(e- 1), 2 _< i _< N

and
(x-+) up,

Moreover, since A is a positive matrix,

I<i<N.

Now we claim that if condition (3.4) is verified, that is,

(A.11) Q+I -Qe <_ 0, Vi, 1 _< _< N,

then for any vector >_ 0 such that

(A.12) 2i, 0_< ms < i,

we can construct another vector m’ from --m such that

(A.13) u’(x-) >_ up, 2 <_ j <_ N + I, mj

and

I<_j<_N,

N N

(A.14) m _< my,
j--1 j--1

where u’ is the solution of (2.11)-(2.12) corresponding to ’. This means that to find

the infimum, it is sufficient to consider vectors such that _> . Therefore

N N

Inf mi-- Inf mi
m_>0
U_Up
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and the second Inf is achieved for --m=m.To prove the previous technical result, rewrite the condition

(A.15) Vi, l < <_ N, u(x+l) > Up

in the form

(A.16) u(x;+l) up ..._ II e}-1 > 0, 1 _< i _< N,
3j--1

where

(A.17) Amy mj rtj, 1 < j < N.

For/= 1,

e >0 == Am1 >0

and there is nothing to prove. Let k, 2 < k < N, be the first index such that

Amk mk k < O j, l < j < k -1, mj >_ y.

Since --m satisfies all the constraints for k- 1 and k, we have

(A.18) u(x- -up
Qk-1

j=l l=j

(A.19) u(x-+1) up -1 {/mk Arnj
k-1 }/kmk-l e-l-1 + H e-iX >

Q-
j=l

Q
l=j

Go

Choose

(A.20)
mymj

l<j<k-2 and j=k,

k+l<_j<_N,

and m_ such that

-1 tm-i(A.21) ek-1 Qk-1

/mk /kmj
k-1

/mk-lell + YI e[ > O,
Qk-1

j=l
Qi

where

By construction for t
Ny,Am} my

m_ k ?k-1 and

I<j<N.

--Up e[ l<i<k-2,
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since Am 0, 1 _< j _< k 2. For k 1 and k, the terms reduce to

from (A.21) and (A.19). Finally, for > k,

.’(Xhl)-u.
j=l

Q

and sinceAm}=0forl_<j_<k-2, andj-k,

Amk-1 -1

Q- H e[ _it_ eg,
.--k j’-k--bl

Qj
=j

But from (A.20), Am} Amj, k + 1 <_ j <_ N, and by construction of Am_ in

(A.21), we obtain

So the new vector m verifies the constraint u’ >_ Up. Now consider the difference in
costs:

N N k-2-- Em Emj E--AmJ +mk_l mk-1- Amk.
j---1 j--1 j--1

Again, by construction,

Amkmk_l mk-1 Qk-lek-1
Q

k-2 k-1 ]Amj
-}- E Qj H

j=l

and

Amk[k-lek-1 Q]
k

Amk[Qk-lek-1 Qa] Q

+Y. Q-l l-Ie-[1-Q
=1 =j

Q

k-2k-2

EE[Qnen --Qn+l] H el1 Qj
j n=j

Always by construction

Amk < 0 and Amj >_ O, 1 <_ j <_ k- 1,
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and by hypothesis (A. 11)

Qiei -Qi+l _> 0, 1 _< _< k- 1.

Therefore, <_ 0 and we have constructed a new vector m’ from that verifies the
constraints

>j 1 <j <kUp, 2 <_ j <_ N + 1, mj

and does not increase the cost. We can now repeat the construction for the next index
k’ > k such that Amk, ( 0 up to N. This proves the technical result.

We have established that under assumption (A.11), is a minimizing solution.
Now it is easy to see that if assumption (A.11) is verified with a strict inequality, the
points xi’s verify the conditions

0 Xl X2 XN--1 XN L

and the previous constructions yield a m’ for which the cost is strictly less than the
one for the minimizing vector . This contradiction shows that the set of solutions
of the two problems

N N

Inf Em and Inf Em_>0 {--1 > {=i
U_Up

coincide. But for the second problem, is obviously the unique minimizing element.
This completes the proof of Theorem 3.1.

Proof of Theorem 3.2. We have seen from Theorem 3.1 that for fixed xi’s the
optimal cost is given by

j(Z) up Q(O) + Q(x)[ei 1]

where
R(y)

a(y) Y(y)’ ei ei a(y)dy and Xl 0

Moreover, from assumption (3.8), inequalities (3.4) are verified for any fixed set of
x’s. So the next step is to minimize this cost function over the following nonempty
compact subset of 11N"

K {" 0 Xl

_
x2

_ _
XN

_
XN+I L}.

For A and V in C([0, L]), j(Z,) is continuous on K and there exists a minimizing
solution Z. in K. This solution can be characterized by using Lagrange multipliers

N N

L(", A) E Q(x,) L, a(y)dy 1] + E A,(x,- xi+l).
i=1 i=1
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This yields

Ai(xi-xi+l)-0, Ai_>0, xi-xi+l <_0, l_<i_<N,

Q[[e 1] + ai[Q-le- Qe] +

_
o, 2 <_ i <_ N,

where
Q Q(x), Q Q,(x), a a(x).

It is convenient to rewrite the above system as follows:

(A.22) Ai(xi- Xi+I) 0, ,’i _> 0, xi- xi+ _< 0, 1 _< _< N,

(A.23) [Q[ aQ](ei 1) + a[Q_ei_ Q] + A A_ o, 2<i<N.

Assume that XN XN+I. Then eN 1 and

aN[QN-leN-1 --QN] ’[- N N-1 O.

If XN > XN-1, then /N-1 --0 and by hypothesis (3.8),

0 < aN[,N-leN-1 --QN] /N-1 N --)N O,

which is a contradiction. Therefore, XN-1 XN 0 and

aN-I[QN-2eN-2 QN-1] + AN-1 AN-2 O.

If XN--1 > XN-2, then /N-2 0 and by hypothesis (3.8),

0 < aN-I[QN-2eN-2- QN-1]-- AN-2 AN-1 --N-1 O,

which again is a contradiction. By repeating this argument we finally obtain

Xi ---XN+I, 1 <_ <_ N.

But
Xl 0 < L XN+I

and this is a contradiction. This proves that

XN XN+I < 0, AN 0, and eN > 1.

Now if XN--1 XN, then eN-1 1 and

aN-I[QN-2eN-2 QN-1] - AN-1 AN-2 O,

and by the same argument as above we obtain

Xi XN l <_i <_N XN--O.

This means that the resulting cost is

j0 ?_tp {Q(0)+ Q(0)[ef0L a(y) dy_ 1]}.
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For N > 2 this is not a minimum since we can choose

XN_I --0 < XN < XN+I L

and

jl up Q(O) + Q(o) e: ()du 1 + Q(x’N) e -1] } < jo.

To see this,

Up

dy 11
-11

since both terms are strictly positive. From this contradiction we conclude that XN-1--
XN<O.

By repeating this argmnent we find that

(A.24) Vi, l <_ <_ N, xi xi+ <0, = ;i O.

Thus the constraints are not active and

Qi-l[ei-1 1] [aiQi Q]
Qi(ei 1) + Qi Qi-1,

aiQi
2<i<N.

The last equation is

N
() d e,foL a(y) dy

i=1

Finally, in view of (A.24) and assumption (3.8), the inequalities (3.4) are verified
with strict inequalities. As a result, for a minim_zing set of positions xi’s, the optimal
distribution of masses is unique and given by in (3.5). [

Proof of Theorem 3.3. By construction, the solution

U(X) --Up, 0 <_ x <_ L, UL --Up

generates a positive measure (see (3.24)) for R(x) >_ O, A(x) >_ O, and V(0) _> 0. We
only need to show that it is minimal. For all rn >_ 0 in C([0, L])’ such that u >_ up
and UL >_ up we have

M(m) bo((u, UL), A) bo((u- up, UL up), A) + bo((up, up), A)
>_ bo((up, up), A)
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by condition (3.25), since u-up >_ 0 and UL--up >_ O. Hence (up, up) is a minimizing
solution. It is obvious that when the inequality (3.25) is strict for (u, UL) = (0, 0),
then this solution is unique. Moreover, from (3.25) with u 0,

V(L)A(L)uL > O, VUL > 0 == Q(L) V(L)A(L) > O.

Similarly, for all u _> 0 in L2(0, L), u 0, with UL 0,

ooL [-d (vA) + RAl ud > O"

In particular, fix x and y such that 0 _< x < y _< L and define- f (a()/V(z))d, [x, y],
u()

0, otherwise.

Then

which implies that -- Q()e-f (R(z)/u(z))dz d > O,

Q(y) < Q(x)e-: (R(z)/u(z))d.

But this is precisely condition (3.8).
Proof of Corollary 1. The equivalence of (i), (ii), and (iii) is obvious. When (iii)

is verified, multiply the left-hand side by the strictly positive function

e() exp-fo (R(z)/V(z))dz.

Then the right-hand side of (iii) becomes
d

d
[Q()e()] _> 0

and by integrating from x to y we recover (iv). Conversely, from (iv) for all x < y,
Q(y)e(y) Q(x)e(x) d<_ 0 -7-[Q(x)e(x)] <_ 0

y--x
and we obtain (iii).

Proof of Corollary 2. (i) = (ii). From Corollary 1 introduce the function
d

f -,..(VA)+ RA >_ O.

Denote by Z the set {x e [0, L] f(x) 0}. If meas(Z) > 0, choose u Xz, the
characteristic function of Z, and UL O. Then since u 0,

0 < Xzf dx f dx O,

which contradicts the fact that meas(Z) > 0. Hence f(x) > 0 almost everywhere in
[0, n]. Now for u 0, we get from (i)

V UL > O, uLV(L)A(L) > 0 = V(L)A(L) > O.
The converse, (ii) = (i), and the equivalence of (ii) and (iii), are obvious. Clearly (iii)
implies (iv) by the same technique as in Corollary 1 with a strict inequality.

Proof of Theorem 3.4. The technique is the same as in the proof of Theorem 3.3.
First note that the solution up generates a positive measure mR given by (3.35) for
R(x) >_ O, A(x) >_ O. Then for all m _> 0 in C([0, L])’ such that u >_ up, we have

M(m) b(u, A) b(u UL, A) + b(uL, A) >_ b(uL, A)
by condition (3.36) since u- UL >_ O. Hence UL is a minimizing solution. It is clearly
unique when inequality (3.36) is strict for all u 0.
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A.2. Discretization of the state equation (4.15). We compute the algorithm
(4.17)-(4.19) from (4.15) under the conditions (4.14). We introduce the notation

Po =P(o+), Pj =P(-), 1 _<j _< J,
uj value of u(x) on the interval/j ]j-l,j[,

By setting q 0 and w 0 we obtain from (4.15)

-Po + oUo co, pj
(A.26) p(-) py cy, 1 _< j _< J 1.

Then set w 0 and W 0 and use the trapeze formula to evaluate the integrals on
each interval Ij"

h_. [E_fflp(_)q(_) + E__11p(?_1)q(_1)]2

or simply

h
=0,

(A.27) h +
l_<j_<J.

-E-ff_lP(j_l) ?.tj + Uj-1 O,

Now set q 0 and W 0 to obtain on Ij

-(-) p(-_)] + hRjuj uj[V Vj_] + ujVj uj_V_ hfy

or

Ol Po] + hRlul + Yo[tl to] hf,
[Pj Pj-1 " Cj--1] + hRyu.i + V--I[Uj tj--1] hfy, 2<_j<_J.

Now use the first equation of (A.27), to eliminate U,... Uj-1 in the second one:

(A.29)

h h
-j pj -" Uj Uj+ "j Cj

h
2-p’o +Uo -Ul =0.

l_<j_<J-1,

The Uy’s can be recovered through the formula

Uy uy + uj+ h
2 +--jc, l<_j<_J-1.

Now use equations (A.29) and the first equation (A.27) for j J to eliminate the py’s
in (A.28)

(A.30)
l<_j<_J-1,

2Ej
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to obtain

2 E1 + 2E0 E1 Cl--+Vo Uo+
h

+hR+Vo u---u2-+hf,

h +-1 uj-l+
Ej+Ej_I Ej

h + hRj +

_
uj -uj+

cj + cj_

2
+hfj, 2 <_j <_ J- 1,

EJh- -- VJ-1 UJ-1 -" h
cj-1- +hfj, j J.

2Ej
+ hRj + VJ-1 UJ -’--UJ

Finally, also eliminate p0 and pj in the first two equations of (A.26) to obtain

(A.32) --f- " ZO Uo ----Ul co, -TuJ - + ZJ Uj cj.

System (A.31)-(A.32) is equivalent to a system of (J + 2) equations in the (J / 2)
variables (U0, u,..., ug, Uj). This is precisely system (4.16), where the (J + 2)
(J + 1) matrix C is given by

1 0 0 0 0
0 0 0 0

0 00

0 0 ". ". ". 0

00
0 0 0
0 0 0 1

A.3. Computation of the adjoint system (4.36). With the notation (4.32)-
(4.33) of 4.2.2 the Lagrangian L L(, , Y, P) is
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where it should be recalled that we have defined u(0-) U0. We successively compute
the partial derivatives with respect to Uj, p, and u at the point ({j

(A.33)

(A.34)

(A.35)

for all Uy, 0 < j < J;

(A.36) E-l(x)p -x dx + p(-)ldl p(0+)l/d0 0,

(A.37)

E-l(x)pO -xCV dx + p((-f)j p((_l)/rj-1 0, 2 < j < J 1,

(A.38) E-(x)pO --xV dx + p(-)d p(j+_l)l/j_l 0
J

for all p in p1 (Ij); and finally,

(A.39)

(A.40)

(A.41)

for all u in po(Ij).
The piecewise constant functions fi and ff will be represented by the sequences

{fi 1 < j < N} and {@j 1 .<_ j < N} wherefij and@j in l are the constant
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values of fi and on the interval Ij. In addition, we introduce the variables

(A.42)

qj=O(), qj=(), O_<j<_J-1,

dj=--l[up-Sj]+, 0<j<J,_
2
1 fI, [up (x)]+dx

1
[up fij]+g

e3h e l<_j<_J.

From (A.33)-(A.35),

(A.43)

qo + o1o VoW1 do

(-) =qj -d, 1 <_j _< J- 1

j jlj dj.

From (A.36)-(A.38) with the trapeze formula for integrals,

(A.44)

(A.45)

(A.46)

2Ej-1
h

2E

---h4o+-$o =0,
2Eo
h

(ql -d)-?)1 -}- z1 --0,
2E1-+; $;-1 0,

2_<j<_J-1,
--(Oj dj) j + I?Vj O,

h
qj_ +ff;j IYVj_ O,

2Ej_I

h--, ro + W o.
2Ej

From (A.39)-(A.41), using the trapeze formula and the second identity of (A.43),

qz -Eqo + (hR1 + Vo)tl hgl + d,

(A.47) qj qj--1 - (hRj + Yj-1 )[)j /?)j+l hgj + dj, 2 <_ j <_ J 1,
qJ -qg-1 + (hRg + Vj_)@j hgj.

Now from system (A.44)-(A.46) we can express I2dd, 1 _< j _< J- 1, and the cd’s in

terms of the ff;j’s and IYVo and 12Vj:

h
(A.49) Ij + dj, 1 < j < J- 1

2
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Its substitution in (A.47) yields

El + 2Eo ](A.50) 2E0__i/o + + hR1 + Vo @1
h h

E1 dl
--W2 hgl + --,

(A.51) h
Wj-l+

h
+hRj +V-I @y-

hg + dj + d-i 2<j<J-1,

Ej-1 [ Ej + Ej-1(A.52) -’h WJ-1 + 2
h

hRg +Vj-1 @j 2EJI?vj- hgj

By adding the two boundary equations from (A.43) to the above system,

(A.53) 2Eo ]---h-- -t- Vo @1 do,

dj_l

(A.54)
2Ej [2Ej ]

Equations (A.50)-(A.54) yield (4.36) and equations (A.48)-(A.49) coincide with (4.38)-
(4.39). The derivatives (4.40) and (4.41) are now readily obtained by taking partial
derivatives of the Lagrangian L. This completes the argument.
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ON THE SUPERLINEAR AND QUADRATIC CONVERGENCE
OF PRIMAL-DUAL INTERIOR POINT

LINEAR PROGRAMMING ALGORITHMS*

YIN ZHANGt, RICHARD A. TAPIA$, AND JOHN E. DENNIS, JR.

Abstract. This paper presents a convergence rate analysis for interior point primal-dual linear
programming algorithms. Conditions that guarantee Q-superlinear convergence are identified in
two distinct theories. Both state that, under appropriate assumptions, Q-superlinear convergence
is achieved by asymptotically taking the step to the boundary of the positive orthant and letting
the barrier parameter approach zero at a rate that is superlinearly faster than the convergence of
the duality gap to zero. The first theory makes no nondegeneracy assumption and explains why in
recent numerical experimentation Q-superlinear convergence was always observed. The second theory
requires the restrictive assumption of primal nondegeneracy. However, it gives the surprising result
that Q-superlinear convergence can still be attained even if centering is not phased out, provided
the iterates asymptotically approach the central path. The latter theory is extended to produce a

satisfactory Q-quadratic convergence theory. It requires that the step approach the boundary as fast
as the duality gap approaches zero and the barrier parameter approach zero as fast as the square of
the duality gap approaches zero.

Key words, linear programming, primal-dual interior point algorithms, Newton’s method,
Q-superlinear and Q-quadratic convergence

AMS(MOS) subject classifications. 65K05, 90C05

1. Introduction. This paper considers linear programs in the standard form:

minimize cTx(1.1) subject to Ax b, x >_ 0,

where c, x E Rn, b E Rm, A E RmXn(m < n), and A has full rank m. The dual linear
program of (1.1) can be expressed in the following symmetric form:

(1.2) minimize dTy
subject to By Bc, y >_ 0,

where y E R is the vector of dual slack variables, d AT(AAT)-lb, B E R(-m)x
has full row rank, and ABT 0 (i.e., the columns of BT form a basis for the null
space of A). This form of the dual was introduced by Todd and Ye in [21]. A pair
(x, y) is called strictly feasible if x and y are feasible for (1.1) and (1.2), respectively,
and are positive as well.

The weak duality theorem says that the duality gap xTy is nonnegative for any
feasible pair (x, y). We will assume that the primal feasibility set contains strictly
feasible points and that the set of optimal solutions for the primal linear program
is nonempty and bounded. For any optimal feasible pair (x,,y,), the duality gap is

Tclosed, i.e., x, y, 0.
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Primal-dual interior point algorithms attempt to solve the primal and dual linear
programs simultaneously by generating a sequence of strictly feasible pairs { (xk, Yk)}
(and often another dual variable vector--the Lagrange multipliers associated with the
primal constraints Ax b) that converges to an optimal feasible pair (x., y.). The

Tobjective of such algorithms is to drive the duality gap xk Yk to zero. Primal-dual ap-
proaches of this form were first introduced by Megiddo [14] using a logarithmic barrier
function method. Megiddo’s idea was developed by Kojima, Mizuno, and Yoshise [9]
into a full algorithm with a polynomial complexity bound. A conceptually different
approach was proposed by Todd and Ye [21] based on reducing a primal-dual potential
function that is analogous to the Karmarkar primal potential function [8]. Other works
on primal-dual interior point algorithms include Monteiro and Adler [17]; Lustig [II],
[I0]; Gonzaga and Todd [6]; Huang and Kortanek [7]; Choi, Monma, and Shanno [3];
McShane, Monma, and Shanno [13]; and Lustig, Marsten, and Shanno [12].

The above works can be classified roughly into two groups. Papers in the first
group ([9], [21], for example) focused on designing algorithms with polynomial com-
plexity bounds. Papers in the second group ([3], [12], [13], for example) were more
concerned with computational and implementational issues. Unfortunately there is a
discrepancy between the two groups. That is, the algorithms that were described in
the second group and were shown to have good practical performance are not those
that were studied in the first group and were shown to possess polynomial complexity
bounds. This discrepancy is understandably due to the limitation of the worst case
analysis used in deriving polynomial complexity bounds. Recently, there have been
works aimed at narrowing this discrepancy from a probabilistic point of view; see
Mizuno, Todd, and Ye [15], [16]. In the current work, we try to shed light on another
fundamental aspect of continuous optimization algorithms; namely, the blending of
two often conflicting objectives: global convergence and fast local convergence. A
convergence rate analysis for algorithms that belong to a very general class of primal-
dual interior point methods is presented. This theory shows how superlinear and
quadratic convergence can be attained by primal-dual interior point algorithms.

It is well understood, in the continuous optimization community, that fast local
convergence is an important factor in evaluating the efficiency of an iterative method.
Moreover, while interior point algorithms for linear programming are certainly it-
erative methods, local convergence properties have not received much attention. A
plausible explanation for this lack of attention is the common belief that interior point
algorithms essentially possess finite termination. That is, once one gets close enough
to the optimal solution set, the interior point method can be terminated and avail-
able information (mainly the zero-nonzero structure of an optimal solution) can be
used to obtain an optimal solution through some finite procedure. In the context of
this guessing strategy, it is natural to question the value of fast local convergence in
linear programming applications. However, our computational experience has taught
us that although a correct early guess, on occasion, is certainly possible, especially in
the case of a nondegenerate optimal vertex, in general one needs to be very close to
the solution set in order to guarantee a correct guess. In addition, fast convergence
usually occurs much earlier than the standard Newton’s method theory predicts--a
property often referred to in nonlinear applications as the semilocal behavior of New-
ton’s method. Therefore, the construction of algorithms with fast local convergence
can be an important and beneficial activity even in linear programming applications.
However, in the interest of conciseness we have decided to present only theory in the
present study. A comprehensive numerical investigation is the subject of a current
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study.
The concept of the central path (trajectory) plays an important role in designing

and analyzing interior point algorithms. It was first studied in linear programming by
Sonnevend [18] and by Bayer and Lagarias [1], [2]; see also Megiddo [14]. The central
path can be expressed in several ways. Perhaps the simplest is that a strictly feasible
pair (x, y) is on the central path if and only if it satisfies

where [x]i ([y]i) is the ith element of x (y), or equivalently,

(1.3) [x]i[y]i xTy/n, 1, 2,..., n.

This paper is organized as follows. In 2, we describe a general primal-dual interior
point algorithmic framework. Then in 3, we present our superlinear convergence rate
analysis and in 4, we present our quadratic convergence rate analysis. Concluding
remarks are given in 5.

2. A primal-dual algorithmic framework. In this section, we describe a gen-
eral primal-dual interior point algorithmic framework. This general framework can
also be derived from the point of view of barrier function methods or potential func-
tion reduction methods, as was done, for example, in [9] and [21]. We hope that our
somewhat different approach offers new insight into these algorithms.

If the primal variables and the dual slack variables are updated at a given Strictly
feasible pair (x, y) by the formulas

(2.1) x+ X(e + ap) and y+ Y(e + aq),

where X diag(x), Y diag(y), e E Rn has all components equal to one, p, q E Rn,
and a > 0 is the step-length, then in order for x+ and y+ to be strictly feasible, p, q,
and a must satisfy

(2.2) AXp=O and e+(p>0,

(2.3) BYq=O and e+aq>0.

We will consider projected gradient-type methods. Namely, the feasible directions
p and q are obtained by projecting the negative gradients of relevant functions into
the null spaces of AX and BY, respectively. Therefore, we first need to construct two
n n projection matrices Hp and Hq such that AXHp 0 and BYHq O. If A and B
were not scaled by X and Y, respectively, then it would be sufficient to define Hq PA
and Hp I- PA, where PA AT(AAT)-IA. This definition would give AHp 0
and BHq 0 because AT _1_ BT. Obviously, in this case both Hp and Hq would be
orthogonal projections and therefore would be symmetric and positive semidefinite.
The symmetry and positive semidefiniteness of Hp (Hq) is important because for any
function : Rn - R, the projected negative gradient -HpV (-HqV) will be not
only a primal (dual) feasible direction but also a descent direction for as long as
HpV 0 (HqV 0). Furthermore, it is worth noting that one would only need to
compute either Hp or Hq because Hp + Ha I.

Even though the matrices A and B are scaled by X and Y, respectively, it is
still possible to construct two projection matrices HB and Hq based on just one or-
thogonal projection matrix (though Hp and Hq themselves will not be orthogonal
projections) and obtain the desirable property that both Hp and Hq are symmetric
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positive semidefinite. Consider the following matrices that we will call scaled projec-
tions:

Hp=D(I-P)D and Hq=bPb.

Here/ is a positive-definite diagonal matrix and/5 is an orthogonal projection matrix,
both contained in Rnn. The equations A(XHp) 0 and B(YHq) 0 and the fact
AT _k BT imply that HpXYH 0, which in turn requires that (XYJ)(I-D)
0. The last equation will hold for any o^rthogonal projection matrix/5 if [gXYD I.
This leads to the following choice for D:

D (XY)-/.

It now follows from AXHp 0 that (AX1/2Y-1/2)(I- [) O. Hence we need to
define the orthogonal projection matrix 5 as the orthogonal projection into the range
space of X1/2y-1/2AT, namely,

[9 X1/2y-1/2AT(AXy-1AT)-IAX1/2y-1/2.

This definition of/5 gives not only AXHp 0, but also BYHq 0. Therefore, we
finally conclude that the choices for the two scaled projection matrices Hp and Ha
should be

(2.5) Hp (Xy)-I/2(I- P)(XY)-/,
(2.6) Hq (Xy)-I/2p(XY)-/2,

where/5 is defined by (2.4). The proof of the following proposition is now straight-
forward.

PROPOSITION 2.1. If lip and Ha are defined by (2.5) and (2.6), respectively, then
(1) Both Hp and Ha are symmetric positive semidefinite;
(2) AXHp 0 and BYHq O;
(3) HpXYHq O;
(4) Hp + Hq (XY)-1

Obviously, the scaled projection Hp (Hq) will project the negative gradient into
a primal (dual) feasible direction, which is also a descent direction (provided that the
projection is nonzero). It is worth noting that in order to construct the two scaled
projections we only need to calculate one orthogonal projection matrix/3.

To derive the directions p and q in (2.1), we first define a function

(2.7) (u, v) (e + u)TXY(e + v).

Obviously, if x+ X(e + u) and y+ Y(e + v) are primal and dual feasible, re-
spectively, then (u, v) x_y+ >_ 0 represents the duality gap at the updated pair
(x+, y+). It is easy to see that

v.(0, 0) 0) xY .

Now define

(2.1o)
pc -HpV(O, O) -[(XY)-/2(I [:))(XY)-/2]XYe,
q -HaVre(0, O) -[(Xy)-I/f:’(XY)-I/:IXYe.
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From Proposition 2.1 (1), (2), the above-defined (pc, q) is clearly a feasible descent
direction for (u, v) at the current point (0, 0). We call (pc, q) the duality gap-
reducing direction.

Using the formulas (2.1), we define the barrier function at the given strictly
feasible pair (x, y) as

n

b(u, v) ln([X(e + u)][Y(e + v)]),
i--1

where [a] denotes the ith element of the vector a. The gradient of (u, v) at the
current point (u, v)= (0, 0) satisfies

(2.12) 0) 0)

The scaled projections of the components of the negative gradient direction of into
the primal and dual feasible spaces are, respectively,

(2.13) pc -HpV(0, 0) [(Xy)-I/2(I P)(Xy)-I/2]e,
(2.14) q -HqTv(O, O) [(Xy)-I/2p(Xy)-I/2]e.

The direction (pc, q) defined above is a descent direction for the barrier function
(u, v) at the current point (0, 0); thus it pulls the next iterate towards the interior
of the primal and dual feasible sets. We will call (p, q) the centering direction.

In almost every primal-dual interior point algorithm, the step direction in the
primal or dual space is a linear combination of the duality gap-reducing direction and
the centering direction. More specifically, for some a E [0, 1),

xTy
-Hp XYe cr(2.15) p pc +ap

n

q +  -uq
Hereafter, we will use the notation:

min(u) min [u],
l<i<n

min(u, v) min ([u],,
l<i<n

for u, v E Rn; the corresponding quantities for the maximums are similarly defined.
The following proposition can be easily verified using Proposition 2.1 and direct

substitution.
PROPOSITION 2.2. If p and q are defined by (2.15) and (2.16), respectively, then
(1) AXp 0 and BYq O;
(2) pTXYq O;
(3) p+ q -e + arY(XY)-len

(4) (e + ap)TXY(e + aq) xTy[1 c(1 a)].
We define the step-length a in (2.1) by the formula

--T
(2.17) c

min(p, q)’
T e (0, 1).

These choices of p, q, and c guarantee that the new primal and dual variables x+
and y+ obtained from formulas (2.1) will remain strictly feasible.
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We now state an algorithmic framework for interior point primal-dual algorithms.
ALGORITHM 1. Given a strictly feasible pair (x0, Y0), for k 0, 1, 2,..., let

(2.18) Xk+l Xk(e + akPk) and Yk+ Yk(e + akqk),

where Pk, qk, and ak are defined by (2.15), (2.16), and (2.17), respectively, and all
the quantities involved (including a and T) are indexed by k.

This algorithm generates strictly feasible sequences {xk } and {Yk }. It is a descent
algorithm for the duality gap, which is reduced at iteration k by a factor 1 -ozk(1
ak) < 1. Almost all the existing primal-dual algorithms that use only one projection
per iteration fit into the above algorithmic framework with different choices for the
parameters ak and Tk.

For example, in the primal-dual algorithm of Kojima, Mizuno, and Yoshise [9],
at each iteration a constant ak is chosen from (0, 1) and, depending on this value
of k, restrictions are put on the parameter Tk to ensure a polynomial complexity
bound. In similar primal-dual algorithms implemented by Choi, Monma, and Shanno
[3]; McShane, Monma, and Shanno [13]; and Lustig, Marsten, and Shanno [12], very
small values of ak were used and long steps were taken. Impressive numerical results
have been obtained for these implementations, though a polynomial complexity bound
is no longer known.

Other examples include Todd and Ye’s primal-dual potential reduction algo-
rithm [21] and Monteiro and Adler’s path-following primal-dual algorithms [17]. Todd
and Ye’s primal-dual potential function is

Op(x, y) (n + p)ln(trace[XY]) -ln(det[XY]).

This choice was motivated by the Karmarkar primal potential function [8]. At a given
strictly feasible pair (x, y), if we define p(u, v) O(X(e + u), Y(e + v)), then we
can see, though this was not the way the authors derived their algorithm, that the
scaled projected negative gradient direction of (u, v) at (0, 0) gives the updating
directions for (x, y) proposed by Todd and Ye and they are of the form of (2.15) and
(2.16). Todd and Ye used p-- pv/ in their algorithm where is a positive constant.
This choice of p leads, at each iteration, to the choice

7k

in (2.15) and (2.16). In Monteiro and Adler’s path-following primal-dual algorithms [17],
one can show that

ak=l

where 5 is chosen to be a number in (0, x/-) subject to a certain restriction. The
restriction is such that 5 is bounded above as n --, c (Monteiro and Adler actually
chose 5 0.35 in their analysis).

3. Superlinear convergence. We first introduce two quantities defined at each
iteration of Algorithm 1. At the kth iteration, let

T /n xyk/nxk YkOk max(XYke)
and k min(XkYke)"
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Since xyk/n is the average value of the elements of XkYke, it is clear that 0k _< 1
and vlk >-- 1. Moreover, it follows from (1.3) that the pair (Xk, Yk) is on the central
path if and only if Ok 1 or, equivalently, Yk 1.

In this section, we present two distinct Q-superlinear convergence theories, namely,
Theorems 3.1 and 3.6. Our first Q-superlinear convergence theory is quite general and
makes no nondegeneracy assumption. Some relevant comments will follow its proof.

THEOREM 3.1. Let (xk} and (Yk} be generated by Algorithm 1, xk --* x,, and
Yk -- Y,. Assume (i) strict complementarity, (ii) the sequence {k} is bounded, and

xT(iii) Tk --* 1 and ak O. Then the duality gap sequence { k Yk} converges to zero
Q-superlinearly. That is, the Ql-factor

T

(3.1) Q1 lim sup Xk+lYk+ O.
k xyk

Proof. From Proposition 2.2 (4), we have

Q 1 lim inf ak (1 ak).
k--o

Since (:rk --+ 0, Q1 0 if and only if lim infk-o ak 1. We will prove that ck --* 1.
Multiply both sides of the equation in Proposition 2.2 (3) by (XkYk) 1/2 and

consider the square of the t2-norm of both sides. From Proposition 2.2 (2) we have

ii(XkYk)/2pk]]2 + ii(XkYk)/2qkll XkY (
or equivalently,

1 2ak + a xk Yk eT(XkYk) e

n n

xT --1where Tk k Yk/n)(XkYk) Assumption (ii) implies that (Tk} is bounded above
and (T[/2) is bounded away from zero. Therefore, from (3.2), both (Pk} and
are bounded. It follows from (2.17) that (ck} is bounded away from zero.

Now sume [x,]i > 0. Obviously,

1 lim
[Xk+l]i

lim (1 + akk]i).

This implies k] 0, because {ak} is bounded away from zero. Since ak O,
from Proposition 2.2 (3) we have (Pk + qk) --e. Hence [qk]i -1. On the other
hand, if [x,] 0, then [y,] > 0 by strict complementarity. The same argument,
interchanging the roles of Pk and qk, gives [qk] 0 and k] --1. Therefore,
the components of Pk and qk converge to either 0 or -1. Consequently, from (2.17),
ak 1 since T 1. This completes the proof.

In Theorem 3.1, a source of concern has been the compatibility of assumptions (ii)
and (iii). On the surface, it seems as if letting Tk 1 and ak 0 might force k
However, our numerical experience h shown this not to be the ce. Indeed, Theo-
rem 3.1 w the direct consequence of a rather extensive numerical experimentation.
The superlinear convergence theory presented in the first draft of this paper consisted
only of Theorem 3.6 and required the assumption that {k} be bounded. This as-
sumption h been removed in the present version. In subsequent numerical studies
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with highly degenerate Netlib problems, we let Tk --* 1 and rk ---+ 0 and we always
observed strict complementarity, {Yk} bounded, ak -- 1, and Q-superlinear conver-
gence. This phenomenon motivated us to search for a theory that could explain this
occurrence and consequently led to the discovery of Theorem 3.1. We feel that Theo-
rem 3.1 offers a satisfactory explanation of what we observed in practice. (In a more
recent study, Zhang and Tapia [22] have proved that it is possible to choose ak --* 0
and Tk 1 while maintaining global convergence and the boundedness of {Yk }. Thus,
the compatibility of the assumptions in Theorem 3.1 has been demonstrated.)

In numerical computation, the boundedness of {k} requires some qualification
because an algorithm is always stopped in a finite number of iterations. In our nu-
merical experiments, we did not observe the trend of continued growth in the values
of k as our algorithm was about to stop, while the observed convergence was clearly
Q-superlinear and ck --* 1. Of course, the behavior of {rk } varies with several factors,
including how fast {Tk} converges to one and {ak} to zero. We do not imply that
unbounded {k} can never occur. Instead, we feel that it appears to be more an
exception than the rule. This topic undoubtedly merits further study.

In the following development, we show that if we assume nondegeneracy, then
we can obtain Q-superlinear convergence without assuming the boundedness of {k }.
The following theorem concerns the Q1 factor of the duality gap sequence.

THEOREM 3.2. Let {Xk} and {Yk} be generated by Algorithm 1, xk --* x,, and

Yk ---* Y,. Assume (i) strict complementarity and (ii) x, is a nondegenerate vertex.
xTThen the duality gap sequence { k Yk} converges to zero and the Q1-factor is

++ (-)(3.3) Q1-- lim sup -1- lim inf
k xyk k 1 kO’k

To prove Theorem 3.2, we need the following two lemmas. The first lemma has
been proved in [20] under slightly different assumptions. For the sake of completeness,
we include its proof here.

LEMMA 3.3. Let [k be defined by (2.4) with X and Y indexed by k. Without
loss of generality, assume that the first m elements of x, are positive. Then under
the assumptions of Theorem 3.2,

(3.4) lim /k
k--o

Proof. Let

y1/2 1/2 diag(dkdk---k Y- e and Dk= ).

Then

k DkAT(ADAT)-IADk

By our assumptions, we have

[Yk]i --* O, i 1,2,...,m

and

[x] - 0, m + 1, m + 2,...,n.
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It then follows from the definition of dk that

[dk]i /, 1,2,-..,m

and

[dk]i - 0, i--m+ 1,m+ 2,...,n.

Now let A1 be the m m submatrix of A consisting of its first m columns and
A0 be the rn (n m) submatrix of A consisting of its last n- rn columns Clearly,
A1 is nonsingular. Similarly, let D and D be the diagonal matrices of dimensions
m and n- m, respectively, with the first m and the last n- m elements of dk on their
diagonals, respectively. Evidently, D is nonsingular for all k and {D} converges to
zero.

A ,-I/2v-1/2Substituting ADk [A1D AoD] for k "k in (2.4), we obtain

0 2 T--1 0k --[AID AoD]T[AI(D)2AT + Ao(Dk) Ao] [A1D AoDk].

Note that A1 is nonsingular and let

0R (D)-IA AoDk.

We have

(3.6) (Ira + RkR)-1

k R[(Im + RkR)-1
+

T T --1Rk(Im +RkRk) R.

Since D -- 0 and (D)-1 --. 0, so does Rk. Now it is evident that

lim/Sk- [ I’ 0 1k- 0 0

which completes the proof.
Our next lemma will be used not only in the proof of Theorem 3.2, but also in

our quadratic convergence theory.
LEMMA 3.4. Let [k, Pk, and qk be defined by (2.4), (2.15), and (2.16), respec-

tively, with X and Y indexed by k. Under the assumptions of Lemma 3.3,

pk

f 0

\ -1

0

[XYe]+
q-O T

\ [XkYk]
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and

1

qk 01

/ xyk/n

X
T /n +o(),

where the number of zeros is m in Pk, and n m in qk.

Proof. Since Rk 0,

(I, + RkR[)-1 I, RkR + RkO(IIRklI2)R I, RkO(1)R[.
Hence, from (3.6),

where

p_ o. o
0 0 I’-[- T --EkRk 0

0 R RkO(1) O(1) 0 Rk

It follows from the definition of Pk and qk (see (2.15) and (2.16)) that

pk

f 0
0

T /nx y
[XYke].+

[XYe]

where

(x)_/ o ] (xgl-/ xg ,rk R 0 n

By strict complementarity, [XkYke] O([xk]i) when [x,]i 0 and [ZkYke]i
O([yk]i) when [x,] > 0. Also note that xyk IIXkYkelll. From (3.5)it can be
verified that

[ R 0 I (XkYk)_l/2 O( T 1/2(x) ).0 Rk

Hence (XkYk)-/2gk(xkYk)-/2 0 T(Xk Yk) and consequently

r (XY)-/ [ R[O Rk (XkYk)l/2e O’k
k Yk (XkYk)_l/2e ..[.. O(x2yk)"

0 n
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A straightforward matrix-vector multiplication shows that

Since

l <_i <_m,

m<i<n.

lim [xk]i { [x,]i > 0,
k--c 0,

lim [Yk] O,
k- l, [y.] > 0,

it is evident that r O(xyk). This proves the first equality for Pk. Similarly, we
can prove the second equality for qk. D

Now we are ready to prove Theorem 3.2.
Proof of Theorem 3.2. Without loss of generality, we assume that the first m

components of x. are positive and consequently the remaining n- m components are
zero.

It follows from Lemma 3.3, Lemma 3.4, and (2.17) that

(3.7) ak xyk/n1 + ak max(XY) + O(xyk) 1 akOk + O(X[yk)"

From Proposition 2.2 (4),
T

Xk+lYk+l 1 ak(1 ak) 1
Tk(1 ak)

TXk Yk 1 akOk + O(X[yk)"

Now (3.3) follows immediately. This completes the proof, r
Observe that Tk E (0, 1), ak [0, 1), and 0k (0, 1]. Therefore, for all k,

r(1 -ak)
1 Okak

Thus from (3.3), Q1 0 if and only if

1 k(3.8) lim Tk- 1.---, 1 Oa
By examining (3.8), we have the following corollary. Its proof should be straightfor-
ward.

COROLLARY 3.5. Under the assumptions of Theorem 3.2,
(1) /f limk_ Tk < 1, then Q > O.
(2) /f limk_ Tk 1, then Q 0 if and only if

1 rk
k---, 1 OkO"k

In particular, the above limit is 1 if ak --+ 0 or Ok --* 1.
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To emphasize the significance of Corollary 3.5, we formally state its interpretation
as the following theorem. It is important to remember that {ak } and {Tk } are directly
under our control, but {6k } is not.

THEOREM 3.6. Under the assumptions of Theorem 3.2, the duality gap sequence
T{xk Yk} generated by Algorithm 1 converges to zero Q-superlinearly if the sequence

{Tk} converges to 1 and either of the following two conditions holds:
(1) The centering step is phased out asymptotically, i.e., limk-c (:rk --0.
(2) The convergence of the primal-dual sequence {(xk,Yk)} to (x,,y,) is along

the central path, i.e., limk--,o Ok 1.
The convergence of {xyk} is no better than Q-linear if limk-oo Tk < 1.

It is interesting to compare Theorem 3.1 to Theorem 3.6. The assumptions for
the two theorems are different. In the proofs of the two theorems, we used different
approaches and obtained distinct results.

Theorem 3.6 states that it is not necessary to have ak - 0 in order to attain
superlinear convergence. Admittedly, the case where the iterates converge asymptot-
ically along the central path is a very special and perhaps unlikely case.

Observe that limk--,oo Tk 1 means that our step asymptotically approaches the
boundary of the positive orthant. Another interesting observation from (3.3) is that,
assuming limk-o Tk 1,

(3.9) lim sup
(1 Ok)ak Q1 < lim sup ak.

k 1 O’kOk k---c

Therefore, even in the case of linear convergence, in general the smaller ak is, the faster
the convergence will be. This may in part explain why good numerical performance
was obtained from the implementations of primal-dual algorithms by Choi, Monma,
and Shanno [3]; McShane, Monma, and Shanno [13]; and Lustig, Marsten, and Shanno
[12], where very small values of a (a 1/n or 1/x/- were used.

If the Todd and Ye potential function method [21] is used to generate updating
directions with the choice p- n + vv/-, then as previously mentioned,

Evidently, a approaches 1 rapidly as n increases. Since the left-hand side of (3.9) tends
to 1 as a -- 1, unless Ok - 1, the Q-linear convergence rate for this choice of a will
generally deteriorate towards 1 with the increase of n. Here we see clearly an inverse
relationship between a good polynomial complexity bound (Todd and Ye proved that
their algorithm converges in O(vL) iterations) and a good Q-convergence rate. Such
a relationship also exists in Monteiro and Adler’s O(v/-L)-iteration path-following
algorithms [17] where

a=l

and ti is bounded. Clearly, their path-following algorithms also show a deterioration
of Q-convergence rate as the problem size increases. However, it is quite possible that
the above-mentioned two algorithms can still have reasonable R-behavior.

Now we prove a stronger convergence result for those primal and dual variables
that converge to zero.

THEOREM 3.7. Let {xk} and {Yk} be generated by Algorithm 1, xk -- x,, and
Yk -- y,. Assume (i) strict complementarity, and either (ii) akTlk 0 and xkY -- 0
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Q-superlinearly, or (iii) Tk -- 1, Ok -- 1, and x. is a nondegenerate vertex. Then the
primal and dual variables that converge to zero do so Q-superlinearly.

Proof. From (2.18), we have

X[lxk+l e + akPk and Y-IYk+ e + akqk.

Hence, by Proposition 2.2 (3), we have

T
Xk Yk(3.10) X[xk+ + Y-Yk+I (2 Ck)e + kak (XkYk)-e.
n

Under assumption (ii), since ak?k --+ 0 the second term in the right-hand side of
(3.10) vanishes in the limit (notice that k II(xy/n)(XY)-ell). Also, 1.
Therefore,

(3.11) lim (X;lxk+ + Y[y+) e.

On the other hand, under assumption (iii) the second term in the right-hand side
of (3.10) converges to ckake. Meanwhile, it follows from (3.7) that Ck(1- ak) 1.
Hence (3.11) also holds.

If [x.]i 0, then by strict complementarity, [y.]i > 0 and [yk+]i/[y]i -- 1. It
follows from (3.11) that [Xk+l]i/[xk]i -- O. Therefore, [Xk]i 0 Q-superlinearly.
By the symmetry of the relation (3.11), we have [Yk]j -- 0 Q-superlinearly if

0.
Note that it is easy to enforce avik 0 since we have direct control over crk and

we can compute k before we set
XTSince xyk IlXkYkell it is evident that when (kYk) converges to zero

Q-superlinearly, so does the sequence (XkYke). We now demonstrate that this su-
perlinear convergence is actually componentwise.

COROLLARY 3.8. Under the assumptions of Theorem 3.7, the sequence
converges to zero Q-superlinearly componentwise.

Proof. By strict complementarity, either [xk] -- 0 or [Yk] - 0 for each index i.
From Theorem 3.7, we have either

lim
[Xk+l]i

or

In either case,

0 and lim
[Yk+]i 1

lim 1 and lim
[Yk+l]i

"--0.

lim [Xkw1]i[Yk-t-1]i____ lim
[Xk+iYk+ e]i

This completes the proof of the componentwise Q-superlinear convergence of

In 1980, Tapia [19, Thm. 3] pointed out that an algorithm which at each iteration
satisfies the Taylor linearization of the complementarity equation has the property
that the variables that converge to zero do so Q-superlinearly. This result assumed
strict complementarity and step-length one. Observe that (3.11) is equivalent to

XkYke + Yk(Xk+l Xk) + Xk(Yk+l Yk) -- O.
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We see that the Taylor linearization of complementarity is satisfied asymptotically in
our situation.

We close this section by commenting that taking different step-lengths in the pri-
mal space and in the dual space may result in a larger reduction in the duality gap
locally, i.e., at any given iteration; however, it seems unlikely that superlinear conver-
gence could be achieved without both step-lengths approaching one asymptotically.

4. Quadratic convergence. In this section, we show that under the assump-
tions of Theorem 3.2 quadratic convergence can be achieved by primal-dual algorithms
if we both phase out the centering direction and let the steps approach the boundary
at a sufficiently fast rate. In contrast to the analysis of superlinear convergence, which
is done in a scaled gradient-projection framework, the study of quadratic convergence
will be within the framework of Newton’s method.

We first reformulate Algorithm 1 as a perturbed and damped Newton’s method.
It is well known that at optimality the primal, dual, and dual slack variables x,

A, and y satisfy

(4.1)
Ax b

ATA + y c 0,
XYe

x _> 0, and y _> 0. To eliminate the dual variables A from the above system, we
premultiply the second equation by the nonsingular matrix [AT BT]T. Noticing that
BAT O, we obtain

Since AAT is nonsingular, A is uniquely determined once y is known. Removing the
equation for A, we arrive at the following 2n 2n system consisting of primal feasibility
(see (1.1)), dual feasibility (see (1.2)), and complementarity:

(4.2)
Ax-b )F(x, y) By- Bc 0,
XYe

as well as the nonnegativity constraints for (x, y).
Similarly, we can show that a strictly feasible pair (x, y) on the central path

satisfies

Ax b
(4.3) [(x, y, #) By Bc 0

XYe- #e

for some # > 0. Evidently,/(x, y, #) 0 is a perturbation of the system F(x, y) 0
with the perturbation term -#e added to the nonlinear portion of F(x, y). It is also
obvious that/(x, y, 0) F(x, y).

The following proposition relates the search direction (p, q) in Algorithm 1 to a
perturbed Newton’s direction (Ax, Ay).

PROPOSITION 4.1. Let (x, y) be a strictly feasible pair and let p and q be defined
by (2.15) and (2.16). Then p and q satisfy

(4.4) yq Ay
=_ -[F’(x, y)]-l/(x, y, it)
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for the choice

xTy
n

Proof. Notice that

/(,y) (x, y, #) F’(x, y) 0 B
Y X

consequently, we have

0 B Ay 0
Y X w

where

xTy
W XYe

n

Thus AAx 0, so Ax BTu, where u E Rn-re. Similarly, Ay ATv, where
v E Rm. Substituting Ax and Ay into the third equation block of the system and
multiplying both sides by AY-1, we obtain

AXY-1ATv _Ay-lw.

Thus

Ay- ATv-- -AT(AXY-IAT)-AY-w.

It is now straightforward to verify from (2.16) that

Y-Ay -Hqw q.

Consequently, by Proposition 2.2 (4),

X-Ax -(XY)-lw Y-Ay -Hpw p.

This completes the proof. [:]

We can therefore view a primal-dual algorithm as a perturbed and damped New-
ton’s method. At the kth iteration the iterate is obtained from the perturbed system
(x, y, #k) 0. The sequence of the perturbation parameters (#k } converges to zero

Tas xk yk 0. We use the qualifier damped because at each iteration the step-length
is determined by formula (2.17) in order to keep the iterates in the interior of the
feasibility set. The positivity requirements for x and y generally prevent a full New-
ton step from being taken. It is well known that taking full steps asymptotically is a
critical ingredient for the Q-quadratic convergence of Newton’s method (see Dennis
and Mor [4, Cor. 2.3]).

We now rewrite Algorithm 1 in the following equivalent form of a perturbed and
damped Newton’s method.
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ALGORITHM 2. Given a strictly feasible pair (x0, go), .for k 0, 1, 2,..., let

(4.5) Xk+l Xk - OkAXk and Yk+l Yk q- OkAYk,

where Axk and Ayk are defined by (4.4), ak is defined by (2.17), and all the quantities
involved (including a and T) are indexed by k.

To establish Q-quadratic convergence for Algorithm 2, we need to address the
following three issues:

1. Is the Jacobian matrix F(x, y) nonsingular at optimality?
2. How quickly must the centering direction--the perturbation controlled by

/z--be phased out?
3. Can full Newton steps be taken asymptotically and at a rate that ensures

quadratic convergence?
The following lemma answers the first question.
LEMMA 4.2. Let (x,,y,) be an optimal pair for the linear programs (1.1) and

(1.2). Under the assumptions of Theorem 3.2, the 2n 2n matrix

F’(x,,u,) 0 B
Y, X,

is nonsingular.
Proof. It can be shown that assumptions (i) and (ii) of Theorem 3.2 imply that

y, is a nondegenerate vertex of the dual (1.2). Without loss of generality, we assume
that the first m components of x, are positive and consequently, the remaining n- m
components are zero. Let

x,+ and y,+-
[X,]m [Y,]n

By our assumptions, x,+ > 0 and y,+ > 0.
Let A1 be the m m submatrix of A consisting of its first m columns and A0 be

the m (n m) submatrix of A consisting of its last n m columns. Clearly, A1 is
nonsingular because its columns form the optimal basis for the primal linear program
(1.1). The same ordering also leads to B [B0 B], where B1 E R(n-m)(n-m) is
nonsingular and its columns form the optimal basis for the dual linear program (1.2).
Using the above-introduced notation, we have

(4.6) F’(x,,y,)
A1 Ao 0 0
0 0 B0 B
0 0 x,+ 0
o Y,+ o o

By examining blocks of this matrix, we can easily see that it is indeed non-
singular. D

Further examination of (4.6) reveals that Lemma 4.2 is sharp in the sense that
F’ (x,, y,) will be singular if the number of nonzeros in x, (y,) is not m (n- m).

An answer to the second question is not hard to find. From standard analysis for
Newton-like methods, an O(][F(x, y)[[2) perturbation term does not destroy quadratic
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convergence. In our context, this is equivalent to the requirement #k O((xky)T2),
since for any feasible pair (x, y),

An answer to the third question requires further analysis. For the ease of notation,
let us denote the pair (x, y) by z E R2n. In a damped Newton method for F(z) O,
if Azk is the full Newton step at the kth iteration and ak is the step-length, then

Zk+l Zk -- OlkAZk Zk -- AZk (1 ak)AZk.

From standard analysis,

Since

IIAzkll- O(llF(zk)ll) O(llz 

it is clear that if

I1-o kl O(llzk z, ll),

then quadratic convergence will be achieved.
From (3.7), we see that the step-length ak depends on -k, ak, and an O(xyk)

term. Since T O(llZk II), in order to ensure I1 akl O(llZk Z, ll), we seeXk Yk Z,

that it is sufficient to have 1 -k and ak be O(]lZk z, ). If ve take ak O(Xyk),
then we have

ak O([IZk Z,I] and #k O(llzk z, l12),

Moreover, we can easily enforce the requirement 1 Tk O(Xyk) O(llZk z, ll).
Now we are in a position to prove the following quadratic convergence theorem.

Its proof is basically a rigorous and detailed treatment of the above discussion. As a
by-product, we also obtain a local convergence result.

THEOREM 4.3. Let {(xk,Yk)} be generated by Algorithm 2. Assume (i) strict
complementarity, (ii) x, is a nondegenerate vertex, and (iii) the choices of ak and ’satisfy at each iteration

(4.7) 0

_
ak

_
min(a, T T

ClXk Yk) and max(T, 1 c2xk Yk) <_ Tk < 1,

where a e [0, 1), T e (0, 1), and el, C2 > O. Then
(1) whenever {(xk,Yk)} converges to (x,,y,), it does so Q-quadratically, i.e.,

there exists a constant " > 0 such that for k sufficiently large,

(4.8) I[(Xk+l,Yk+l) (x,,y,)[

_
/[l(xk,yk) (x,,y,)[12;

(2) there exists a number > 0 such that whenever [](x0, Y0)- (x,, Y,)II then
{ to (x,,

Proof. Again we use the notation z (x, y). Also let (0-.. 0 1... 1)T R2n

where the numbers of zeros and ones are both n. As mentioned in 2 after (2.17), the
sequence {zk} is always well defined and remains strictly feasible.
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Following the standard analysis for Newton-like methods (see Dennis and
Schnabel [5], for example), we have

Zk+l Z, Zk Z, --Ok[Ft(Zk)]-l’(Zk,#k)
[F’(zk)]-l{[F(z,) F(zk) F’(zk)(z, zk)] + (1 Ok)F(zk) + Ck#k}.

Therefore,

(4.9)
IlZk+l Z,

__
II[F’(zk)]-lll(llF(z,) F(zk) F’(zk)(Z, zk)ll

Note that Zk (xk Yk) is strictly feasible and that T
XkYk IIF(zk)lll IIF(zk)--

F(z,)l[1. There exist 51 > 0 and c3 > 0 such that if Ilzk z, <_ 1, then

(4.10) T
xkYk allzk z, and IIF(zk)ll allz z, ll.

This follows from the fact that F(z) is continuously differentiable. Also note that
F(z) is a quadratic, hence there exists ca > 0 such that for any k,

(4.11) IIF(z,)- F(zk)- F’(zk)(z, z)ll < c411z z, .
In view of the continuity and nonsingularity of Fl(z) at z,, there exist 52 > 0 and

c5 > 0 such that if IIz- z, -< 52, then

(4.12) II[F’(z)]-ll ca.

In addition, there exist 53 > 0 and c6 > 0 such that if zk satisfies IlZk z, <- 53,
then from (3.7),

(1 Tk) OkOk nL- 0 T(xu)I1 --akl 1 OkO’k + O(xyk)
T_< 21(1 Tk,) Okak + C6Xk Ykl

T_< 2(c2 + Okcl + c6)xk Yk.

T andHere we assumed that (3 is sufficiently small, so that 1- OkOk --c6xk Yk >_ -T XT(4.10) holds. We also used the assumptions Ok <_ ClXk Yk and 1--Tk <_ C2 k Yk. Using
(4.10) and noting Ok <_ 1, we have

(4.13)

where c7 2c3 (c2 + c + c6).
It follows from (4.7) and (4.9)-(4.13) that if zk satisfies

IIz z, _< min(51,52, 53),

then (4.8) holds with

")" C5(C4 -- C75 -Jr- :lll]/n).

Inequality (4.8) implies that if {zk} converges to z,, then it does so Q-quadratically.
This proves the first statement.
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Now we only need to prove the second statement--the convergence of {Zk}. Let

5 min(til, ti2, ti3,

for some r e (0, 1). If I]zo z, II _< 5, then

So IlZl- Z, -- r(

_
(. Now we proceed by induction. This establishes the convergence

of {Zk} to z,.
In our numerical experimentation, we found that even for highly degenerate prob-

lems the observed convergence was effectively Q-quadratic until the iterates got too
close to a solution and the singularity of the Jacobian matrix was encountered. This
curious but pleasing phenomenon is the subject of further investigation.

5. Concluding remarks. The rich structure present in the primal-dual formu-
lation has led us to establish some rather strong convergence rate results.

No superlinear convergence results have been established so far for either primal
or dual interior point algorithms. In fact, Gonzaga and Todd [6] showed that an
algorithm that takes either primal or dual steps and reduces the Todd-Ye primal-
dual potential function cannot have an R convergence rate greater than 1 (indepen-
dent of n). Thus, from the viewpoint of convergence rate, our results suggest that
primal-dual algorithms should be preferred to either primal or dual algorithms. Com-
bined with the favorable numerical results obtained by a number of authors (Choi,
Monma, and Shanno [3]; McShane, Monma, and Shanno [13]; and Lustig, Marsten,
and Shanno [12]), this preference for primal-dual algorithms seems to be well founded.

We have shown that for the class of primal-dual algorithms studied, approximate
centering should be viewed as a globalization strategy for Newton’s method. Like
other globalization strategies, it may improve the global behavior of the algorithm,
but if not properly implemented, it will destroy fast local convergence. This fact lends
credibility to the belief that polynomiality alone does not guarantee that local conver-
gence rate properties have not been compromised or that the algorithm is necessarily
fast. The algorithms of Kojima, Mizuno, and Yoshise [9]; Monteiro and Adler [17];
and Todd and Ye [21] possess polynomiality but cannot have fast Q-convergence.

Our preliminary numerical experimentation has shown that even without center-
ing, the damped Newton algorithms that take steps close to the boundary of the pos-
itive orthant still have reasonable global behavior, although centering usually helps.
This should not be totally unexpected since we are applying the damped Newton’s
method to a mildly nonlinear problem (see (4.2)).

One of the key components of this research is (3.7), which shows that in the
damped Newton’s method one can asymptotically make the step-length approach 1
at a rate that guarantees the fast convergence of Newton’s method.

It seems to be difficult and costly, if at all possible, to ensure that the sequence
{ (xk, Yk)} converges to (x,, y,) along the central path. Therefore, it is our belief that
at this stage the only viable strategy for designing a Q-superlinearly or Q-quadratically
convergent primal-dual interior point algorithm is to phase out the centering step at
the specified speed. The effect of degeneracy on the quadratic rate of convergence and
the development of a quadratically convergent practical algorithm are the subjects of
current research.



CONVERGENCE RATE OF PRIMAL-DUAL ALGORITHMS 323

Acknowledgment. We gratefully acknowledge discussions with Florian Potra
concerning the assumptions of Theorem 3.2. These discussions motivated us to estab-
lish a stronger version of the theorem than the one given in our preliminary version
of this paper. We thank Alan Weiser for providing us with an experimental code for
doing some of our numerical experiments. We also acknowledge Michael Todd and an
anonymous referee for their helpful comments on this paper.

REFERENCES

[1] D. A. BAYER AND J. C. LAGARIAS, The nonlinear geometry of linear programming, Part I:
Affine and projective scaling trajectories, Trans. Amer. Math. Soc., 314 (1989), pp. 499-
526.

[2] , The nonlinear geometry of linear programming, Part II: Legendre transform coordi-
nates, Trans. Amer. Math. Soc., 314 (1989), pp. 527-581.

[3] I. C. CnoI, C. L. MONMA, AND D. F. SHANNO, Further development of a primal dual interior
point method, ORSA J. Comput., 2 (1990), pp. 304-311.

[4] J. E. DENNIS, JR. AND J. J. MORI, A characterization of superlinear convergence and its
application to quasi-Newton methods, Math. Comp., 28 (1974), pp. 549-560.

[5] J. E. DENNIS, JR. AND R. B. SCHNABEL, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

[6] C. C. GONZAGA AND M. J. TODD, An O(vL)-iteration large-step primal-dual aJfine al-
gorithm for linear programming, Tech. Report 862, School of Operations Research and
Industrial Engineering, Cornell University, Ithaca, NY, 1989; SIAM J. Optimization, 2
(1992), to appear.

[7] S. HUANG AND K. O. KORTANEK, A simultaneous primal- and dual-potential reduction algo-
rithm for linear programming, Working Paper Series 89-2, College of Business Adminis-
tration, University of Iowa, Iowa City, IA, 1989.

[8] N. KARMARKAR, A new polynomial time algorithm for linear programming, Combinatorica, 4
(1984), pp. 373-395.

[9] M. KOJIMA, S. MIZUNO, AND A. YOSHISE, A primal-dual interior point method for linear pro-
gramming, in Progress in Mathematical Programming, Interior-Point and Related Methods,
N. Megiddo, ed., Springer-Verlag, New York, 1989, pp. 29-47.

[10] I. J. LUSTIG, Feasibility issues in an interior point method for linear programming, Math.
Programming, 49 (1990/91), pp. 145-162.

[11] , A generic primal-dual interior point algorithm, Tech. Report SOR 88-3, School of En-
gineering and Applied Science, Department of Civil Engineering and Operations Research,
Princeton University, Princeton, NJ, 1988.

[12] I. J. LUSTIG, R. E. MARSTEN, AND D. F. SHANNO, Computational experience with a primal-
dual interior point method for linear programming, Linear Algebra Appl., 152 (1991),
pp. 191-222.

[13] K. A. MCSHANE, C. L. MONMA, AND D. F. SHANNO, An implementation ofa primal-dual
interior point method for linear programming, ORSA J. Comput., 1 (1989), pp. 70-83.

[14] N. MEGIDDO, Pathways to the optimal set in linear programming, in Progress in Mathematical
Programming, Interior-Point and Related Methods, N. Megiddo, ed., Springer-Verlag, New
York, 1989, pp. 131-158.

[15] S. MIZUNO, M. J. TODD, AND Y. YE, Anticipated behavior of path-following algorithms for
linear programming, Tech. Report 878, School of Operations Research and Industrial En-
gineering, Cornell University, Ithaca, NY, 1989.

[16] Anticipated behavior of long-step algorithms for linear programming, Tech. Report 882,
School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY,
1990.

[17] R. C. MONTEIRO AND I. ADLER, Interior path-following primal-dual algorithms. Part I: Linear
programming, Math. Programming, 44 (1989), pp. 27-41.

[18] G. SONNEVEND, An analytic center for polyhedrons and new classes of global algorithms for
linear (smooth, convex) programming, in Lecture Notes in Control and Information Science
Vol. 84, A. Prekopa, ed., Springer-Verlag, Berlin, 1985, pp. 866-876.

[19] R. A. TAPIA, On the role of slack variables in quasi-Newton methods for constrained optimiza-
tion, in Numerical Optimization of Dynamic Systems, L. C. W. Dixon and G. P. SzegS,
eds., North-Holland, Amsterdam, pp. 235-246, 1980.



324 YIN ZHANG, RICHARD A. TAPIA, AND JOHN E. DENNIS, JR.

[20] R. A. TAPIA AND Y. ZHANG, An optimal-basis identification technique for interior-point linear
programming algorithms, Linear Algebra Appl., 152 (1991), pp. 343-363.

[21] M. J. TODD AND Y. YE, A centered projective algorithm for linear programming, Math. Oper.
Res., 15 (1990), pp. 508-529.

[22] Y. ZHANG AND R. A. TAPIA, A superlinearly convergent polynomial primal-dual interior-point
algorithm for linear programming, Tech. Report No. 90-40, Department of Mathematical
Sciences, Rice University, Houston, TX, 1990; SIAM J. Optimization, 3 (1993), to appear.



SIAM J. OPTIMIZATION
Vol. 2, No. 2, pp. 325-347, May 1992

()1992 Society for Industrial and Applied Mathematics
OO7

A ROBUST TRUST REGION METHOD FOR CONSTRAINED
NONLINEAR PROGRAMMING PROBLEMS*

JAMES V. BURKEf

Abstract. Most of the published work on trust region algorithms for constrained optimization
is derived from the original work of Fletcher on trust region algorithms for nondifferentiable exact
penalty functions. These methods are restricted to applications where a reasonable estimate of
the magnitude of an optimal Kuhn-Tucker multiplier vector can be given. More recently an effort
has been made to extend the trust region methodology to the sequential quadratic programming
(SQP) algorithm of Wilson, Han, and Powell. All of these extensions to the Wilson-Han-Powell SQP
algorithm consider only the equality-constrained case and require strong global regularity hypotheses.
This paper presents a general framework for trust region algorithms for constrained problems that
does not require such regularity hypotheses and allows very general constraints. The approach is
modeled on the one given by Powell for convex composite optimization problems and is driven by
linear subproblems that yield viable estimates for the value of an exact penalty parameter. These
results are applied to the Wilson-Han-Powell SQP algorithm and Fletcher’s SIQP algorithm. Local
convergence results are also given.

Key words, trust regions, constrained optimization, exact penalty functions
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1. Introduction. Consider the constrained nonlinear programming problem

P" minimize f(x)
subject to x E ,

where {x E X’g(x) C}, X n and C C m are nonempty closed convex
sets, and f n

_
and g n

_
R, are Frechet differentiable on an open set U

containing X where the Frechet derivatives if" R -, R and g" ’ mn are
bounded and continuous on X.

If C- II x {O}Rm- and

where i, z_ R U {+/-cx} for each 1,..., n with zi <_ i, _z +o, and
for i 1,-..,n, then P is said to be in standard form. In general, the set X is
considered to be some "simple" set of constraints so that the inclusion x E X is easily
maintained.

In this paper we describe a framework for the development of robust trust region
methods for solving P. By "robust" we mean that the global convergence theory for
these methods does not require assumptions concerning the regularity or the feasibility
of P. This is accomplished by designing the algorithm to locate stationary points for
the problem

P" minimize f(x)
subject to x arg min {(x) x
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where

and

argmin{(x):x e Rn} := ( e Rn: g(5) min{(x):x e Rn}},

(1.1)

with

(x) := dist(g(x)lC) + (xlX

(1.2) dist(y[C) := inf{][y- z[[:z e C}

and

0 ifx EX,(1.3) (xlX) :=
+c ifx X

(here and throughout, the symbols I1" denote a given norm on In or m). Clearly, if
:P is feasible, then P and P are equivalent. On the other han, if P is not feasible, then
further information about P can be obtained by studying P. In [1], Burke introduces
a notion of stationarity for :P which will be reviewed in the next section. Burke [1] also
discusses an algorithm for locating points that are stationary for P. This algorithm
extends the well-known SQP method of Wilson [28], nan [13], and Powell [17]. The
plan of this paper is to extend the techniques of [1] to the trust region framework and
then to apply these results to both the SIQP algorithm of Fletcher [11], [12] and to
a trust region implementation of the Wilson-Han-Powell SQP method.

Many other authors have considered trust region algorithms for constrained op-
timization. One can broadly classify this work into three categories: (1) methods for
linear constraints, (2) methods for nonlinear equality constraints, and (3) exact pe-
nalization methods. The first class of methods is studied in Conn, Gould, and Toint
[9]; Woint [26]; Mor [14]; and Burke, Mor, and Woraldo [5]. This class of methods
corresponds to the case of :P with the functional constraint g(x) C absent, and is
based on projected gradient techniques. The second class of methods concentrates on
the instance of P where C {0}R- and X ]n and these methods can be viewed
as extensions to the Wilson-Han-Powell SQP method. These methods are studied in
Celis, Dennis, and Tapia [7]; Vardi [27]; Byrd, Schnabel, and Shultz [6]; and Powell
and Yuan [18]. All of these papers require g’(x) to be of full rank on 1n. Under this
hypothesis, the method of Cells, Dennis, and Tapia [7] has recently been provided with
a convergence theory by E1-Alem [10]. The methods of Vardi [27] and Byrd, Schnabel,
and Shultz [6] obtain the feasibility of the modified constraint region by including an
additional parameter [0, 1] in the constraint

(1.4) yg(x) + g’ (x)s O.

Unfortunately, there are many examples that defeat this trick. For instance, if one
takes

(1.5) g(x) := [ 1-exIx
with g ]R ]2, then 0, s 0 is the unique solution to (1.4) for all x I.
The difficulty here is that gt(x) never has full rank. The method introduced in 5 has
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no difficulty with this example. The method proposed by Powell and Yuan [18] has
a flavor that is similar to the approach suggested here for the case C (0}. and
X Rn, but there remain fundamental differences.

There is a large body of work directly associated with the third class of algorithms,
exact penalization methods [11], [12], [16], [29], [30], etc. Most of this literature is
couched in the language of trust region algorithms for convex composite optimization
and is based on the original work of Fletcher. In the context of problem 7 all of
these methods implicitly require knowledge of an upper bound on the norm of some
Kuhn-Tucker multiplier at a Kuhn-Tucker solution to 7. They also require that the
procedure be initiated close enough to this Kuhn-Tucker solution. One of the fruits
of this investigation is a modification of these methods that eliminates the need for
hypotheses of this type in the global convergence theory.

We now describe the plan of the pper. In 2, we present the basic algorithm.
In 3, the stationarity conditions for /) given in [1] are recalled. In 4 the basic
properties of the objects employed in the description of the algorithm are given and
the convergence analysis is presented in 5. The application of these results to SQP
and SIQP are given in 6 and 7, respectively.

The notation that we employ is standard. Nonetheless, a partial listing is given
for the readers convenience. Given x, y E k the inner product is denoted by

k

(x, y) := xTy E xiyi
i--1

where x :- (xl x2
then

,xk)T and y := (yl,y2,...,yk)T. If X and Y are subsets of Rk,

cX +Y := {cx + y:x X,y Y}.
The polar of X is defined as

X := {w ]k: (w,x} _< 1 for all x X}.

If X is convex, that is, Ax + (1 A)y X for all x,y E X and A [0, 1], then the
recession cone of X is defined as

rec(X) := {y e k: X + y C cl(X)}

where cl(X) is the closure of X. The normal cone to X at any point 5 X is defined
by

N(-IX := {w e Rk: (w,x--5) _< 0 for all x e X}.
The tangent cone to X at 5 is the polar of the normal cone,

T(-IX := N(-IX)o.

The support and convex indicator functions for X are given, respectively, by

*(wIX := sup{(w,x) x e X}

and

(xlX) :=
0,

ifxX,
ifxX.
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A norm on Rk is denoted by Ilxll and its unit ball is designated by

{x Ilxll < 1}.

The dual norm to I[xll is given by

Ilxll0 := *(xlS)

and consequently the dual unit ball is 15. The two-norm plays a special role and it is
denoted by Ilxl[2 :- ((x,x})l/2. The distance function for the set X associated with
the norms I[" and [1" IIo are given by

dist(yIX) inf{lly- xIl x e X}

and
disto(ylX) := inf{lly- xllo x e X},

respectively. Given g ]Rn ]1m the Frechet derivative of g at a point x ERn, if it
exists, is the linear mapping g’(x) Rn -- R’ (if it exists, it is unique) for which

g(y) g(x) -4- g’(x)(y x) + o(lly xll), where lim
o(lly- xll)- II- xll

Since gl(x) is a linear mapping from ]n to ]m, it has a matrix representation in
mn, with respect to the standard basis. This representation is called the Jacobian
of g at x. In this presentation, we identify g(x) with its Jacobian. Also, for a set
X c Rn and a mapping f :l l we define

argmin{f(x)’x e X} {-2 e X" f(-2) min{f(x) x e X}}.

The set argmax {f(x)’x e X} is defined similarly.

2. The model algorithm. As in [1] our approach is based on a type of "lin-
earization" of the constraint region . Given x X, 0 < pl < p2, and 0 E [0, 1] we
define

(2.1) L(x, pl, p2, O) {8 e IX x] A p2n[ g(x) + gt(x)8 e C -3
t- l](X, pl, 0)]m},

where B" and Bm are the closed unit balls of the norms that are given for R" and
Rm, respectively, and for T > 0

.(x, , 0) (x, 0) + 0[(x, ) (x, 0)],

(2.3) (x, T) := inf{ dist(g(x) + g’(x)slC Is e [X x] Tn}

(henceforth the symbol ]$ is used to denote the unit ball of either ]n or m unless
some ambiguity is possible). We refer to the multifunction L" X T [0, 1]
where

T {(pl,p2)" 0 <_ pl <_ p2},
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as a "linearization" of . Such linearizations are well studied in the literature [2], [19],
[21], [22]. Given (x, (pl, p2), ) e X T [0, 1], the set L(x, pl, p2, ) is a nonempty
compact convex subset of Rn. Moreover, if

(pl, p2, 0) e int (T [0, 1]) and o(x, pl) ((x, 0),

then int [L(x, pl, p2, )] 0 (the notation int (S) means the interior of the set S).
This observation is significant since we use L(x, pl,p2, O) as the constraint region
for our convex programming subproblems. The condition int [L(x, pl, p2, )] q
implies that the Slater constraint qualification [25] is satisfied and so these convex
programming subproblems have Kuhn-Tucker multipliers [23] at their solution.

The condition o(x, pl) o(x, 0) is of particular significance in the construction
of the multifunction n. In [3] it is shown that if T > 0, then o(x, T) 0(X, 0) if and
only if x is a stationary point for the function defined in (1.1) (see 3). Moreover,
given (x, pl, p2, ) E X T [0, 1], it is shown that the inequality

< 0

holds for every s Lt(x, pl, p2, 0) where

’(x; s) := lim
(x + ts) (x)

to t

is the usual directional derivative of at x in the direction s. Consequently, if 0 # 0
and x is not a stationary point for , then Lt(x, pl, p2, O) is contained in the set of
directions of strict descent for at x. This relationship supports the goal of locating
stationary points for 7.

If P is in standard form and the norms chosen for ]n and ]m are polyhedral, then
Lt(x, pl, p2, O) is always a polyhedral convex set and the computation of the value
(x, pl) reduces to solving a linear program. Thus, in this case, the set Lgt(x, pl, p2, 0)
can be specified in finite time.

In order to develop a local convergence theory, it is important that the set
Lt(x, pl, p2, O) closely resemble the constraint region in the standard SQP algorithm
whenever possible. For example, if x X is such that (x, pl) 0, we would like to
set 0 1, since then

Lt(x, pl, p2, 1) :-- (s e IX x] r3 P2l g(x) + g’(x)s e C}.

If 7) is in standard form and the norms on ]I and Rm are polyhedral, then this is
indeed possible. However, in general, such a choice of 0 is not theoretically sound.
Nonetheless, we can choose 0 as a function of x so that O(x) -+ 1 as [(x, pl)-
(x, 0)] -+ 0. Specifically, given 00 > 0 we consider functions 0: X - [00, 1] such that
if any one of the sets C, X, n, or m is not polyhedral, then

O(x) 1 only if o(x, Ol (:(X, 0).

Two examples of such functions are

(2.5) 01(x):=0o for allxX

and

(2.6) 02(x) :-- max(00, 1 + [o(x, Pl) ((X, 0)]}.
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The structure of the trust region algorithms that we discuss is standard, and is
modeled on the one given by Powell [16] for convex composite functions. There are
also similarities to Fletcher’s SIQP method [11], [12]. In particular, the acceptance
of the trial step Sk at the kth iteration depends on the quadratic approximation

sTHs+( dist(g(x)+g’(x)slC)+(x + siX(2.7) Pa(s; x, H) "= f(x) +Vf(x)Ts + -to the exact penalty function

P(x) :-- f(x) + ((x)

for P. As usual, the matrix H E Rnn is intended to approximate the Hessian of
the Lagrangian. The trial step sk is chosen so that the reduction in P(s;x,H) is
comparable to that which could be obtained by choosing the step that optimizes a
linear model of P at xk. In the case of constrained optimization, a typical linear model
considered by Powell [16] is P(s; x, 0) for some prespecified c > 0. The linear model
that we use is given by

LP(x) minimize f(x) + f’(x)s
subject to s e L(x, pl, p2, O(x)

for a fixed choice of (D1, to2) e int (T).
The subproblems LP(x) are also used to obtain updates for the penalty parameter

(u. The update rule is similar to the one proposed by Han in [13];

where y ]1m is any Kuhn-Tucker multiplier vector for the constraint

(2.10)

in LP(xk), where I1"110 is the norm dual to the norm I1"11 (i.e., Ilyll0 := sup(zTy: z e ))
and > 0. From Burke [1], [3], this set of Kuhn-Tucker multipliers is given by

KTM(x) := {yl(s,y,w,z) e KT(x) for some s,w,z e ’},

where

KT(x) := { (s, y, w, z)

is the multifunction of Kuhn-Tucker solutions to LP(x). In general, the ak’s can be
updated by any rule such that IlYkllo <- ak for all k 1,2,..., and ak is updated
infinitely many times if and only if sup{llykll0 k 1, 2,...} +. Having ak, the
trial step sk is accepted if

(2.11) + <

where 0 </1 < 1 and

(2.12) AP. :=
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A detailed description of the algorithm follows.

Initialization: Choose xo E X, Ho E ]Rnn, a-1 > 0, e > 0, to (0, 1), 0 < "1 <_
’2 < 1 _< "/3, 0 < 1

_
2 < 3

_
1. Set k 0.

Step 1. If KTM(xk) q}, set ak := ak-1; otherwise choose Yk KTM(xk) and set

Ok-l if ak- _> Ily llo /
otherwise.

Step 2. Choose "k, Sk [X Xk] r tkp2]$ with APa (Sk; Xk, Hk) < O. If no such sk
exists, then stop.

Step 3. Set rk [P (Xk + Sk) P(Xk)][APa (8k; Xk, Hk)] -1 and ’k := [P (xk +
S"k) P (Xk)][APa (sk; Xk, Hk)] -1. If rk <_ ?k, reset rk := ’k and sk := k.
If rk _> 3, choose tk+l Irk, min{1,’3tk}]; if/32 _< rk < 3, set tk+l := tk; if
rk < 2, choose tk+l [’ltk, 9/2tk].

Step 4. If rk < /1, set Xk+l := Xk, ak+l ak, k := k + 1, and return to Step 2.
Step 5. Choose Hk+l nxn, set Xk+l Xk + Sk, k :---- k + 1, and return to Step 1.

Remarks. (1) The alternate trial step s in Step 2 of the algorithm is introduced
to facilitate the discussion of second-order corrections in 6 and 7. It will be shown
that one may always take sk := tkk where k solves LP(xk) and then set ’k := Sk.

(2) The updating formula for the penalty parameter depends upon the knowledge
of a dual solution to LP(xk). This linear subproblem has a fixed trust region radius
that could be adjusted finitely many times without affecting the global convergence
behavior of the procedure. Nonetheless, it would seem to be more natural, if not more
efficient, to let the trust region radius of this subproblem be the same as in the choice
of trial step Sk. Unfortunately, our proof theory does not allow such a variation. In
particular, if the trust region radius in LP(xk) is allowed to vary, then we are unable
to provide a satisfactory analysis of the cases where the sequence {tk } is not bounded
away from zero.

(3) The function O(x) is introduced primarily for considerations associated with
local convergence and to simplify adjustments in the trust region radius. The ability
to adjust the trust region radius in this way follows from the inclusion

L(x, tp, tp2, ) C Lf(x, p, tp2, tO),

to be established in Proposition 4.1. In the polyhedral case the function O(x) can also
be used to reduce the effort required to obtain Yk in Step 1 whenever (xk, p) :
(Xk, 0) : 0. This is done by implicitly defining O(x) in terms of the algorithm used
to evaluate (x, pi) and any other function O(x) satisfying (2.4). The algorithm for
evaluating (x, pl) should produce a sequence {(,i,’k)} ]I X ([X X] N p]) such
that

dist(g(x) + g(x)k IC) (x, fix)

and
; T (x, p).

One then terminates the procedure when

dist[g(x) + g’(x)sklC] o(x, 0) _< O(x) [,i o(x, 0)]
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(which must occur after a finite number of iterations i if (x, p) # (x, 0)) and define

In this case

and

dist [g(x)Tg’ (x)i
O(X) V(,,)-V(,0)

1,
if (x, ill) (fl(X, 0),
otherwise.

O(x) <_ O(x)<_ 1

0(X)[(X, 91) 9(X)] dist[g(x) q- (x, 0)
so that (x, pl) need not be computed except when (x, pl) (x, 0) - 0.

(4) There are many ways to update the penalty parameter ak in order to guarantee
the existence of a trial step sk so that AP (sk; Xk, Hk) < 0, however, not all of these
methods guarantee the inequality

ak >_ disto(OIKTM(xk)).

Our proof of convergence requires this inequality since we need to invoke Proposition
4.2(2) when (ak} is bounded.

(5) As described above the sequence of penalty parameters (hi) is necessarily
nondecreasing. However, one can employ a clever device proposed by Sahba [24] for
reducing the penalty parameter on certain iterations. Specifically, at the end of the
kth iteration one evaluates

k :-- min{k-1, (xk, 0)}.

If k _< k-1 -- for some prespecified > 0, then one resets ai+ to any positive real
number, say,

(i-kl := ]]Yi]lO "- E.

Clearly this reinitialization of ai can only occur a finite number of times. Hence the
convergence analysis remains unaltered.

(6) In the case where C and X are polyhedral and the norms on n and n are
polyhedral, then LP(x) is a linear program and the evaluation of (x, p) reduces to
solving a linear program.

We now proceed to the analysis of the algorithm. The first sp in this process is
to describe the first-order necessary conditions for optimality in 7)

3. Stationarity conditions for P. We say that a point x E X is a stationary
point for P if it is a stationary point for 7). By this we mean that 5 satisfies first-order
necessary conditions for optimality in both of the problems

(3.1) minimize (x)
xER

and

(3.2) minimize f(x)
subject toxEX and g(x) EC+(-).

It is shown in [1, 2] that these conditions can be expressed in terms of the multifunc-
tions

MI(X) "---{(Y) Y g(g(x)]CA-(x)]t)’w N(x]X), }w 0 f’ (x)T + g’ (x)Ty + w
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and

 0,x, 0

where x E X.
THEOREM 3.1. (Burke [1, 2].) Let 5 X.
(1) /f 5 is a stationary point for , then either Mo(5) (0} or g(5) e C, or

both. Moreover, if (5) O, then Mo(5) (0} if and only if (5, p) (x, O) for
every p > O.

(2) /f 5 is a stationary point for (3.2), then either M1 (x) 7 or Mo(x) (0},
or both.

In Clarke’s [8] terminology the sets MI(X) and Mo(x) are called the normal and
abnormal multipliers for (3.2) at x X. We will call M1 (x) the set of Kuhn-Tucker
multipliers for (3.2) at x X and Mo(x) the set of Fritz John multipliers for (3.2)
at 5 X. If his such that (5) 0 and 7 is in standard form, then M1(5) is
precisely the set of Kuhn-Tucker multipliers for :P that one normally encounters in
mathematical programming. A point 5 E X is called a Kuhn-Tucker point for 7)
if (5) 0 and M1 (5) 0; it is called a Fritz John point for 7 if (5) 0 and
M0(5) = (0}; and it is called a nonfeasible stationary point for 7) if (5) 0 and
M0(5) (0}. Any point that is either a Kuhn-Tucker point, a Fritz John point, or a
nonfeasible stationary point for 7 is simply called a stationary point for T’.

We conclude this section by recalling certain elementary facts concerning the
distance function dist(ylC), the support function *(ylC), and normal cones that are
used in our study. For the proofs of these facts we refer the reader to [3] and [23].

LEMMA 3.2. Let K be a nonempty closed convex subset of Iq.
(1) The distance function

dist(y]K) := inf{lly- z]l z e K}

is convex on q with convex subdifferential

0 dist(xlK [ D A N(xlK),
(bdry) N N(xlg + dist(ylK)),

Consequently, dist(.IK is globally Lipschitz continuous on Iq with Lipschitz constant
ofl.

(2) If x K, then w N(xlK if and only if

(3) For any x n and w Rq, it is always the case that

(w, x)- *(wlK _< Ilwll0 dist(xlK).

4. The linear subproblem LP(x). We begin this section with a description
of the properties of the linearization L.

PROPOSITION 4.1. Let xl,x2 X, 0 <_ Pl <_ p2, 0 <_ -ill <- -fi2, and 01,02,
t, a [0, 1], and suppose that M > 0 is a bound for fr and gr on X.

f IX 1, hn

dist[sl[X x2] V) pl] _< 2[[xl x2[[.
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(2) [(Xl, Pl) (Xl, 0)[

_
Mpl.

(3) (Xl, "): ]1+ --+ ]1 i8 a convex function.
(4) [9(Xl, ill) (x2, fll)[

_
3M[Ixl x2[[ + pl]]g’(Xl) g’(x2)]].

(5) P(Xl, ", el): + i8 a convex function and so

P(Xl, tpl, {91)

_
)(Xl, pl, tOl).

(6) I(x1,P1,01) ’(x2,p1,O2)l _< 5MIIx .11 + MplIOl 1 + pll’(x)
’()11.

(7) L(Xl, tpl, tp2, 1) C L(Xl, pl, tp2, tO1).
(8) tL(x, pl,P2,01) + (1 t)L(x, pl,2,02) C L(x, pl,tp2 + (1 t)2, t01 +

(1-t)e).
(9) The multifunction n is upper semicontinuous on X x T [0, 1].

(10) g x e Z is such that Mo(x) {0} and (p, p2, O) e int IT x [0, 1]], then the

multifunction L is continuous near (x, p, p2, O) relative to X T x [0, 1].
Proof. (1) If x2 x + s we are done since 0 e (X x2) p and s 0]

]]Xl-X:[. If x2 x+s choose A > 0 so that A]x+s-x2 p. IfA 1,
then (Xl + s) x2 e [X x] p and ]Is ] Xl x[, from which
the result follows. If A < 1, then again := A[Xl + s x2] IX x] plY, since
x2 + A[Xl + s x] A(Xl + s) + (1 A)x2 e X. Moreover,

_< 211=1 ==ll + I111-
_< 211x ==11.

(2) Let s E IX x] p] be such that

o(xl, pl) dist(g(xz) + g’(xl)slC).

Then, by Lemma 3.2,

I(x,p)- O(Xl,0)l dist(g(x)+ g’(x)slC) dist(g(x)lC <_ IIg’(x)llP.

(3) This follows immediately from the fact that

A[X x] r3 pl + (1 A)[X x] r3 P2] C IX xl] r3 (,p + (1 ,)p2)].

(4) Let s2 E IX- x2] N pl] be such that

O(X2, pl) dist[g(x2) + g’(x2)s21C]

and let 2 IX Xl] N Pl be such that

I1 11 dist[s21[X xl] r3 pl]].

Then, by (1) of the proof and Lemma 3.2(1),

o(x,pz) <_ dist[g(x) + g’(xl)’21C]
_< IIg(xl) g(x)ll + IIg’(Xl) g’(x)llllll

+ IIg’(x)llll, ’11 + (x2, pl)
<_ 3Ml[xl x211 + pllg’(x) g’(x2)ll + o(x2, p).
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The result now follows by symmetry.
(5) This follows immediately from (3).
(6) This follows immediately from Lemma 3.2(1) and parts (2) and (4) above.
(7) This follows directly from the inequality P(Xl,tlpl,O1)

_
P(xl,Pl,tlO1) in

part (5).
(8) This follows from part (5), the convexity of the sets C and X, and the fact

that ?’11]-[-g]21--" (11 "+- g]2)] for every 1, ?’/2

_
0.

(9) This follows directly by continuity.
(10) This is established in Burke [1, Whm. 9.3]. v1

Let 0 < pl < p2 be fixed throughout the remainder of the paper. Also let
X --+ [0, 1] be given so that (2.4) is satisfied unless all of the sets X, C, B, and

]m are polyhedral. Moreover, we assume that 6 is chosen so that there are constants
K1,K _> 0 such that

(4.1) 10(x) 0(y) _< K111x Yll -+- K2 IIg’(x) g’(y)II for all x, y e X.

The functions 1 and 02 given in (2.5) and (2.6), respectively, satisfy (4.1). The fact
that (2.6) satisfies (4.1) is an easy consequence of Proposition 4.1(4).

Now, given x E X, recall the structure of the linear subproblems discussed in 2:

LP(x) minimize {f(x) q- f’(x)s s e Lf(x,p,p2, O(x))}.

As has been observed, the subproblem LP(x) is always well defined and finite valued
since L(x, pl, p2, O(x)) is a nonempty convex compact subset of ]R for all x X. In
conjunction with LP(x), we also need to consider the value function for LP(x),

t(x) := min{f(x) + f’(x)sls e Lt(x, pl,p2, O(x))},

the multifunction of Kuhn-Tucker solutions to LP(x), KT(x), and the multifunc-
tion of Kuhn-Tucker multipliers for the functional constraint g(x) + g’(x)s C +
(x, pl, O(x)), KTM(x). The properties of these objects that are important for our
study are given in the following proposition.

PROPOSITION 4.2. (1) Both KT(x) and KTM(x) are nonempty as long as x X
and Mo(x) {0}. Moreover, both KT and KTM are upper semicontinuous on X.

(2) If a > disto(OIgTM(x)) for all x e S c X, then there exist nonnegative
constants K3, K4, and K5 such that

It-(x) (Y)I -- K311x Yll + K411f’(x) f’(Y)ll + Khllg’(x) g’(Y)ll for all y e S.

Proof. (1) The first statement follows from Burke [1, Thm. 4.4] and the second
follows from Proposition 4.1(9) and Burke [1, Prop. 6.1].

(2) Consider the exact penalty function

P(s,x) := f(x)+ f’(x)s+a dist(g(x)+g’(x)slC+.(x p, O(x))])W(81[X-x]CIp2

for LP(x). From the hypothesis on a we obtain from Burke [3, Thms. 10.3 and 10.7]
that the solution sets of the two convex programs LP(x) and

LP(x) minimize {Pc(s; x)ls e IRn}

coincide on S with
e(x) min{Pa(s; x)]s e Rn}.
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Let s be a solution to LP(y), E IX x] N p2l satisfy

dist[sl[X x] Cl p2]],

and z E satisfy

dist(g(y) + g’(y)s + u(y, pl, O(y))z]C) dist(g(y) + g’(y)IC + (y, p, O(y))).

Then, by Lemma 3.2 and parts (1) and (6) of Proposition 4.1, we have

The result now follows by symmetry. E]

Remark. For each x e X the function given by g(x,t):= min{f(x)+ f’(x)sls e
L(x, pl,tp2,tO(x))} is convex in t on R+. This follows from Proposition 4.1(8).
Although this property has interesting consequences, we do not directly make use of
it in our study.

The subproblems LP(x) can also be used to characterize stationarity in T’ and
to obtain descent directions for Ps for an appropriate choice of c.

PROPOSITION 4.3. Let x X.
(1) Suppose that KT(x) is nonempty and choose

(4.3) c >_ disto(OIKTM(x)) +

for some >_ O. Then

(4.4) As(x):= g(x)- f(x)+a(x)[(x, pl)- (x,0)] <_ eO(x)[(x, pl)- (x,0)].

Moreover, if A(x) 0, then x is a stationary point for 7). If both As(x) 0 and
99(x, 0) 0, then x is a Kuhn-Tucker point for P.

(2) If x is a Kuhn-Tucker point for P, then

As(x) 0 for all >_ disto(O[KTM(x)).
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(3) If (s, y, w, z) e KT(x), then

(4.5) P(s; x) < As(x).

Remarks. (1) If x E X is a stationary point for :P that is not a Kuhn-Tucker point,
then it is still possible that gT(x) is nonempty and As(x) < 0 where c satisfies (4.3).
This is illustrated by considering the example

min{x" x3 _< 0,-25 _< x}

at the point x 0. This is an attractive feature of the subproblem LP(x), since even
if one is at such a stationary point for :P it may still be possible to obtain descent
directions for P.

(2) Observe in (4.5) that if is chosen with

(4.6)

then (4.3) is satisfied and so

P’(x; ) < a.(x) < o

with P(x; s) 0 only if x is stationary for P.
Proof. We begin by establishing statements (1) and (3) of the proposition. Let

(s, y, w, z) e KT(x) and in the case of (1) we also assume that (s, y, w,z) is chosen so
that

IlYl]o disto(OIgTM(x)).

By Lemma 3.2, we have

(4.8)

-(, ,(x)) (, (x)) (, (x) + ,(x))
(, (x)) *(1c + .(x, , O(x))S)

<_ [[Y[Io dist(g(x)IV + u(x, p, O(x))])
llylloO(x)[(x, 0) (x, p)]

_< ( )(x)[(, 0) (x, p)],

(4.9)

-(, ) (, x) (, x + )
(,x)

_< Ilwll0 dist(xlX)
_<0,

and

(4.10) -(z, ,) -*(zl,o) -pellzl]o.

Since

(4.11) ,(x) -[(u, ,(x))+ (, )+ (z,
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these relations yield the inequality

f’(x)8 ( )O(x)[ga(x, 0) 9(x, pl)] P21]z]]
< ( )(x)[(, 0) (x, p)],

from which inequality (4.4) immediately follows. Now if As(x) 0, then (4.4) implies
(x, pl) (x, 0). Thus, by Theorem 3.1, we may as well assume that (x, 0) 0.
In this case ff(x)s- 0 and so (4.12) implies that z- 0. But then, by (4.11),

0 (, a,(x)) + (,

while (4.8) and (4.9)imply
0 < (,,(x))

and
o < (w, ),

respectively. Hence 0 (y, g’(x)s> (w, s>. Consequently, again by (4.8) and (4.9),

(u, a()) ,
and

<,> *(lx),

and so, by Lemma 3.2, y E N(g(x)]C) and w N(x]X) with

0 f’(x)T - g’(x)Ty - W.

Therefore, x is a Kuhn-Tucker point for
To obtain (4.5) we simply observe that

P’.(x; ) < f,(x)s + a[ dist(g(x) / g’(x)slC dist(g(x)lC)]
<_ f’(x)s + a[u(x, pl, O(x)) (x, 0)]
(x).

(2) If (s,y,w,z) e KT(x), then, as in the proof of part (1), (x,y,w) e M(x).
Hence c >_ disto(OIgTM(x)) >_ dist0(01Mc(x)) where

Mc(x) :- (y (y, w) e Ml(x) for some w

Hence, by Burke [3, Thm. 10.7], P(x; s) >_ 0 for all s e if(n. Thus As(x) 0 by (4.4)
and (4.5). 0

From Proposition 4.2 we know that KTM(xk) :/: 0 as long as Mo(xk) {0}.
Proposition 4.3 shows that if KT(xk) 0 and A(xk) 0, then xk is a station-
ary point for 7. This proposition also assures us of the existence of an element
8 i(xk, pl,tkp2,tkO(Xk)) for which APa (s; Xk, Hk) < 0 whenever Aa (Xk) <
0. Therefore, in Step 2 of the algorithm in 2 one can always locate an sk

IX- Xk] N tkP2l (note that sk need not be in Lt(xk,p,tkp2,tkO(xk))) for which

AP (sk; xk, H) < 0 as long as xk is not a stationary point for :P. If Mo(xk) {0},
it may still be possible to obtain Sk such that AP (Sk; Xk, Hk) < 0 as noted in remark
(1) after Proposition 4.3. This is an attractive feature of the algorithm and it explains
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why we set O/k+l ak if KTM(xk) 0. Particular choices of the trial step sk are
studied in 6 and 7.

5. Convergence. The convergence theory presented in this section is modeled
on that given in Powell [16, 4]. Consequently, we require the following assumption
(see Powell [16, Thm. 2]).

ASSUMPTION 5.1. For every 5 > 0 there exist constants nl, N;2 > 0 such that the
inequality

(5.1) APk (sk, xk, Hk) <_ --1 min{a2, tk}

holds whenever Ak (Xk) <_--5.
Inequality (5.1) is used to guarantee that the reduction in Pak (s; xk, Hk) induced

by sk is comparable to the reduction that one would expect to obtain by use of the
linear model LP(xk) alone. The following proposition indicates a way to choose sk
which assures the validity of inequality (5.1) when the sequence {Hk } is bounded.

PROPOSITION 5.1. Let x E X, H ]nn, > O, and (0, 1). If s IX x]
p2 solves LP(x), then there exists e [0, such that

(5.2) aP(s; x,H) a(x)min
where a > 0 is chosen so that ]z]2 a]z] for z e R.

Proo For A G [0, observe that

P,(; x, H) f’(x) + ():Hii
+ A[ dist[g(x) + g’(x)sC] dist(g(x)]C)]

Af’(x)s + (ap2): H[2

+ .[(x. 1. e(x)) (x. 0)]

.(x)+ (:)H]]:.
If we now let

t e argmin AA(x)+--(ap2)2" A e [0, t-]

then it is straightforward to show that (5.1) is satisfied (see, for example, the proof of
[16, Lemma 5, p. 20]). [:]

The following technical lemma greatly facilitates the discussion of convergence.
LEMMA 5.2. Let x X, H Rnxn, 0 ( 1 ( 2 < 1, and O,gl, t2 > 0, and

choose t > 0 so that

nl (1 f12) min{a2, t}

_
(1 + a)tp2wx(tp2) +

for all t [0, where

w(tpe) := max{llf’(y) f’(x)ll, llg’(y) g’(x)ll y e x + tpe}.

Then for every t e [0, and s e IX x] tp2 for which

(5.4) AP(s; x, H) _< -al min{a2, t},
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one has

[P(x 4- s) P(x)] < IAP(s;x,H).

Proof. By Lemma 3.2(1), we have

for every t e [0, and s e IX- x] 3 tp2l$ satisfying (5.4).
By combining Proposition 5.1 and Lemma 5.2 we see that unless Ak (Xk) 0,

one can always choose Sk in Step 2 of the algorithm of 2 so that APak (sk; xk, Hk) < 0
and Assumption 5.1 is satisfied. Furthermore, the procedure cannot jam at xk with

xk+i xk for all i 1, 2,’. ".

The main result is now given. The proof of this result is based on the approach
of Powell in [16, Thm. 2].

THEOREM 5.3. Let {xk } be a sequence generated by the algorithm of 2 for which
Assumption 5.1 is satisfied.

Furtheore, assume that ff and g are bounded and uniformly continuous on
S := [{x} + p2] X and that the sequence {H} is also bounded. Then at least
one of the following must occur:

(1) A(Xk) 0 for some k and the procedure terminates,
(2) T
(3) Pa (x) -,
(4) o.
Proof. We will sume that none of (1)-(4) occur and derive a contradiction. First

note that by Proposition 5.1 the sequence {xk} is infinite. Also observe that since k
is bounded the updating strate of Step 1 sures us that ak remains constant for
all k sufficiently large. Thus we may assume that ak a for all k 1, 2,.... Now
since A(Xk) 0 there is a constant 5 > 0 and a subsequence J c N such that
sup{A(xa) k J} < -26 < 0. Consequently, by Assumption 5.1, there are
constants al, g2 > 0 such that (5.1) holds for all k J. Via Lemma 5.2, the uniform
continuity of ff and g now yield the existence of a t > 0 such that

rk _> fll and Xk+l Xk 4- 8k

whenever t < . Suppose there is a > 0 and a subsequence J of J such that

inf[tk]k e J] > .
Then for each k E J let a(k) be the first integer greater than or equal to k for
which Xa(k)+l Xa(k) 4- 8a(k) and consider the subsequence J {a(k)lk J}.
Observe that for each k J we have tk > min{71,71}. Consequently, Pa(Xk+l) <
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Pa(xk) aii min{a2, "l,l} for each k E . But then P(xk) --c, which is a
contradiction. Therefore, we can assume that tk

_
for all k E J and limj tk --O.

By Proposition 4.1(4), Proposition 4.2(2), and (4.1), the uniform continuity of f’
and g’ imply the uniform continuity of As on S. Hence there is an > 0 such that

whenever Ilxi- xjl <_ e, i,j N. Given k J let v(k) be the first integer greater
than k for which one of

(5.6) IIx.( ) x ll <

and

(5.7) _<

is violated. If (5.6) is violated, then

Pc(Xs+l) Pc(Xs) 11 min{a2, ts}

and

for s- k,...,v(k)- 1. Hence

ts+i >_ ts

gc(Xv(k))

_
Pc(Xk) 11 min{a2,/p2}

since

If (5.7) is violated, then

Po(Xv(k))
_

Po(Xv(k)-l) tl/l min{2, /-1}.

In either case we have

gc(Xv(k))

__
g(Xk) ;11 min{t2, /p2, v-i},

which implies that P,(xk) J, -oc. This is the contradiction that establishes
the result.

COROLLARY 5.4. Let {Xk }, {Hk}, f’, and g’ be as in Theorem 5.3.
(1) If ak +c, then every cluster point of the subsequence J := {i: ai+l > hi}

satisfies Mo(5) {0} and so is either a Fritz John point or a nonfeasible stationary
point for P.

(2) If a := sup{ak} < cx, then every cluster point of {xi} is a stationary point
for . Moreover, if (x, O) O, then

Proof. (1) Suppose to the contrary that M0(5) {0}. Since ck T cx, the multi-
function

LMI(x) := { (y, w, z)l(s, y, w, z E KT(x) for some s e ]n}
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is locally unbounded at 5. By Burke [1, Thm. 6.3] it must be the case that (5) 1 and
so 9(, pl) 9(5, 0) by (2.4). But then 99(5, 0) 0 since M0(5) (0}. Furthermore,
by Burke [3, Prop. 3.7],

LMo(-2) := rec[LMl()] # {0}

since LMI (x) is locally unbounded at 5. But then by Burke [1, Thm. 4.3], M0(5)
{0}, a contradiction.

(2) Since the O/k’s are bounded they eventually equal O/. Moreover, for all k suffi-
ciently large, P (xk) >_ P(-2). Therefore, by Theorem 5.3, A() 0. Consequently,
by (4.4), 9(5, pl) 0(5, 0). Thus we can assume that 99(5, 0) 0. We now show that
5 is a Kuhn-Tucker point for LP().

Let {(sk,yk, wk, zk)} be such that (sk,yk,Wk, Zk) e KT(Xk) and
Jfor all k 1,2,.-.. Let J e N be a subsequence for which xk. If {(wk, zk)}g is

bounded, then 5 is a Kuhn-Tucker point for LP(-) since gT(x) is upper semicontinu-
ous. If {(Wk,Zk)}g is unbounded, we can assume that J is such that

J.]lZk[[O) A(k,"k) # (0,0) and sc--s. Then e g(5 + X), e N(p2), and
0 + since (sk, ya, wk, zk) E KT(xk) for all k E J. Hence, by Lemma 3.2,

0 +

=-p ll llo _< o,

but then 0, which is a contradiction.
Since is a Kuhn-Tucker point for LP(5) at which A(5) 0 for all

disto(OIKTM(5)) / , the result follows from Proposition 4.3.

6. Application to StQP. In this section we assume that :P is given in standard
form, the norms chosen for ]n and m are polyhedral, and the function 0 X -- [00, 1]
of 4 is such that O(x) 1 whenever 99(x, p) 0. We now consider an instance of the
algorithm of 2 wherein the choice of trial step sk is based on the Szl QP algorithm
of Fletcher. The procedure incorporates the second-order correction technique due to
Fletcher [11], [12] in order to avoid the Marotos effect.

Initialization. Choose xo X, Ho ][nxn, O/--1 > 0, g > 0, and to (0, 1). Set
k := 0 and choose a > 0 so that Ilxll2

_
a[[x[I for all x

Step 1. Choose (k, k, k, k) KT(xk). If k 0, then stop; otherwise set

O/k-l, ir O/k-1

_
I[k]lO -}-

otherwise,

and

tk := argmin ,A (xk) + S’SHkdk 0 <_ ) <_ kk

Step 2. Let sk be a stationary point of the subproblem

QP1 (Xk, tk )" minP (s; xk, Hk
subject to s tkP2 N Sk



TRUST REGION METHODS FOR CONSTRAINED NLP 343

for which

(6.1) P. (s; x. H) < P.(t; x. H).

where Sk is any subspace of Rn containing k.
Step 3. Set rk :-- [P (xk + Sk) Pa (xk)][AP (sk; Xk, Hk)] -1

Step 9.
Step 4. Let k be a stationary point for the problem

If rk > 0.75, go to

QP(xk, tk min Pk(s)
subject to s E IX xk] N tkp21 Sk,

where

sTHks+ak dist(g(xk+sk)--g’(xk)sk+g’(xk)slCPk(s) := f(xk)+f’(xk)s+7

and Sk is any subspace of Rn containing Sk.
Set

P(O) P()r r + APa(sk;xk, Uk)"
If rk < 25, gO to Step 6.

Step 5. If r E [0.9, 1.1], set tk+ 2tk and go to Step 11; otherwise go to Step 10.
Step 6. If r [0.75, 1.25], go to Step 7. Set

P. (x + P. (x
AP (Sk; X, Hk

Step 7.
Step 8.
Step 9.

Step 10.
Step 11.
Step 12.

If ’k > 0.75, set sk k, rk ?k, and go to Step 9.
If ’k _> 0.25, set Sk k, rk ’, and go to Step 10.
If ?k >_ rk, set Sk :-- S and rk :--
Choose tk+l [0.1tk, 0.5tk]. If rk > 0.05, go to Step 11.
Set xk+ :- xk, k k + 1, and go to Step 2.
If Ilskll < tkP2, go to Step 10. If rk > 0.9, then tk+ 4tk; otherwise

tk+l 2tk. GO to Step 11.
Set tk+
Set xk+ Xk + sk.
Choose Hk+l ]1nn, set tk+l :-- min(tk+l,1}, k k + 1, and go to
Step 1.

Remarks. (1) The vector Yk in Step 1 is often called the Cauchy step since it
naturally corresponds to the best step obtainable from first-order information. The
vector k is used in (6.1) in order to assure the validity of inequality (5.2). In this
way, Assumption 5.1 is satisfied.

(2) Except for the possibility of increasing tk when 0.25 _< rk

_
0.75, this algo-

rithm is an instance of the algorithm of 2. However, it is easily verified that this
slight change in the implementation does not nullify the validity of Theorem 5.3 and
Corollary 5.4.

The remarks above demonstrate that the results of 5 provide a global conver-
gence theory for the algorithm in this section. Let us now concentrate on the local
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convergence. These results are obtained by appealing to the work of Yuan [30]. To
this end we assume that X n and we set

m

Hk VxL(xk, yk) V2f(xk) + E yk+l(i) V2..(xk)
i--1

in Step 12, where L(x, y) := f(x)+yTg(x) is the Lagrangian for P and Yk is a multiplier
estimate. For example, the multiplier estimate may be chosen as the solution to a
least squares problem based on the optimality conditions. If {xk} is the sequence
generated by the algorithm of this section, then we also assume the existence of a
Kuhn-Tucker point 5 of :P to which the sequence {Xk} converges and at which the
following hypotheses are satisfied:

(H1) (linear independence of the active constraint gradients). The gradients {g (5)"
e A(5)t2 {s + 1,..., m}} are linearly independent where

A(x) {i e {1,...,s}lgi(x >_ 0}.

(H2) (strict complementary slackness). The unique Kuhn-Tucker multiplier vector
E ]n is such that () > 0 for each i

(H3) (second-order sufficiency condition). For each

s e {d n. f’(5)d- 0 and

with s 0, one has

> 0.
i--1

THEOREM 6.1. Let {xk} be a sequence generated by the algorithm of 6 with

Sk Sk ]n for all k 0, 1, 2. Assume that xk - 5 and that hypotheses (H1)-(H3)
hold at 5. Furthermore, assume that Hk := V2xL(xk,Yk) and that Sk and k solve

QP(xk,tk) and QP(xk,tk), respectively, for each k 0,1,... with {Yk} chosen so
that yk converges to , the unique Kuhn-Tucker multiplier for at 5. Then xk --, 5

superlinearly, and if Yk is chosen to be the value of y that minimizes

IlVf(xk +

then Xk converges to 5 quadratically.
Proof. The hypothesis (H1) implies that M0(5) {0}, consequently, by Theorem

5.3, ak is constant for all k sufficiently large. Therefore the algorithm is eventually an
instance of the algorithm studied by Yuan in [30] and so the result follows from [30,
Thm. 2.5, Cor. 2.6].

Remark. The assumption about the choice of multipliers {Yk } is satisfied if, for
example, one chooses the yk’s to be solutions to the least squares problems

min{1/211VL(xk, Y)ll2 y e }.

7. Application to SQP. In this section we again assume that :P is given in
standard form with X n, that the norms chosen for ]n and ]m are polyhedral,
and that the function 0" X -- [00, 1] of 4 is such that 0(x) 1 whenever 99(x, p) 0.
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We consider an instance of the algorithm of 2 wherein the choice of trial step Sk is
based on a modification to the Wilson-Han-Powell SQP subproblem. The algorithm
is identical to the algorithm of 6 except that the subproblem Q,Pl(Xk,tk) in Step 2
is replaced by Step T.

Step T. Let sk be a stationary point of the subproblem

QP2(xk,tk) "min f(xk) + f’(xk)s + 1/2sTHks
subject to sk E L(xk, Pl, tkP2, tkO(Xk)) CI Sk

for which

f(xk) + f’(xk)sk + sHkSk
_

f(xk) + f’(x)() + -where Sk is any subspace of n containing k.
Remarks. (1) Observe that from Proposition 4.1(7), we have

Lgt(Xk, tkp, tkp2, O(Xk)) C LVt(xk, p, tkP2, tkO(Xk)).

Hence the subproblems QP2(xk,ta) are always well defined. The subspaces Sk (and
Sk) are introduced to reduce the dimensionality of the feasible region for the subprob-
lems QP2(xk, tk) (QP(xk, tk)). For example, when (x, p) 0, a typical choice for Sk
would be the span of Yk and the solution to the Wilson-Han-Powell SQP subproblem
when this subproblem has a solution, e.g., see Celis, Dennis, and Tapia [7].

(2) Inequality (7.1) plays a role similar to that of inequality (6.1) in that it
guarantees that Assumption 5.1 holds. Consequently, the results of 5 provide a
global convergence theory for this modification to the algorithm of 6.

The local convergence theory for the algorithm when Step 2 is used instead of
Step 2 is not yet well understood. However, we conjecture that if the hypotheses
(nl)-(n3) hold, then the subproblems QP and QP2 should produce identical trial
steps Sk when xk is sufficiently close to 2. If this is indeed true, then Theorem 6.1
remains valid when Step 2 is used instead of Step 2. The resolution of this conjecture
is the topic of ongoing research.

In lieu of establishing this conjecture, one can obtain a preliminary local con-
vergence result by assuming that the trust region radius in the modified algorithm
is eventually inactive. In this case, a local convergence result is easily obtained by
appealing to results in Robinson [20].

THEOREM 7.1. Let {xk} be a sequence generated by the algorithm in 6 with Step
2 replaced by Step 2 and Sk Sk I for all k O, 1, 2. Assume that xk - 2 where
satisfies the assumptions (H1)-(H3). Furthermore, assume that Hk := V2L(xk, Yk-1)
and that sk and solve QP2(xk,tk) and QP(xk,tk), respectively, for all k >_ ko for
some ko N, with each Yk chosen as a Kuhn-Tucker multiplier vector associated with
the constraint

+ c +
in QP:(xe, tk). If the trust region radius in QPe is eventually inactive, then xi -quadratically.

Proof. Since the trust region constraint in the subproblems QP2 is eventually
inactive, the subproblems QP2 reduce to the standard subproblems employed in the
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Wilson-Han-Powell SQP method. Thus quadratic convergence follows from Robinson
[20, Thm. 3.1].

Before closing, we wish to emphasize that the assumption that the trust region
constraint is locally inactive is very strong. A more complete convergence result would
establish conditions under which this hypothesis is valid. Until a clearer picture of
the convergence properties of this procedure is established, the usefulness of Step
2 remains in doubt. Nonetheless, we introduce this alternative to Step 2 since we
conjecture that the resulting algorithm possesses convergence properties similar to
those described in Theorem 6.1. The resolution of this conjecture is the subject of
ongoing research.
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AN O(x/- L)-ITERATION LARGE-STEP PRIMAL-DUAL AFFINE
ALGORITHM FOR LINEAR PROGRAMMING*

C. C. GONZAGA" AND M. J. TODD

Abstract. An algorithm based on reducing a suitable potential function for linear programming is
described. At each iteration, separate scalings are applied to the primal and dual problems, and a step is
taken in either the primal or the dual space. It is shown that a constant reduction can always be achieved,
leading to a bound of O(nl/2L) iterations. Moreover, it is also shown that a reduction of -(r/1/4) can usually
be obtained, so that O(n l/4L) iterations are expected to suffice. Finally, it is proved that no general algorithm
taking either primal or dual steps and guaranteeing the reduction of such a potential function can achieve
R-order of convergence greater than one.

Key words, linear programming, interior-point methods, potential-reduction methods, path-following
methods

AMS(MOS) subject classification. 90C05

1. Introduction. This paper presents a primal-dual interior-point algorithm for
the linear programming problem

(P) mincrx, Ax b, x >= O.

The algorithm reduces a primal-dual potential function at each iteration by applying
separate scalings to the primal and dual problems and taking a step in either the primal
or the dual space. We show that a constant reduction can always be achieved, leading
to a bound of O(nl/2L) iterations, where n is the number of variables and L the size
of the input, assuming the data A, b, and c are all integers. Moreover, we give heuristic
arguments showing that a greater reduction can usually be obtained, so that fewer
iterations are expected to suffice. Finally, we show that no algorithm that drives this
primal-dual potential function to minus infinity by taking either primal or dual steps
at each iteration can achieve R-order of convergence greater than one, independent
of n, although superlinear convergence is possible.

Our algorithm uses a primal-dual potential function described in Todd and Ye
15] based on the primal function of Karmarkar [6]. Other algorithms based on reducing

this potential function include Ye 16]; Kojima, Mizuno, and Yoshise [8]; Huang and
Kortanek [5]; and Gonzaga [3].

The conventional dual of (P), written with explicit slacks s, is

(CD) max bry, Ary+s=c, s>=O.

It is more convenient to work with a dual problem also in standard form, involving
only the nonnegative slacks s. Thus, let F be a matrix whose rows span the null space
of A, and let g Fc. Then Ary + s c for some y if and only if Fs g. Let d be any
vector satisfying Ad b. Then b ry d rAry d rc d rs. Thus (CD) can be written in
terms of s alone as

(D) mindrs, Fs=g, s>-O.
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In this form, weak duality takes the form that c Tx + d 7"s >- c 7"d for all feasible x, s, and
strong duality states that equality holds if and only if x and s are optimal. Notice that
the duality gap c T"x- b 7-y equals c T"x + d 7"s- c T"d and also x T"s. This form of the dual
was first presented by Todd and Ye [15].

Let F+(P) and F+(D) denote the set of strictly positive feasible solutions to (P)
and (D), respectively, and let U/ denote their Cartesian product F+(P) x F+(D). For
(x, s) U/, we define the primal-dual potential function Cp by

(1) Cp(x, s):= p In xs-Y In XjSj

for p > n, the primal penalized function by

(2) f(x) := acx-Z ln xj

for a > 0, and the dual penalized function by

(3) fD (s) := adrs --Y ln sj

for a > 0. These functions combine a monotonic function of the objective function or
duality gap with a barrier term in primal, dual, or primal-dual space.

We assume that F+(P) and F+(D) are nonempty and that (x, s) e U+ is known
such that

(4) 6o(x, s)= O(x/ L),

where p n + ux/-ff for some constant u. Manipulating (P) and (D) to obtain such
solutions is described in several papers, for example, Ye [16] and Kojima, Mizuno,
and Yoshise [7], [8]. If we can reduce bo by a constant at each iteration, then O(x/-ff L)
iterations will yield a pair (x, s)e U/ such that

(n + ux/-) In x rs Y In xjs <- x/-ff L

or

+1.__. xs(5) In In x-s -L.

Hence, xT"s<-2 -L, and exact solutions to (P) and (D) can then be obtained in O(n3)
additional arithmetic operations. We use a large but constant u, as proposed by Gonzaga
[2], [3] because then, although the complexity bound is larger, it appears that larger
steps can be taken and the algorithm will perform better in practice.

Our analysis is based on the relationship between and the penalized functions
fP(x) and f(x). Let PA denote the projection onto the null space of A. Then, for any
s F+(D), PAS PAC (the rows of PA span the null space of A), so that

PAVxo(X, S) P---- PAs VAX-lexs
P pAC pAx-1(6) -xrs e

=PAVfP(x),
where a p/xT"s. Here and below, X(S) denotes the diagonal matrix with the com-
ponents of x(s) down its diagonal, and e denotes the vector of ones in ’. Similarly,

PvVs6p(x, s)= PvVfD (s)

for the same a. These equations relate the potential function to the penalized functions.
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Remark. The choice of F with rows spanning the null space N(A) of A has no
effect on the projection PFV of a given vector v e R n. This is so because by definition
the range space R(Fr) equals N(A) and hence N(F)= R(Ar). Since R(Fr) N(A)
and N(F)= R(Ar) are orthogonal complements, PFV is the projection of v into the
row space of A and equals (I-PA)V.

The advantage of working with the penalized functions is that they have been
well studied (see Fiacco and McCormick [1]), are strictly convex, and (under our
assumptions) achieve their minima for each a > 0. The minimizer offP over F/(P) is
called the a-center of F+(P) and is denoted x(a); similarly, s(a), the a-center of
F+(D), minimizes fo over F+(D). Note that if x is the a-center of F+(P), then

0= PAVfP(x) aPAC PAX-l e a(PAC PA(a-IX-l e) ).

Hence, s:= a-lX-’e satisfies s >0, PAS PAC, SO S F/(D). Moreover,

PvvfD(s aPvd PeS-’ e a Pvd Pvx) O,

since Ax Ad -b; thus, s is the a-center of F/(D). We therefore have the equations

(7) X(a)S(a)e a-’e, X(a)Ts(a) n/a,

relating the a-centers of F/(P) and F/(D). The path {(x(a), s(a))} is called the central
path.

Our algorithm makes no mention of the central path, but the convergence proof
does. We must prove that the potential function decreases substantially at each iteration.
At points where the projected gradients of the potential function are large, this is
immediate; we must preclude the possibility of small projected gradients. For the
primal or dual penalized functions, small projected gradients characterize nearly central
points. We conclude that any reasonable potential restriction method will make good
progress far from the central path, but we must pay special attention to its performance
near the path. Corollary 2.1 in the next section shows that for our choice of potential
function the primal and dual projected gradients can never both be small; its proof
uses the contrast between the values a n/x(a)Ts(a) and a p/xTs of the last two
paragraphs, when p n + ,x/-ff. Of course, other details such as scaling are necessary
to guarantee a suitable step length.

In 2, we show that, if a projected gradient like that in (6) is small, then x F+(P)
is close to the a-center x(a) and cTx is close to c rx(a). This extends a result in
Gonzaga [2]. Hence, we prove that, given (x, s) U/, we cannot have both x close to
x(a) and s to s(a) for a p/xTs. This result is the basis of our algorithm, which is
described in 3. We show that constant reduction in 4p can be achieved at each
iteration by taking a step in x or in s (or in both). One reason for taking steps in either
the primal or the dual space is that McShane, Monma, and Shanno [9], in their
empirical study of primal-dual methods, found that taking a step along an appropriate
direction in primal-dual space led to poor computational results. They found it
necessary to split the primal-dual direction into directions in primal and dual spaces
and use separate step lengths (a fixed proportion of the distance to the boundary) in
each. We give heuristic reasons to expect that a reduction of 12(n 1/4) in the potential
function can often be achieved. These are based on plausible (but not rigorous)
probabilistic assumptions. Rigorous bounds of O(nl/aL) steps have been obtained by
Sonnevend, Stoer, and Zhao [13] for special classes of problems.

In 4 we show that no algorithm that drives 4p to - by taking at each iteration
either a primal or a dual step can have R-order of convergence greater than one,
independent of n. This result applies to our algorithm as well as to that of Ye [16].
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Section 5 contains some concluding remarks and summarizes some preliminary compu-
tational results.

2. Preliminaries.
2.1. Scaling. Let A be a positive definite diagonal matrix. Then we can make the

change of variables X A-ix, so that (P) becomes

min’rx, fiX=b, X_->O(P)

with

A=AA, =Ac.

The dual of (P) can be written as

(I) min drg, /g g, g _> 0

in terms of g As, where

=FA-1 = A-ld.

Note that the rows of/ still span the null space of fi. If fP, fo, and qp are defined
from (P) and (D) as in (1)-(3), using x, s, c, and d, then

G(z, ) G(x, s),

(8) fP(x) =fP(x) + In det A,

fY() =fD(s) In det A,

when X and x, and g and s, correspond as above. It follows that

vG(x, )= AVx4,,,(x, s),

Vgb-p(X, g)= A-lVsp(x, S),
(9)

vfp(x) AVxfp(x),

vfD()= A-’VsfD(s).
Let (, )6 U+. Then we can choose A - diag () so that is transformed

into e in X-space, or A ;-= (diag ())-1 to transform into e. In fact, we can use
the first to scale x when considering changes in x and the second to scale s when
considering changes in s. This separate scaling contrasts with the symmetric scaling
using A-(;-)/2, which transforms both and to (7)/2e, which was used in
the primal-dual algorithms of Kojima, Mizuno, and Yoshise [7], [8] and Monteiro
and Adler [11], [12], for example. We only have to be careful when using separate
scalings in dealing with 4, since (8) and (9) assume that the same scaling is used on
both x and s.

The effect of scaling is that we can usually assume without loss of generality that
our current x iterate (or our current s iterate) is e. In this case, any step of length less
than one maintains positivity, so that, in the scaled space, steps in the direction of
negative (projected) gradients are attractive.

2.2. A measure of centrality. Here we refine the analysis of Gonzaga [3] to show
that we can effectively measure the distance from x F+(P) to the a-center of F+(P)
by means of the norm of the (scaled) projected gradient of fP. Recall that fP(x)-
acrx-j In xj and that f is minimized at the a-center x(a).

DEFINITION 2.1. The measure of centrality of x F+(P) to the a-center x(a) is

6P(x, a):-]]PAxXVfP.(x)II2,
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where X diag (x). Similarly,

D(s, ):-- IIPsSVfD(s)ll
is the measure of centrality of s F+(D) to the a-center s(a).

We can also view 6P(x, a) as the length of the Newton step to minimize fP from
x; see [3]. Note that 6P(x, a)= P(e, a), where the scaling is chosen to transform x
into e, i.e., A X.

PROPOSITION 2.1. Let x F+(P) and

(10)

If r3 := e(x, a) <- O/4 then

(11)

and

(12)

IIx-’(x()-x)ll=
I]/ :--]]x_l(x(a)2i2.

:= IIx-’(x(o)--x)ll=2

IcTx()--CrXI34- /,
Proof. Without loss of generality, we can assume that x e; otherwise, scale so

that this is true. Then let

x(a)-e
h:=

so that h I1= 1 and x(a e + eh. Sincefff is convex and minimized at x(a ), h rVfff(e +
Ah)<O for O--<A< e. Now

Vfff(e + Ah) ac- ((1 + Ah) -1)

=ac-e+A
l+Ahj

=7f(e)+Ah_Z2( i
h
+ xh]

Also,

(3) Ih Tvfff(e)l [h PAVf (e)l [[hll211PaVfff(e)ll ,
using h PAh and Definition 2.1. Hence, for 0 N < e,

o> hV2(e + h)

(h;]=hrVf(e)+lhrh- l+1h]

( h2
.>o k 1 +

j:hj>O

e-+x-z2/6,

using Ilhl12 and Ilhll= /6. Since 3N6/4 by hypothesis, (14) gives



354 c.c. GONZAGA AND M. J. TODD

for 0<_-h<e, so e<_-0/2. Thus h21q,<-_helO<-_h/2 for 0<_-h <e, so (14) yields

-6+A-A/2<0 for 0_--< A < e,

from which e =<26 follows.
To show (12), note that

e) r(eh) + e r(eh)l/ o
(15) _-< (s/c)(IVf(e) hl + eh I)

<= (2/)( + ]ehl)
<= 34-ff /,

using (13), (11), eh<-Ilell[[hll=x/-d, and 6 =< q/4=<x/-ff/4 by the definition of . U
Of course, an analogous result holds for the dual problem (D). An easy con-

sequence is that, for a suitable choice of a, we cannot simultaneously have x close to
x(a) and s close to s(a).

COROLLARY 2.1. Let (x, s) U+ and let a p/xT"s, where p n + v/-ff, v > O. Let
A > 0 be such that A <= and A < v/6 (for example, A with >= 2). Then we cannot
have both P x, a) <= A and o s, a) <= A.

Proof. Suppose the contrary. Then Proposition 2.1 applies since q >= 1, and we
deduce that

and

Ids(c)_ dsl <=3x/-d o/.
Hence the duality gaps x(a)7"s(a) and xrs satisfy

(16) Ix( = s( xsl <- 64-d al.
However,

and since x(a)s(a)= n/a,

Comparing this expression with (16), we obtain v<=6A, contrary to the hypothesis.
Now recall (6). The corollary implies that, when p n + vv/-ff with v -> 2, we cannot

have both PAxXVxch,(x,s) and PFsSVsp(x, s) with norms at most z. Thus, it is
reasonable that the potential function 4p can be reduced substantially by taking either
a primal or dual step. This is the basis of our method.

3. The algorithm. We can now state our algorithm. To obtain the polynomial
bound, (x, s) must be chosen with ch,(x, s) O(x/-ff L) and r/ should be 2-2L. For
the convergence analysis we choose v-> 2, but any positive value v O(1) can be used
instead with suitable changes to the constants.

ALGORITHM
Given (x, s) U+ and termination parameter r/> 0:

set k-O,pn+v/- for 2<= u= O(1).
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Repeat until (xk) Ts k
set (x, s) (x k,
choose either a primal or a dual step

(a primal step can only be chosen if ]]PAxXVxo(X,
a dual step only if IIPsSVo(x, s)ll2_->A);
primal step:
X
+

X flXPaxXVxo(x, s);
S+=S; or
dual step:
X+=X;
s+= s- SPFsSVsCp(x, s);

where/3 > 0 is such that
(x+, s+) _-< (x, s)-o;

update:

(x,s),-(x+,s+);
end.

Corollary 2.1 implies that the conditions for taking a primal or dual step can
always be met. If/3 can be chosen to assure the decrease of0 in Cp, then the argument
in the introduction implies that the algorithm will terminate in at most O((x, s)+
vx/-ff In (9-1)) iterations.

PROPOSITION 3.1. If in the algorithm is chosen as

(6[IPaXVxo(x, s)ll2) -1 or (6llPFsSVo(x,
according to whether a primal or dual step is taken, then

(x+, s+) <- (x, s)-4.

Proof This follows from standard arguments. We know that

IIX-’Axll6(x + Ax, x)--< 6(x, s)+ axVx6(x, s)-2(1
=-see, for instance, Ye [16]. Then, if Ax=-txP,,xv6(x, s) we find [Ix-’axll:

and so

()
(17) o(x + Ax, s)_--< Co(x, s)-g+ 2(1---’
where 6 [[PAxXA,,(x, s)[[_. Since 6 is at least 1/4 if a primal step is taken, we find
Cp is reduced by at least o. A similar argument applies if a dual step is taken.

In fact, we could take steps in both primal and dual spaces, exactly as above.
Since the step Ax in x lies in the null space of A, it is orthogonal to the step As in s.

Hence, (x+)7"s+=x’s+AxT"s+xrAs is linear in (Ax, As), and the standard argument
shows that

(x+ ax, s + As) _-< (x, s)+ ZXxV(x, s)+ AsV(x, s)

2(a-IIs-all) 2(a-

if we choose step sizes so that IIX-Axll2 IIS-all=-k, then we deduce that

6 6o 2(_)
6o(x+ax’s+as)<-6"(x’s)

6 6 2(1 -)
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Since P and 6D are both nonnegative and one is at least 1/4, we find that 4’p is reduced
by at least

Remarks. (a) In most iterations we expect a much greater reduction in potential
than guaranteed by the worst-case analysis. Indeed, suppose

x-’(x(o,)-x)h=he:=
IIx-’(x()-x)ll=

satisfies Ilhtt=/tlhll >-4n ’/4 and [e hl<= n (in what follows we give heuristic reasons
for these hypotheses). Then the proof of Proposition 2.1 [see especially (15)] shows
that if e(x, a)<= n 1/4, Icrx(a)-crx[<=4qc-/a. If similar hypotheses hold for the dual
direction h, we could conclude, as in Corollary 2.1, that for t, > 8 we cannot have
both Be(x, ce) and g(s, a) at most n 1/4. This would imply, from (17), that a reduction
of potential ofO(n 1/4) could be obtained. In the integer model, only O(n 1/4L) iterations
of this kind are necessary. This heuristic analysis gives a similar bound to the rigorous
results of Sonnevend, Stoer, and Zhao [13] for special classes of linear programming
problems.

In [4], we show that the hypotheses we have made in the previous paragraph on
h P and h o hold with probability approaching 1 as n- oo if h P and ho are uniformly
distributed on the unit sphere. Of course, this is not a rigorous analysis of expected
behavior, but it gives some justification to the heuristic arguments above.

(b) From the description of the algorithm, it seems that two projections must be
calculated at each iteration. However, since at most one of x and s is changed, one
of these projections is the same as at the last iteration. Hence only one new factorization
is required at each iteration after the first, and thus one can choose a primal or dual
step corresponding to the larger projected gradient. In practice, PFS can be computed
as I-PAS-’ (see the remark following (6)).

4. R-order of convergence. In 3 we described an algorithm that takes either a
primal or a dual step at each iteration and that drives the potential function bp to -oo,
for p n + ,v/-ff, , a constant. Ye’s algorithm 16] is also of this form. In this section
we provide a limit to the convergence rate of such an algorithm. This can be contrasted
with the quadratic convergence of Zhang and Tapia’s primal-dual algorithm [17].

Recall that, if xk X*, then xk converges to x’R-linearly if

(18) IIx x*l12--<
for some a > 0 and 0 < 3’ < 1, whereas the convergence has R-order q (q > 1) if for all
l<=p<q,

(19) x-x*ll2--<
THEOREM 4.1. Consider an algorithm that takes either a primal or a dual step at

each iteration and that drives qb to -o, for p n + ,v/-ff and , a constant. Then this
algorithm cannot guarantee that the generated sequences {xk} or {s k} have R-order of
convergence greater than one (independent of n ).

Proof We assume that (P) and (D) have unique nondegenerate optimal solutions
ff and g, respectively, with

:j>0 iffj6B, IBl--m,

>0 iffj6 N, INl--a,
and m + d n. We indicate the appropriate subvectors of x and s by a subscript B or
N. Any convergent algorithm has x :, s - g, and we will assume henceforth that the
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iterates have converged sufficiently that

(20) xs =< 2:B, SN <= 2gN.
Given (x, s) U+, the duality gap is x Ts, and this is the sum of the primal gap

(from optimality), denoted

and the dual gap, denoted

O:=rs=Xs.
Then, assuming that (20) holds, we have for any p _-> n,

bo (x, s)= p In (zr + 0)- Y In xjsj- Y In xjs
jB jN

->p ln(+0)- lnjs- 2 lnx-n ln2
jeB jN

xs x(21) p In (+ 0)- m ln-d In n In 2
m d

=p In (+O)-m In O-d In +m In 2m+d In 2d- n ln4

pln(+O) mlnO-dln+mln2m 2d+d In + n In n- n ln4

max {(p- m) In O-d In , (p-d) In -m In 0}+ n In (n/4);

the last inequality follows since

2m 2m 2d 2d
In + In

n n n n

can be written as (1 + ) In (1 + ) + (1 ) In (1 ), which is convex and nonnegative,
minimized at a 0.

Suppose that has been driven below n In (n/4). Then from (21) we can deduce
that

d In 7r>-_(p-m) In 0, rn In O>=(p-d) In

or

(22) 7r > 0(p-m)/d 0 > 7t
"(p-d)/m

Suppose that m=d=n/2, so that (p-m)/d=(p-d)/m=l+2v/v/-ff. Assume
that an algorithm of the type considered generates a sequence (x k, s k) U+ with primal
and dual gaps (Trk, Ok). Then

(23) min {Trk+l, Ok+}

for all sufficiently large k. Indeed, suppose 7"/’k+ -- Ok+ (the other case is similar). If a
dual step was just taken, then 7rk+l 7rk, which is at least the right-hand side of (23)

+2 v/x/’fi" lk--2v/V"ffif rr < 1. If a primal step was taken, (22) gives r+-> 0+1 0 which is
again greater than or equal to the right-hand side of (23), as long as (20) holds for
(x+1 s+’) and 4o(x+l s+1) < n In (n/4)

Of course, (23) yields

min {cry+,, 0+,} _>- (min {rr, 0}) (1+2"/’/;’

for any sufficiently large k, which implies by (19) that the R-order of convergence
cannot be greater than 1 + 2v/x/-ff. Since v is a constant, this proves the theorem. [3
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Remarks. (a) The theorem should not be interpreted as stating that algorithms of
this type should not be used. Fast R-linear algorithms can be very attractive if a is
small and y close to zero in (18). Moreover, our result does not preclude R-order of
convergence 1 + 2u/x/, which implies R-superlinear convergence. However,
asymptotic quadratic convergence cannot be achieved, although it is possible for
algorithms that move in primal and dual spaces simultaneously [17].

(b) From (21) we can establish an interesting property of central pairs (x, s), i.e.,
x x(a), s s(a) for some a. Using (7), we find that bn(x, s) n In n, so that (noting
that t9 m d, p d m if p n) we conclude

(24) r >- (1/4),/a O, 0 >- ()"/mr.
Hence, the primal and dual gaps are of similar order for central pairs sufficiently close
to optimal. This result can be contrasted with (22) and provides further motivation
for choosing a large value of v, which gives more freedom in reducing r for a given
value of 0 or vice versa.

5. Concluding remarks. We have described an algorithm that at each iteration
takes a scaled projected steepest-descent step for the primal-dual potential function
in either the primal or the dual variables. We have shown that one of these steps will
assure a constant decrease in the potential function, hence providing a bound on the
number of iterations required. The algorithm is more symmetric than that of Ye [16],
which either takes a step in primal space or updates the dual (these operations are
not symmetric), but it is perhaps less so than the primal-dual potential reduction
methods of Kojima, Mizuno, and Yoshise [8] and Huang and Kortanek [5].

We have tested a preliminary implementation ofthe algorithm on random problems
of sizes 50 100 up to 500 1000, using PRO-MATLAB [10]. For u 2 or u 10 the
number of iterations seems to grow more slowly than 0(nl/2); for u 10 the growth
is close to 0(nl/4), as in remark (a) of 3. The minimum value of
max {ge(x, a), 8O(s, a)} over all iterations was 2-2.5, independent of the size of the
problem for u=2, and 7.5-11 for all sizes for u=10; note that 7.5> r /4 even for
n 1,000, so this does not contradict the heuristic arguments in that remark.

Our best results were obtained for p 2n; then the number of iterations ranged
from 22-28 for the smallest problems and 31-35 for the largest. These figures are about
twice those obtained by a different algorithm [14] for the same problems. It was
observed that the iterations usually alternated between primal and dual, so that from
a primal point of view, every other iteration only updates a lower bound. On the other
hand, most other algorithms change both primal and dual solutions or update the
lower bound and change the primal solution in a single iteration (requiring just one
factorization).
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TRANSFER METHOD FOR CHARACTERIZING THE EXISTENCE OF
MAXIMAL ELEMENTS OF BINARY RELATIONS ON COMPACT OR

NONCOMPACT SETS*

JIANXIN ZHOUt AND GUOQIANG TIAN$

Abstract. This paper systematically studies the existence of maximal elements for unordered binary
relations on compact or noncompact sets in a general topological space. This is done by developing a
method, called transfer method, to derive various necessary and sufficient conditions that characterize the
existence of maximal elements for a binary relation in terms of: (1) (generalized) transitivity conditions
under certain topological assumptions; (2) topological conditions under certain (generalized) transitivity
assumptions; and (3) (generalized) convexity conditions under certain topological assumptions. There are
two basic approaches in the literature to prove the existence by providing sufficient conditions. One assumes
certain convexity and continuity conditions for a topological vector space and the other assumes certain
weakened transitivity and continuity conditions for a general topological space. The results unify those two
approaches and generalize almost all of the existing results in the literature.

Key words, binary relations, maximal elements, transfer continuities, transfer transitivities, transfer
convexities

AMS(MOS) subject classifications. 49A27, 90C48, 90C31, 90B50

1. Introduction. Let Y be a topological space and u:YR be a function. The
classical Weierstrass theorem states that u attains its maximum on any nonempty
compact set X c y if u is upper semicontinuous. As generalizations of the Weierstrass
theorem, Tian and Zhou [18] proved two theorems that give necessary and sufficient
conditions for u to attain its maximum on a nonempty compact set by introducing the
notion of transfer continuities. The idea behind this is quite simple. To characterize
the existence of maximal points for a function u, for given u(x)> u(y), we really do
not have to know the topological relations between x and a neighborhood ;(y) of y.
All we need to know is the topological relations between a neighborhood of y and a
point x’ in the upper part of u(y), i.e., whether x can be transferred to x’, a point in
the upper part of u(y) such that u(x’) > (=>)u(y’): y’ V(y), and if so, u is said to be
transfer (weakly) upper continuous on X. However, in many cases in economics, decision
analysis, optimization, and game theory, a binary relation is not representable by a

function even for an ordering. Thus many results are given in the literature to prove the
existence of maximal elements of a binary relation for this case. See, e.g., Yu [22],
Borwein [4], Luc [10], and others who study the existence of maximal elements for a
partial ordering induced by a convex cone in a topological vector space; and Fan [7],
Schmeidler [13], Sonnenschein [14], Shafer [11], Shafer and Sonnenschein [12],
Bergstrom [3], Walker [19], Yannelis and Prabhakar [21], Campbell and Walker [5],
Tian 16], 17], and others who study the existence of maximal elements for unordered
binary relations by assuming either certain convexities or certain transitivities (at least
acyclicity). Most of the results provide only sufficient conditions.
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Fan [7, Lem. 4] does not phrase his results in terms of maximizing binary relations, but his results

can be interpreted that way.
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In this paper we systematically study maximization of binary relations. Note that
there are two basic approaches to unordered binary relations in the literature: one
through "weak" (i.e., reflexive) binary relations, and the other through "strict" (i.e.,
irreflexive) binary relations. Kim and Richter [9] made the connection between these
two approaches and proved that these two approaches are equally valid: definitions and
theorems in one approach correspond in parallel to definitions and theorems in the other
approach. So in this paper we, without loss of generality, deal with only "strict" binary
relations.

Let Y be a set and X c y be a subset. Denote by ">" an "irreflexive (strict)
binary relation" on Y and ">=" the completion of "> ," i.e., x >-y means that y > x
does not hold, and thus "" is a "reflexive (weak) and complete binary relation."
Here y > x is read "y is strictly preferred (or dominated) to x" and y is said to be a
dominator to x. Let A be a subset of Y and y Y. Denote by y > ()A if y > (>-)x
for all x A and y is said to be a dominator (maximizer) to A.

An element x* X is said to be a maximal element of the binary relation ">" on
X if x>=X, i.e., x* has no dominator in X.

Our objective in this paper is to study the existence of maximal elements for a
binary relation ">" on a nonempty compact or noncompact set. We characterize the
existence in terms of: (1) certain topological conditions, (2) certain (generalized)
transitivity conditions, and (3) certain generalized convex (geometric) conditions. We
extend the notion of transfer continuities further to transfer transitivities and transfer
convexities. We call this notion the transfer method. The basic idea behind it is as
follows. For topology, given x > y, the conventional continuity conditions describe
topological behavior or relations between x and a neighborhood of y. For transitivity,
given a finite subset X0--{xl, x2,’’ ", xn}, conventional transitivities describe "rela-
tions" within the finite set Xo, i.e., the "internal relations." For geometry and algebra,
given a finite subset Xo {xl, x2, , xn}, conventional convexity conditions describe
"relations" between this finite set and its convex hull. To characterize the existence
of maximal elements for ">," when x > y, we do not have to know the topological
relations between x and a neighborhood of y, the internal relations of the finite subset
Xo, and the geometric and algebraic relations between the finite set and its convex
hull. We only need to know, for topology, the topological behavior or relations between
a neighborhood of y and an element x’ in its "upper" part (so x can be transferred
to a certain element x’ in the "upper" part of a neighborhood of y); for transitivity,
the relations between the finite subset Xo and an element x’ in the "upper" part of
the finite subset Xo, i.e., the "external relation"; for geometry, the relations between
the finite set Xo and the convex hull of a corresponding finite subset in the part not
"below" Xo. Conditions describing the topological relations between a neighborhood
of y and an element in its "upper" part are called transfer continuities; conditions
describing the relations between the finite subset Xo and an element in its "upper"
part are called transfer transitivities; and conditions describing the geometric relations
between the finite subset Xo and the convex hull of a corresponding finite set in the
part not "below" Xo are called transfer convexities.

This paper consists of four sections. In 1, we introduce various transfer conditions
and we explore their connections with conventional conditions and some of their
properties as preliminaries for further development. In 2, we characterize the existence
of maximum elements for binary relations on nonempty compact sets by giving
necessary and/or sufficient conditions in terms of: (1) transfer transitivity conditions
under certain transfer continuity assumptions, (2) transfer continuity conditions under
certain transfer transitivity assumptions, and (3) transfer convexity conditions under
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certain transfer continuity assumptions. In 3, we first discuss some properties of the
definitions in 1, and then provide several theorems to characterize the existence of
maximum elements for binary relations on nonempty noncompact sets by also giving
necessary and/or sufficient conditions in terms of various transfer conditions. In 4,
as concluding remarks, we first indicate that our results can be used to give conditions
under which the maximum correspondence in Walker’s Maximum Theorem is non-
empty valued, which is required for many applications in decision analysis and game
theory and serves as part of our motivation for this work. Then we show how a
maximization problem, with respect to a (weak) binary relation, can be converted to
a maximization problem, with respect to a (strict) binary relation, so our approach
can be applied.

1.1. Transfer transitivities. In the following definition, whenever K X, "to K"
will be replaced by "on X" or omitted.

DEFINIa’ION 1. Let K be a subset of a set X. A binary relation ">-" defined on
X is said to be"

(1) Transfer n-maximal to K, if for each finite subset {xl, x2,’" ", xn} X there
exists x’ K such that x’->" {xl, x2," , xn};

(2) transfer finitely maximal to K, if it is transfer n-maximal to K for all n
1,2,...;

(3) n-acyclic on X, if x> x2> >Xk implies X>’--Xk for all k= 1, 2, , n
(1-acyclic just means x >- x for all x X);

(4) acyclic on X, if it is n-acyclic for all n 1, 2,...
(5) transfer n-strict maximal to K, if for all Yi, xi in X with Yi > xi, 1, 2, , n

there exists x’ K such that x’> {x, x2, , xn};
(6) transferfinitely strict maximal to K, if it is transfer n-strict maximal to K for

all n=l,2,...;
(7) n-link transitive on X, if y > x0 => x >-- _-> x > z implies y > z;
(8) link transitive on X, if it is n-link transitive on X for all n 0, 1, 2,.
(9) fully transitive on X, if its completion ">-" is transitive on X, i.e., x >-y z

imply x >- z.
Remark 1. Here we can see that many definitions in the literature have been

unified. The way we define those transitivities makes it easier for us to save terminologies
and to see implications among different transitivities. For instance, in Definitions 1 (1),
1(3), 1(5), and 1(7), the case for n+ 1 implies the same case for n. Conventionally:

(1) a 1-acyclic ">" is said to be irreflexive, i.e., not x > x or x >-x for all x X;
(2) a 2-acyclic ">" is said to be asymmetric, i.e., x> y and not y > x, which

implies x y, and is also said to be a "preference" relation;
(3) a 0-1ink transitive ">" is said to be (weakly) transitive in [5]. Therefore, a

0-1ink transitive ">" induces a partial ordering;
(4) a 1-1ink transitive ">" is said to be extratransitive in [5].
Remark 2. Cone preference relations have been adopted very often in (multiple-

criteria decision making) vector optimization (cf. Yu [22], Borwein [4], Tanaka [15],
Ferro [8], and Luc 10]). Therein (weak) cone preferences are defined to induce partial
orderings. Here we show that a cone preference is just a very special case of our
approach.

Let X be a subset of a real topological vector space Y and let C be a convex
cone in Y. Let C-=-C. Define (see, e.g., [10]) the (weak) cone preference "c" in
Y by y >-ex if and only if y-x C. Thus its asymmetric part of >-c, denoted by >
i.e., y > x whenever y >- x and not x >-- y, defines a strict preference relation. Then
a point x* X is said to be an efficient (or minimal) point of X with respect to C if
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no x X such that x* > x, i.e., either x* x C or x* x C fq C- for all x X. For
such a (weak) cone preference, we can define a (strict) cone preference relation ">"
in Yby y> x if and only ifx-y C\(C f’l C-), and write its completion "" by x_-> y
whenever y > x does not hold, i.e., x >-y if either x-y C or x-y C f3 C-. Now
following our definition, a maximal element of ">" on X is an element x*X
such that x*>- x, for all x X, i.e., in this case x*-x : C or x*-x C f-I C- for
all x X. Thus x* is an efficient point of "=c" if and only if it is a maximal point
of ">."

It may be remarked that the above-defined (strict) cone binary relation ">" is
0-1ink transitive on X, i.e., z > y > x implies z > x. To see this we only need to show
that x’ e C\(C f3 C-) and y’ e C\(C f-I C-) imply x’ + y’ e C\(C f’l C-). Since C is a
convex cone, x’ + y’ C\(C fq C-) implies x’+ y’ e (C f’l C-) and y’ e C implies -y’ e
C-. Then x’= (x’+ y’)+ (-y’)e C-and leads to a contradiction.

Thus our approach is very general and includes the cone preference as a special
case. It then frees us, in considering vector optimization, from using linear structures
and from restricting a binary relation to being defined by a cone. We believe our
transfer method can be applied to cone preference to both derive and characterize the
existence of maximal elements.

Remark 3. Campbell and Walker [5] overlooked the fact that the pseudotransitivity
in [5], defined by "X " X2 " X " X4 implies x >-x4 when x2 # X3," is weaker than the
1-1ink transitivity when > is asymmetric. The pseudotransitivity and 1-1ink transitivity
are equivalent by noting that the pseudotransitivity implies the 0-1ink transitivity (since
the pseudotransitivity and the 0-1ink transitivity together clearly imply the 1-1ink
transitivity). To see this, suppose that x y > z (which implies x z by the asym-
metricity), but z _-> x. Then we have y > z >’-x > y. The pseudotransitivity implies y > y
but this is impossible.

Since our objective is to characterize the existence of maximal elements for a
binary relation, to better understand those transitivities stated in Definition 1, it is
beneficial for us to restate some of these transitivities in terms of maximization
terminologies.

LEMMA 1. Let ">" be a binary relation on a set X.
(1) For anyfixed integer n 1, 2, 3, , the binary relation is n-acyclic on X ifand

only ifany n elements {Xl, x2, , x,} c X have an internal maximal element, i.e., there
exists xi {Xl, x2, , x,} such that xi >-_ {Xl, x2, , xn}. Consequently, the binary rela-
tion is acyclic on X ifand only iffor any integer n, any finite subset {xl x2, , xn} X
has an internal maximal element.

(2) The binary relation is acyclic if it is O-link transitive.

Proof. (1) The second part of (1) follows from the first part, so we only need to
prove the first part. The cases n 1, 2 are obvious. For n > 2, to prove the "only if"
part, we assume that the binary relation is n-acyclic and that there exists n elements
{Xl,X2,""" ,x,} X without an internal maximal element. These elements therefore
form a k + 1 cycle for some integer k with 3 _-< k_-< n. Without loss of generality, we
assume that the k+ 1 cycle is of the form xl > x2>"" Xk Xl. Since the binary
relation is k-acyclic, we have Xl _-> Xk Xl, and this is impossible.

To prove the "if" part, we assume that for each fixed integer n > 2 the binary
relation has an internal maximal element for any n elements in X. This implies that
the binary relation has an internal maximal element for any k elements in X with
3 _-< k _-< n. Let {Xl, x2, , Xk} be k elements in X with Xl " x Xk. Since Xk Xl
will force a k / 1 cycle to form, i.e., these k elements have no internal maximal elements,
and reduce to a contradiction, we must have Xl->_ Xk and thus the binary relation is
k-acyclic for all 1 _-< k _-< n.
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(2) Without loss of generality, if there is a cycle of the form X " X2 " Xk " X

for some 1 _-< k =< n, 0-1ink transitivity will lead to xl > xl--a contradiction.
LEMMA 2. The binary relation is 1-link transitive on X ifand only iffor any integer

n and any xi and Yi with yi>-x, i= 1, 2,..., n, there exists 1 <-k<-n such that Yk
{xi, x2, x,}.

Proof The "if" part is obvious. For if y > x > x2> z, then either y > {x, z} or

x2 > {xa, z}. But x >- x2, so y > {xl, z} and thus ">" is 1-1ink transitive. Now we prove
the "only if" part by mathematical induction. When n 1 it is obviously true. Suppose
it is true for all n _-< m. Now for n rn + 1, if y > xi, 1 =< _-< rn + 1, then, according to
the assumption on n =< m, there exists Yk, 1 _-< k _-< m, such that yk > {x, x, , x,,}. If
Yk > Xm+l, it is done. Otherwise we have Ym+l > Xm+l >" Yk >" {X, X2, Xm}. By the
1-1ink transitivity, we obtain Ym+ " {Xl, X2, Xm}. Then
{X1,X2,""" ,Xm, Xm+l}.

Remark 4. Definitions 1(3), 1(4), 1(7), and 1(8) are of conventional types and
Definitions 1(1), 1(2), 1(5), and 1(6) are of transfer types. By consulting Lemmas 1
and 2 we can see how we applied the transfer method to the conventional Definitions
1(3), 1(4), 1(7), and 1(8) (we simply allow the dominator or maximal element to n
elements to exist inside or outside the n elements) to obtain, respectively, Definitions
1(1), 1(2), 1(5), and 1(6). Therefore, they are very natural generalizations of the
conventional assumptions. It is these transfer conditions that enable us to avoid the
asymmetric assumption. When K X we have the following implications among
various transitivities stated in Definition 1, while none of their converses hold ((R)
means that the binary relation is asymmetric):

(9)

(8)

(7)

’ % (n>0)
(4) (6)

(3) (2) (5)
(same n) " ) %(same n)

(1)

where
(3)=>(1) follows from Lemma 1(1);
(7)=>=>(6) follows from Lemma 2;
(7)=>(4) follows from Lemma 1(2);
(5)O(1) because if n elements have no maximal element, each one of them has

a dominator; then (5) guarantees the existence of an outside dominator (a maximal
element under asymmetry) to all these n elements;

(4)o:>(2) follows from Lemma 1(1).
Next we provide two examples to demonstrate that for a binary relation the acyclic

condition strictly implies the transfer finitely maximal condition, while the acyclic
condition is independent of the transfer finitely strict maximal condition.
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Example 1. Let Y C, the complex plane. Define a binary relation ">" for any
z, z2 Y by

jeither [z[ < ]z2[ and z, z2 are on the same ray from the origin
(1) Z1 iffZ2

or [z] ]Zzl but z eiz, for 0 < 0 =< r/2.
Let X be the unit disk on the complex plane C. Then for each r, 0 < r_-< 1, we have a
cycle

(r, 0) > (0, -r) > (-r, 0) > (0, r) > (r, 0).

However, the origin is the unique maximal point on X, which is strictly preferred to
any other point. So ">" is transfer finitely strict maximal (of course, transfer finitely
maximal) on X.

Example 2. Let Y C, the complex plane. Define a binary relation ">" for any
Z1, Z2 Y by

(2) z> z iff{ either [Zl[ < [zzl and arg (zl) arg (z)
or ]Zll [zl but z eiz2, for 0 < 0 -< 7r/2.

Here the argument of the origin, arg (0), is regarded as zero. Let X be the unit disk
on the complex plane C. Then for each r, 0 < r=< 1, we have a cycle

(r, 0) > (0, -r) > (-r, 0) > (0, r) > (r, 0).

However, the origin is the unique maximal point on X, thus ">" is transfer finitely
maximal on X. Indeed, we have (0, 0)> (0, r) for all 0< r <- 1, and (0, 0)=> any other
points (where > does not hold). If we let X be the upper half of the unit disk, including
the bottom line, then it is easy to see that ">-" is acyclic, but is not transfer finitely
strict maximal on X. So we can see that the acyclic condition and the transfer finitely
strict maximal condition are two independent conditions. We point out here that the
0-1ink transitive condition and the transfer finitely strict maximal condition are also
independent.

1.2. Transfer continuities and convexities.
DEFINITION 2. Let X be a subset of a topological space Y and let z be any point

in Y; denote A/’(z) a neighborhood of z. The binary relation ">" defined on Y is said
to be:

(1) upper continuous on X, if for any x X and y Y, x > y implies that there
exists (y) such that x> (y);

(2) weakly upper continuous on X, if for any x e X and y e Y, x > y implies that
there exists (y) such that x_-> V(y).

For convenience, in further developments we define the weakly upper contour
correspondence Uw X 2v by Uw(x) {y Y: y >= x} for each x X, and we define
the strictly upper contour correspondence Us: Y 2x by U(x) {y e X: y > x} for
each x e Y.

Remark 5. Note that ">" is upper continuous on X if and only if Us has
(relatively) open lower sections on X, i.e., if and only if u-l(x) is open for all x e X.
The upper continuity is called the lower continuity in [3] and [20] and the weakly
upper continuity in [5] is called the weakly lower continuity. The reason we call them
"upper" is that when the binary relation ">-" is represented by a real-valued function
on Y our definitions coincide with the usual upper semicontinuities.

Let Z be a convex subset in a topological vector space E. A correspondence
P:Z 2z is said to be SS-convex (refer to Shafer and Sonnenschein) if x co P(x)
for all x e Z. Here we used co A to denote the convex hull of a set A.
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DEFINITION 3. Let Z be a convex subset of a topological vector space E and let
# X Z. A correspondence P:Z-. 2x is said to be generalized SS-convex on X (cf.

[17]) if for every finite subset {xl,x2,’" ,x,,} of X and XoCO {Xl,X2,’" ,x,,},
P(xo) for some 1 -<_j-<_ m.

Remark 6. Note that the SS-convexity implies the generalized SS-convexity. The
converse statement may not be true unless X- Z.

Let Z be a convex subset in a topological vector space and let X Z. A
correspondence G :X - 2Z is said to be FS-convex (refer to Fan [17] and Sonnenschein
[14]) if for any finite set {Xl,X2,""" ,Xn}X CO{Xl,X2,’’’, Xn} .JT= G(x). Next
we apply the transfer method to generalize the above conventional continuities and
convexities. Once the definitions are compared, the ideas behind the transfer method
become clear.

In the following definition, whenever K X, "to K" will be replaced by "on X"
or omitted.

DEFINITION 4. Let X be a set of a topological space Y and K c X be a subset.
The binary relation ">" on Y is said to be

(1) transfer upper continuous to K, if for any x X and y Y, x > y implies that
there exist x’ K and (y) such that x’> (y);

(2) transfer pseudoupper continuous to K, if for any x X and y 6 Y, x > y implies
that there exist x’ K and (y) such that x’>y and x’_->(y);

(3) transfer weakly upper continuous to K, if for any x X and y Y, x > y implies
that there exist x’ K and (y) such that x’=> (y).

DEFINITION 5. Let X be a topological space and let Z be a convex subset in a
topological vector space. A correspondence G :X - 2Z is said to be transfer FS-convex
on X if for any finite set {xl, x2,’’ ", x,} X there exists a corresponding finite set
{yl,y,...,yn}Z such that for any subset {Yil,Yi2,’’’,Yis} (l=<s--<n) of
{Yl, Y2," "’, Yn} we have

CO {Y/l, Yi2,"" ", Yis} U G(xir),
r=l

where {xil, Xi2, Xis} is a corresponding subset of {x, X2, In},
DEFINITION 6. Let X be a topological space and let Z be a convex subset in a

topological vector space. A correspondence P:Z--> 2x is said to be transfer SS-convex
on X if for any finite set {x, x2,..., x,} X there exists a corresponding finite set
{yx,yz,...,y,,}Z such that for any subset {Yil,Yi2,"’,Yis} (l<--s<--n) of
{Yl, Y2, ",Y,} and yo co {y, Yi2, , Ys} we have Xir: P(Yio).

DEFINITION 7. Let Z be a convex subset in a topological vector space and let
0 X Z. The binary relation > () is said to be transfer SS-convex (transfer FS-
convex) on X if Us Z --> 2x Uw X --> 2z) is transfer SS-convex (transfer FS-convex)
on X.

Remark 7. Conventional convexity conditions give relations between a finite set
{Xl, x2," , x,} and its convex hull co {x, x2, , x,}. Transfer convexity conditions
give relations between a finite set {Xl, x2, , x,} and the convex hull of a correspond-
ing finite set {Yl, Y2, ’, Y,}, which may differ from {Xl, x2, , x,}.

DEFINITION 8. Let X and Y be two topological spaces. A correspondence G X -->

2 Y is said to be transfer closed-valued on X if for every x X, y : G(x) implies that
there exists x’ X such that y cl G(x’), i.e., y the closure of G(x’).

In the remainder of this section we prove several lemmas that give the interconnec-
tions between different definitions and that will be useful in later proofs..
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LEMMA 3. (1) Let Y be a topological space and let ) X c Y. Then the correspon-
dence Uw’X-> 2 Y is closed-valued on X if and only if "" is upper continuous on X;
the correspondence Uw" X-> 2 Y is transfer closed-valued on X if and only if "" is

transfer upper continuous to X.
(2) Let Z be a convex subset in a topological vector space and let ) X Z. Then

the correspondence Uw X -> 2z is FS-convex on X ifand only if Us" Z -> 2x is generalized
SS-convex on X, and the binary relation "" is transfer SS-convex on X if and only if
">_-" is transfer FS-convex on X.

Proof The proof follows immediately from the definitions.
LEMMA 4. Let Z be a nonernpty convex subset of a topological vector space and let
X Z. Suppose ">" is a binary relation on Z such that Uw" X- 2z is finitely closed

for each x X (i.e., the intersection of Uw(x) with any finite-dimensional subspace ofZ
is closed). Then ">" is transfer finitely maximal on X if and only if > is transfer
SS-convex (transfer FS-convex) on X.

Proof By [6], Uw has the finite intersection property if and only if Uw is transfer
FS-convex on X and therefore if and only if U is transfer SS-convex on X. It is clear
that Uw has the finite intersection property if and only if ">" is transfer finitely
maximal on X.

LEMMA 5. Let Y be a topological space and let ) X Y and let ">" be a binary
relation on Y. Then f’lxx cl Uw(x)= f-lxx Uw(x) if and only if Uw is transfer closed-
valued or equivalently if and only if ">" is transfer upper continuous on X.

Proof Sufficiency. It is clear that f-l,x Uw(x) f’)x cl Uw(x). So we only need
to show flx cl Uw(x)c fl,x Uw(x). Suppose y: f-Ixx Uw(x). Then y

_
Uw(z) for

some z X. Since Uw is transfer closed-valued on X, there exists some z’ X such
that y cl Uw(z’) and then y x cl Uw(x).

Necessity. Assume fqx cl Uw(x) fq ,x Uw(x). If y Uw(x), then y
fqxxcl Uw(x)=f’lx.x Uw(x) and thus y cl Uw(x’) for some x’X. Thus Uw is
transfer closed-valued on X.

2. Maximization of binary relations on compact sets. There are two basic
approaches in the literature to showing nonemptiness of the set of maximal elements
on a nonempty compact set without assuming transitivity of the binary relation. One
approach, under some convexity and continuity conditions, was developed by Fan [7],
Sonnenschein 14], Shafer 11], Shafer and Sonnenschein 12], Yannelis and Prabhakar
[21], and Tian 16], 17], among others. The other approach may be found in Bergstrom
[3], Walker 19] (under acyclic and upper continuity assumptions), and Campbell and
Walker [5] (under the 1-1ink transitivity, compactness for the space, and weakly upper
continuity for the binary relation). In this section we generalize and unify the two
approaches by giving several theorems that characterize the existence of maximal
elements for a binary relation on a compact set. Theorem 1 characterizes the existence
of maximal elements of a binary relation on a compact set in terms of transfer continuity
(topological condition) for a given weakened transitivity condition. Theorem 2 charac-
terizes the existence of maximal elements of a binary relation in terms of transfer
transitivity for a given weakened topological condition (transfer continuity) and
Theorem 3 characterizes the existence of maximal elements of a binary relation in
terms of geometric conditions (transfer convexities) for a given weakened topological
condition (transfer continuities).

LEMMA 6. Let X be any subset of a topological space Y and let ">" be any binary
relation on Y.
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(1) If ">" has a maximal element on X, then ">" is transfer finitely maximal on
X.

(2) If ">" has a maximal element on X, then ">" is transfer weakly upper
continuous on X.

(3) If ">" is transfer upper continuous on X, then the set of all maximal elements
on X is closed (possibly empty) in X. If ">" is fully transitive and the set ofall maximal
elements on X is nonempty and closed, then ">" is transfer upper continuous.

Proof The proof follows immediately from the definitions. Iq

THEOREM 1. Let X be a nonempty compact topological space and let the binary
relation ">" on X be transfer finitely strict maximal on X. Then ">-" has a maximal
element on X if and only if ">" is transfer weakly upper continuous on X.

Proof Sufficiency. Suppose, by way of contradiction, that ">" does not have a
maximal element. Then for each y X, there exists x X such that x > y. By the transfer
weakly upper continuity of ">," there exist x’ X and a neighborhood (y) such
that x’_-> y’ for all y’ (y). It follows that X 13 yx(y). Since X is compact, there
exist finite points {y, y,..., y,} such that X U’_ (y). Let x be the associated
point such that x_-> y’ for all y’ (y). Since we assume that there is no maximal
element, for the finite subset {x, x,..., x’}, by the transfer finitely strict maximal
property there exists x’ X such that x’ > xl, for all 1, 2, , n. However, x’ A;(y)
for some j 1, 2,..., n. We have x_-> x’. It leads to a contradiction. So X has a
maximal element.

Necessity. This follows from Lemma 6(1). [3

THEOREM 2. Let X be a nonempty compact topological space.
(1) Assume that the binary relation ">" is transfer upper continuous on X. Then

the set of all maximal elements on X is nonempty and compact if and only if ">" is

transfer finitely maximal on X.
(2) Assume that the binary relation ">" on X is asymmetric (i.e., 2-acyclic) and

fully transitive. Then the set of all maximal elements on X is nonempty and compact on
X if and only if ">-" is transfer upper continuous on X.

Proof of (1). The necessity follows from Lemma 6(1). We prove the sufficiency.
Since ">" is transfer finitely maximal on X, for every finite subset {xl," , xn}, there
is x’X such that for each i=l,2,...,n,x’>xi or x’>’-xi. Define Uw(x)=
{ y X: y x}. Thus Uw and then cl Uw have the finite intersection property. By Lemma
5, fq,x Uw(x)= fqxx cl Uw(x) 0 on the compact set X. So the set of all maximal
elements on X, which is fq,x Uw(x)= fqx cl Uw(x), is nonempty and compact.

Proofof (2). The sufficiency follows from part (1) and we only need to prove the
necessity. Notice that under the full transitivity, for any nonmaximal element y and
any maximal element x we have x > y. Since the set of all maximal elements is closed,
any nonmaximal element y has an V(y) that contains no maximal element. Therefore,
for any maximal element x we have x> y’ for all y’ (y). That is, ">" is transfer
upper continuous. [3

Thus Theorem 1 generalizes the results of Campbell and Walker [5] by relaxing
the weakly upper continuity and the 1-1ink transitivity (pseudotransitivity) of ">." It
also generalizes the results of Tian and Zhou [18] by relaxing the full transitivity of
">." Theorem 2(1) generalizes the results of Fan [7], Sonnenschein [14], Shafer [11],
Shafer and Sonnenschein 12], Yannelis and Prabhakar [21], and Tian 17] by relaxing
the upper continuity and (generalized) SS-convexity of ">" and the convexity of X.
Theorem 2(1) also generalizes the results of Bergstrom [3] and Walker 19] by relaxing
the upper continuity and acyclicity of >. Thus our results unify two basic approaches
to the existence of maximal elements by giving necessary and sufficient conditions.



TRANSFER METHOD IN OPTIMIZATION ON BINARY RELATIONS 369

Remark 8. If we compare the conditions of Theorems 1 and 2(1), we can find
that there is a trade-off between the transfer transitivities and the transfer continuities
(a trade-off between transitivity conditions and topological conditions): If one condi-
tion is weakened, then the other must be strengthened and vice versa. Many theorems
we give below will also have this trade-off relation.

Theorem 3 below, which is obtained in Tian [16], is a special case of Theorem 2
(which needs to assume that X is a subset of a topological vector space). We state it
here as an alternative.

THEOREM 3. Let Z be a nonempty convex compact subset of a topological vector
space and let 0 X c Z. Let ">" be a transfer upper continuous binary relation on X.
Then the set of all maximal elements of ">" on X is nonempty and compact if and only
if ">" is transfer SS-convex on X.

Lemma 3(2) and Lemma 4 give partial interconnections between Theorem 2(1)
and Theorem 3.

Remark 9. At this point, it is quite natural to conjecture that the transfer finitely
strict maximal condition in Theorem 1 might be further weakened, or to ask, for a
binary relation on a compact set: What is the weakest possible transitivity condition
under which the existence of maximal elements is equivalent to the transfer weakly
upper continuity? This question is related to our understanding of the fundamental
structures of mathematics, namely, topology, transitivity, and their interconnections.
So far it is still an open question. However, Campbell and Walker [5] provide a clue.
They construct an example [5] in which a binary relation is weakly upper continuous
(and thus is transfer weakly upper continuous) and 0-1ink transitive but fails to have
a maximal element on a nonempty compact set. Therefore, under the transfer weakly
upper continuity, any transitivity condition proposed, other than the transfer finitely
strict maximal condition, must be weaker than the 1-1ink transitive condition and
independent of or stronger than the 0-1ink transitive condition.

For any function u, we can define a fully transitive binary relation ">" as follows:
x > y if and only if u(x) > u(y). Thus the transfer continuities of a function u can be
similarly defined. As direct consequences of the above theorems, we provide two
corollaries that are generalizations ofthe classical Weierstrass theorem and are obtained
in Tian and Zhou [18].

COROLLARY 1 [18]. Let X be a nonempty compact topological space and let u
X ---> R [.J {-} be a function. Then u attains its maximum on X ifand only if u is transfer
weakly upper continuous on X.

COROLLARY 2 [18]. Let X be a nonempty compact topological space and let u X -->

R [_J {-} be a function. Then the set of maximum points of u on X is nonempty and
compact if and only if u is transfer upper continuous on X.

The following examples show that the above corollaries are very useful for us to
see whether or not the maximum points of functions exist--even though these functions
are very discontinuous.

Example 3. Consider a function u defined on the interval X [0, 1] by

1 + x if x is a rational number,
3 U X

x otherwise.

We can easily see that u is not upper semicontinuous. In order to see that u is transfer
upper continuous, for any neighborhood c [0, 1 ], we may choose any rational number
x’ such that sup {xlx Ac}-< x’ =< 1. In addition, by Corollary 2, we know the set of all
maximal points is nonempty and compact. In fact, x 1 is a unique maximum point
ofu on[0,1].
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Example 4. Consider the so-called Dirichlet function u defined on the interval
X=[0, 1] by

1
(4) u(x)=

0

if x is an irrational number,
if x is a rational number.

Note that u defined by (4) is clearly not transfer upper continuous. However, it is
transfer weakly upper continuous by choosing x’ as any irrational number. Thus, by
Corollary 1, u has a maximum point. We can also easily see that the set of maximum
points of u on [0, 1 is a set consisting of all irrational numbers and thus is not compact.

Example 5. Now if a function u is defined on the interval X [0, 1 by

x if0<-x<l,
(5) u(x)=

0 ifx=l,

then u is not transfer weakly upper continuous on X. This is because for y 1 and
x (0, 1), we cannot find any x’ X and neighborhood W(y) ofy such that u(z) <= u(x’)
for all z W(y). Thus, by Corollary 1, we know that u does not have any maximum
point. In fact, we can easily see that u does not have a maximum point on [0, 1].

3. Maximization of binary relations on noncompact sets. For application purposes
the compactness assumption of a set is sometimes too restrictive, especially when
solving problems with data in infinite dimension. In this section we prove several
theorems that give necessary and/or sufficient conditions for the existence of maximal
elements of a binary relation on noncompact sets in terms of topological conditions
(transfer continuities) for given transitivities, or in terms of transfer transitivities for
given topological conditions (transfer continuities), or in terms of transfer convexities
for given topological conditions. Thus, by applying our transfer method, we generalize
almost all of the results in the literature and all results in the last section. Furthermore,
by using the "transfer" feature of our transfer method, we are able to provide an
approach with potential applications in constrained maximization.

Recall that the function u in Example 4 is not transfer upper continuous, but it
is easy to see that it is transfer pseudo-upper continuous. So the transfer upper continuity
strictly implies the transfer pseudo-upper continuity. To show that the transfer pseudo-
upper continuity strictly implies the transfer weakly upper continuity, we set up the
following example.

Example 6. Let X K be the unit disk in the complex plane C. Define a binary
relation ">" on X by

z > z2 if arg (Zl) > arg (z2),

for all zl, z2 Z. Since for the origin 0, its argument arg (0) is not defined, 0 z for
all z Z. So "-" is transfer weakly upper continuous. But when we observe the behavior
of ">" around the point z (x, 0) for x>0, we can see that ">" is not transfer
pseudo-upper continuous. Obviously, ">" is 0-1ink transitive. As a matter of fact, ">"
is also 1-1ink transitive. For if zl > z2 >- z3 > Z4, then we have arg (z) > arg (z2) and
arg (z3) > arg (z4), which also implies that z3 0. It follows that arg (z2) => arg (z3).
Therefore, arg (z)> arg (z4) or z > z4. Thus ">" is 1-1ink transitive.

The above example shows that for a binary relation ">" under the 1-1ink
transitivity, the transfer pseudo-upper continuity strictly implies the transfer weakly
upper continuity. However, when a preference relation ">" is fully transitive, it is
easy to see that the transfer pseudo-upper continuity is equivalent to the transfer weakly
upper continuity. So the question may be asked: What is the weakest possible transitivity
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condition under which the transfer pseudo-upper continuity is equivalent to the transfer
weakly upper continuity. We need to consider another question before we can answer
this one.

For a binary relation ">" defined on a set X, if x X is not a maximal element
of "" on X, then there exists an element y X such that y x. We may be concerned
with the question of whether or not there exists a maximal element x* X such that
x* > x. In general, the answer is no. But under certain transitivity conditions, the answer
is yes.

LEMMA 7. Ifthe binary relation ">" is 2-1ink transitive on Xand >- has a maximal
element, then for any nonmaximal element x X there exists a maximal element x* X
such that x*)- x.

Proof. Suppose, by way of contradiction, that there is a nonmaximal element y X
such that y _-> x* for every maximal element x* on X. Then there is an element z X
such that z > y. Note that z must be a nonmaximal element since y _-> x* for all maximal
elements x* on X. So there is an element x X such that x > z > y. Let x* be any
maximal element on X. Then we have z > y _>- x* _-> x > z, which implies that z > z by
the 2-1ink transitivity--a contradiction. [3

It can be seen in the above proof that 2-1ink transitivity can be replaced by a
weaker condition "xl >= x2 ->_ x3 x4xl >- x4."

LEMMA 8. Let "" be a 2-1ink transitive binary relation on a topological space X.
Then ")-" is transfer weakly upper continuous if and only if it is transfer pseudo-upper
continuous.

Proofi We only need to show that under the assumption, the transfer weakly upper
continuity implies the transfer pseudo-upper continuity. When ">" is transfer weakly
upper continuous and x y, there exists x’ X and r(y) of y such that x’_-> r(y). If
">" has a maximal element on X, by Lemma 7, there exists a maximal element x* X
such that x* y and x* >- Af(y). If"" does not have a maximal element on X, notice
that the 2-1ink transitivity implies the transfer finitely strict maximal condition; then
there exists xoX such that Xo-{x,x’}, or Xo>Xy and XoX’>=f(y). Then it
follows that xoy and Xo>=(y), by noting that the 2-1ink transitivity implies the
0-1ink transitivity. Therefore, "" is transfer pseudo-upper continuous. [3

In the following, we provide various necessary and sufficient conditions to charac-
terize the existence of binary relations on noncompact sets.

THEOREM 4. Let X be a topological space.
(1) The set of all maximal elements of the binary relation "" on X is nonempty

and closed if there exists a nonempty compact set K c X such that "" is transferfinitely
maximal and transfer upper continuous to K.

(2) Assume that the binary relation "" on X is 2-acyclic andfully transitive. Then
the set of all maximal elements on X is nonempty and closed if and only if there exists a
nonempty compact set K c X such that "" is transfer upper continuous to K.

(3) Assume that the binary relation " on X is 2-acyclic andfully transitive. Then
the set of all maximal elements on X is nonempty and compact if and only if there exists
a nonempty compact set K X such that "" is transfer upper continuous to K andfor
each y X\K, there exists x K such that x y.

Proof of (1). By the existence result in Theorem 2(1), we can see that "" has
a maximal element x* on K. Suppose ">" has no maximal element on X. By the
transfer upper continuity to K, there exists x K such that x x*. This leads to a
contradiction. The closedness of the set of all maximal elements follows Lemma 6(3).

Proof of (2). The sufficiency follows from (1) and the necessity is similar to that
of Theorem 2(2). Just let K -{x*}, where x* is any maximal element on X.
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Proof of (3). The sufficiency is similar to that of (2) and we only need to note
that all the maximal elements must be in K. The proof of the necessity is similar to
that of Theorem 2(2) by letting K be the set of maximal elements on X.

COROLLARY 3. Let X be a topological space and u X R be a function. Then
(1) the set of all maximal elements of u on X is nonernpty and closed if and only if

there exists a nonempty compact set K c X such that u is transfer upper continuous to K;
(2) the set of all maximal elements of u on X is nonernpty and compact if and only

if there exists a nonempty compact set K X such that u is transfer upper continuous to
K and for each y X\K there is x K with u(x) > u(y).

THEOREM 5. Let X be a topological space. Suppose that the binary relation ">"
on X is 1-1ink transitive. Then X has a maximal element if there exists a nonernpty
compact set K X such that ">" is transfer pseudo-upper continuous to K.

Proof By Theorem 1, ">" has a maximal element x* on K. Suppose that ">"
has no maximal element on X. Then there exist y X and x K such that x > y y > x*
by the transfer pseudo-upper continuity to K. But this implies x > x* by the 1-1ink
transitivity, which contradicts the fact that x* is a maximal element of ">" on K. So
">" has a maximal element on X.

Remark 10. Note that in the example provided by Campbell and Walker [5] the
binary relation is not only 0-1ink transitive and weakly upper continuous but also
transfer pseudo-upper continuous on a compact set. However, it fails to have a maximal
element. So the 1-1ink transitive assumption in Theorem 5 cannot be replaced by the
0-1ink transitivity.

THEOREM 6. Let X be a topological space and let the binary relation ">" on X be
such that there exists a nonernpty compact set K1 X such that ">" is transfer finitely
strict maximal to KI. Then X has a maximal element ifand only if there exists a nonernpty
compact subset K2 X such that ">" is transfer weakly upper continuous to K2.

Proof The necessity is trivial. Just let K2 {x*}, where x* is any maximal element
on X. We only need to prove the sufficiency.

When there exists a nonempty compact subset K = X such that ">" is transfer
finitely strict maximal to K, let K K U K:. Then ">" is transfer finitely strict
maximal and transfer weakly upper continuous to K. By Theorem 1, there is a maximal
element x* on K. Suppose, by way of contradiction, that ">" has no maximal element
on X. Then there exists an element y X such that y > x*. But ">-" is transfer finitely
strict maximal to K; for the nonmaximal element x* X there exists x K such that
x > x*, a contradiction. So X has a maximal element in K1.

The following corollary is a complete characterization for a function to attain its
maximum values.

COROLLARY 4. Let X be a topological space and let u X R be a function. Then
the set ofall maximal elements ofu on X is nonernpty ifand only ifthere exists a nonernpty
compact set K X such that u is transfer weakly upper continuous to K.

THEOREM 7. Let X be a topological space and let ">" be a binary relation on X.
Assume that

(1) there is an element Xo X such that cl Uw(xo) is compact in X;
(2) Uw is transfer upper continuous on X.

Then the set of all maximal elements of ">" on X is nonernpty and compact if and only
if ">" is transfer finitely maximal on X.

Proof The necessity follows from Lemma 6(1). We only need to show the
sufficiency. Since ">" is transfer finitely maximal on X, Uw has a finite intersection
property on X and so does el Uw. Now el Uw(x)f’)cl Uw(xo) is compact and has a
finite intersection property as well. So xx cl Uw(x) 0 and is compact. Since condi-
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tion (2) is equivalent to N xx Uw(x)= Nxx cl Uw(x), N xx Uw(x) is nonempty and
compact. [3

Similarly, we can extend Theorem 3 to cover binary relations on sets that are not
convex or compact.

THEOREM 8 16]. Let Z be a nonempty convex subset of a topological vector space,
X a nonempty subset of Z, and ">" a binary relation on Z. Assume that

(1) there is a vector Xo X such that cl Uw(xo) is compact in Z;
(2) Uw is transfer upper continuous on X;
(3) for each y Z\X, there exists x X such that x > y.

Then the set of all maximal elements of ">" on X is nonempty and compact if and only
if ">" is transfer SS-convex on X.

THEORZM 9. Let X be a topological space and ">" be a transfer upper continuous

binary relation on X. Then the set of all maximal elements on X is nonempty and closed
if and only if there exists a nonempty compact subset K c X such that ">" is transfer
finitely maximal to K.

Proof The necessity is trivial. Just let K {x*}, where x* is any maximal element
on X. We only need to prove the sufficiency. First we show that

(6) n cl Uw(x) 71K # O.
xX

In fact, since ">" is transfer finitely maximal to K, for any finite subset
{xl, x2, , x,} c X, there exists y K such that x >- xi, 1, 2, , n. That is,

f U(x,) n K O.
i=l

It follows that

f cl Uw(xi) n K O.
i=1

However, for each x e X, the set cl Uw(x)n K is compact and therefore

n clUw(x) nK#O.
xX

Due to the assumption that ">" is transfer upper continuous, Lemma 5 reads

n Uw(x)= n cl U(x),
xX xX

which is a nonempty closed subset in X. This completes the proof.
Remark 11. Theorems 7 and 9 are generalizations of Theorem 2(1). They coincide

if X is compact. Note that there is a trade-off between Theorem 7 and Theorem 9.
Assumption (1) in Theorem 7 has been removed in Theorem 9, but the condition that
">" is transfer finitely maximal on X in Theorem 7 has been strengthened to the
condition that ">-" is transfer finitely maximal to a compact subset K c X. As a result,
the conclusion in Theorem 7 that the set of all maximal elements is nonempty and
compact becomes weaker in Theorem 9.

4. Concluding remarks. In this section we give some further remarks.
Let E (environment space) and Y (action space) be two topological spaces; let

F" E-> 2v be a nonempty-valued correspondence; and let ">e" be a family of the
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binary relations on Y that depends on the parameter e E. Define a binary correspon-
dence P" E Y- 2Y by

P(e, y) {x Y: x > Y}

for (e, y) E Y. To study a family of maximization problems with respect to the
parameterized binary relation "> e," we define the maximum (marginal) correspon-
dence M" E 2Y, for each e E, as

M(e)-{y F(e): P(e, y)(3F(e)=O}.

Berge [1], [2, p. 116] first studied various continuity properties of the maximum
correspondence M(e) for a simple case where

M(e) {y F(e)" u(e, y) >- u(e, x), Vx F(e)}

for some function u" E Y- R. He proved that if u is a continuous function and F
is a nonempty compact-valued continuous correspondence, then the maximum corres-
pondence M is nonempty compact-valued and upper semicontinuous. Since then, this
theorem, called Berge’s Maximum Theorem, has become one of the most useful and
powerful theorems in economics, optimization, and game theory. Walker [20] extended
Berge’s Maximum Theorem to maximization with respect to binary relations. He gave
conditions under which M is an upper semicontinuous correspondence with compact
(but possibly empty) values. In [18], a further generalization is obtained by giving
necessary and sufficient conditions, but M is still possibly empty-valued. Just as Berge’s
Maximum Theorem can be used to prove the existence of Nash equilibrium and
equilibrium for the generalized game with payoff functions, Walker’s Maximum
Theorem can be used to prove the existence of Nash equilibrium and equilibrium for
the generalized game without ordered binary relations if the nonemptiness of the
maximum correspondence M(e) can be guaranteed. It is worth indicating that our
work in this paper is partially motivated by this problem and the results established
here can be applied to giving various conditions under which M(e) are nonempty
valued.

Let Y be a topological space and X c y be a subset. For a given (weak) binary
relation " *" on Y, if a maximal element on X with respect to ">-*" is defined as
an element x* X such that for each x X, either x* *x or x* and x cannot be
compared, then we can define a (strict) binary relation ">" as the asymmetric part of
"_-> *," i.e., y > x whenever y * x and not x =>-* y and write the completion " of
">" by y _-> x whenever x > y does not hold. Then follow our definition that a maximal
element of ">-" on X is an element x* X such that x* x for all x X, which reads"
For each x X either x*>" x or x* and x cannot compare. So these two definitions
for maximal elements on X coincide and a maximization problem with respect to the
(weak) binary relation can be converted to a maximization problem with respect to
the (strict) binary relation. Note that the above-defined (strict) binary relation ">"
is always asymmetric (2-acyclic).

Finally, we would like to mention that the results stated in the above sections can
also be used to prove the existence of greatest elements for a weak (reflexive) binary
relation " *." Let Y be a topological space and X c Y be a subset. For a weak binary
relation "_-> *" on Y, a point x* X is said to be a greatest element of >--* on X if
x* >-=* x for all x X. For this weak binary relation ">’= *," we can define a strict binary
relation "> *" as follows, x >* y if and only if not y ->’* x. Then we can easily see
that x* X is a greatest element of * on X if and only if x* is a maximal element
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of ">*" on X. Thus proving the existence of a greatest element of a weak binary
relation is equivalent to proving the existence of a maximal element of the reduced
strict binary relation.
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Abstract. This paper focuses on regularization techniques for nonlinear ill-posed inverse problems.
Tikhonov regularization and regularization due to the use of norm constraints are analyzed. A model function
technique is proposed to iteratively determine an optimal regularization parameter or the parameter charac-
terizing the norm constraint, and to estimate the error in the data if it is not known a priori.
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1. Introduction. In this paper we study regularization ofnonlinear ill-posed inverse
problems. Here, ill posedness refers to the lack of continuous dependence of the
solutions of the problem on its data. In a numerical ad hoc approach this may cause
serious difficulties or failure of the algorithm. A common method for solving ill-posed
problems in a stable manner is to replace the original problem by a family of "nearby"
problems that have more amenable properties. This is referred to as regularization. In
actual realizations of a regularization technique, the notion of "nearby" is expressed
in one (or several) "’regularization" parameters. One of the essential problems in the
use of a regularization technique is the appropriate choice of the regularization
parameter. The purpose of this paper is to describe, analyze, and test new techniques
for the choice of the regularization parameter. Let us explain the approach that we
propose by means of a specific example. We consider the estimation of the diffusion
coefficient a in

(1.1) -div (a grad u)+ cu =f in l-l,

where l-I is a bounded domain in n, c and f are known, and a feasible boundary
condition is assumed to be satisfied by u on the boundary 01) of . The problem
consists in determining the scalar-valued functional parameter a from an observation
z of the system for which (1.1) is assumed to be a model. Problems of this nature
arise, for instance, in groundwater flow modeling; see, e.g., [Y]. The problem can be
formulated as inverting the parameter-to-solution mapping a- u(a) at z, i.e., to solve

(1.2) u(a):z

for a solution a*. Since the solutions of (1.1) generally satisfy certain regularity
properties, it is easy to see that (1.1) may have no solution, e.g., if z is not sufficiently
smooth. Even if (1.2) had a solution, it would not depend continuously on z, unless
a very weak and practically useless (distributional) norm was chosen; see, e.g., [CK],
[EKN]. In addition, (1.2) is not a good starting point for numerical computations.
For these reasons ill-posed inverse problems in general, and parameter estimation
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problems like the one above in particular, are frequently formulated as optimization
problems. For the problem under consideration this may be done by considering

(1.3) min 1/2[u(a)-zl,
Qad

where Y denotes a practically relevant topology for the observation space, and Qad
describes the set of feasible diffusion coefficients, and incorporates, e.g., regularity
properties and a positivity constraint a(x)>=a>O. In (1.3), the state u of (1.1) is
considered as a function of the variable a. We have recently developed an approach
in which the state variable u and the unknown parameter a are both independent
variables, and the partial differential equation, formally expressed as e(a, u)=0, is
considered as an explicit constraint [IK], [IKK]. Since the technique was numerically
very successful, we also specify it formally here, and consider

(1.4) min1/2[u-z[, e(a,u)=0, aEQad

In the case in which z is attainable, i.e., if there exists a*E Qad such that u(a*)=z,
a* is a solution of (1.3) and (a*, u(a*)) is a solution of (1.4). Since the solution of
(1.2) does not depend continuously on z, the same is true for (1.3) and (1.4). The
optimization problems, however, readily lend themselves to various regularization
techniques. We consider two such techniques, one of which is based on adding a
Tikhonov-type regularization term to the cost functional, and another that employs a

(semi)norm constraint of the unknown parameter. Combining both techniques in one
formulation, (1.3) and (1.4) become, respectively,

1 fl(1.5) min-lu(a)-zl+-(a, Pa), aQad, (a, Pa)<=y,

and

(1.6)
min - [u zl+- (a, Pa),

aQ,a, e(a,u)=O, (a, Pa)<=2",

where P is a bounded linear self-adjoint nonnegative operator describing a norm or
a seminorm on the coefficient space. For/3 >-0 and 2’ <= let a’r denote the solution
of (1.5) and let (a’r, u’v) denote the solution of (1.6). The question that we address
is the choice of/3 and/or y. If the data z were error free and attainable, and if we
could solve (1.5) or (1.6) with infinite precision, then we could take/3 =0 and
Since this is not the case, we choose/3 > 0 or 2’ < to stabilize an otherwise unstable
problem; see, e.g., [CK], [IK], and [EKN]. Our plan, generally speaking, is to determine
/3 or 2’ iteratively, starting with a large value of/3 and/or a small value of 2’ (which
allows for a stable solution of (1.5) or (1.6) but introduces a large regularization error)
and to then iteratively decrease /3 or to increase 2’ until the problem approaches ill
posedness. We will stop just before ill posedness would render the solution of (1.5)
or (1.6) infeasible. To accomplish this goal we introduce model functions. Let us
consider the special case (1.5) with 2’ c and let F:R+- R+ be given by

1
lu(a fl (a, pa3),F fl --) - )-zl+-

with a a solution of (1.5) with 2’ o. Under appropriate conditions this solution is
locally unique. Using a simplifying assumption, it will be shown that F is the solution
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of a two-parameter family of second-order ordinary differential equations. Their
solution is a four-parameter family of functions that we will denote by m and that
describes F. Determining the four parameters characterizing rn requires solving (1.5)
for two values of/3. Once m is determined we require further principles to obtain an
appropriate value for the regularization parameter. We may use the well-known
Morozov principle, which requires us to choose the regularization parameter/3M such
that

(1.7) [u( at3t zl Bz,
where 6 is the expected error level for the observation z. We will see that (1.7) can be
expressed as F(/3M)-/3MF’(/3) 62/2, which is approximated, employing the model
function, by

(1.8) m( tm’(B
2

In our experiments (with and without the use of model function) the choice of the
regularization parameter gave somewhat conservative results, and we will therefore
also introduce an alternative to the Morozov principle given by

(1.9) m(flp (fl ,, flv )m’(flp) "Y__2 t2
2

for constants 3’1 1, 2] and 3’ [1/2, 1 ].
If m coincided with F, then our algorithm could stop here. But m is only an

approximation to F and hence we repeat the above sequence of calculating a model
function and updating the regularization parameter according to some principle, e.g.,
the Morozov principle, several times, until a stopping criterion is reached.

As already seen in (1.8), knowledge of the error level was used in the algorithm
to determine the regularization parameter. If the error level is not available, then our
algorithm allows us to estimate through evaluation of (1.5) for two appropriately
chosen values of/3.

While this paper is motivated by nonlinear inverse problems, some aspects of it
may also be new for linear problems. The theory of linear ill-posed inverse problems
has received a considerable amount of attention and we refer the reader to several
books on this subject, e.g.[TA], [B], [G], [L], and [M].

The paper is organized as follows. In 2 we consider general nonlinear ill-posed
problems with either Tikhonov regularization or regularization due to constraints. An
existence result in a seminorm setting is given and the relationship between the solution
using Tikhonov-type regularization and the solution using norm constraints is analyzed.
As mentioned above, the model functions are obtained as the solutions of ordinary
differential equations. These equations can be obtained due to the differentiability
properties of the optimal value function, as well as of the solutions to regularized
nonlinear least squares problems such as (1.5) and (1.6) with respect to/3 and 3’. In
3 we present results on the directional differentiability of the solutions of the regular-

ized problems with respect to regularization parameters. These results will also provide
first-order information on the optimal value function from knowledge of the solution
to (1.5), respectively, (1.6) (see Theorem 3.1). Once these analytical preliminaries are
established, we develop our results on the optimal choice of the regularization para-
meter. The case of Tikhonov regularization is treated in 4 and regularization by
constraints of the parameters is treated in 5. Both these sections contain numerical
results illustrating the proposed methods.
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2. The () and (r) problems and differentiability. We are concerned with the
minimization problem

(Pa, a)min f(a, u)+
(2.1)

where

subject to e(a, u)=O, (Pa, a)_-< y, l(a) K,

f Q x X-+ [O, o),

P.Q-) Q,

e’Qxx-) Y,

l’Q-)Z,

/3+, y+U{},

K is a closed convex cone with vertex at zero in Z,

and O, X, Y, and Z are real Hilbert spaces, P is a bounded, linear, selfadjoint
nonnegative operator, and is affine and continuous. Under the above assumptions,
every element a Q can be decomposed uniquely as

a a (1) -t- a

where a(l ker P and a(2 (ker P)+/-.
The following additional hypotheses will be used.
(HI) There exists rn > 0 such that

(Pa, a)>= mlal for all a (ker P)+/-.

(H2) For every a Q with l(a) K there exists a unique element u(a) X such
that e(a, u(a)) =0.

(H3) For any weakly convergent sequence an with w-lim an a and l(an) K,
we have limn_,f(an, u(an)) >=f(a, u(a)) and limn_, e(an, u(an)) e(a, u(a)).

(H4) If {a,} is a sequence in Q with l(an) K and (Pan, an) <- y for all n, and
with bounded and unbounded, then {an} cannot be a minimizing
sequence for (2.1).

Throughout it is assumed that the set

Qad {a Q: l(a) K, (Pa, a)<- y}

is nonempty.
THEOREM 2.1. Let (H1)-(H4) hold and let fl > 0 or y <. Then there exists a

solution (ao, Uo) of (2.1).
Proof. Let (an, un) be a minimizing sequence for (2.1). Due to (H2) we can

equivalently consider {an} as a minimizing sequence. Clearly, {Pan} is bounded in Q
and hence {a} is bounded by (HI). Condition (H4) then implies that {a)} is bounded
as well. Hence {an} is bounded and there exists a weakly convergent subsequence,
again denoted by {an}, and ao Q, such that w-lim an ao and l(ao) K. Finally, (H3)
and weak lower semicontinuity of the norm in Q imply that (ao, Uo)= (ao, u(ao)) is a
solution of (2.1).
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We turn to a brief discussion of the hypotheses (H1)-(H4). Hypothesis (H1) holds,
for example, if P has closed range. In this case there exists rh > 0 such that IPalo >--
for all a ker/9 and it follows that (HI) holds with m =.,/--. With (H2) holding, the
equality constraint could be eliminated from the constraints in (2.1) and incorporated
in the function f. We prefer to keep e(a, u) 0 as an explicit constraint since it allows
greater flexibility, for example, in the numerical implementation of (2.1) by Lagrangian
techniques. In view of (H2) and Theorem 2.1 we will henceforth refer to both ao and
the pair (ao, Uo)= (ao, u(ao)) as a solution of (2.1). (H3) is one of several possible
choices of a compactness-type assumption that is required to quarantee the existence
of a solution to (2.1). Regarding (H4) we have the following result.

PROPOSITION 2.2. Let (H2) hold and assume that ker P 0 Qa is not empty. Iff
has theproperty thatfor any sequence {an} in Qad c Q with {[a)[o} bounded and {]a(nl)lQ}
unbounded,

lim inff(an, u(an)) > inf f(a, u(a))" a ker P f-I Qaa}

is satisfied, then (H4) holds.
Proof. Assume that {an} is a sequence in Qad with {]an[O bounded and

unbounded, and that it is also a minimizing sequence. Then we have

lim inff( an, u an > inf {f( a, u a )): a ker/9 f’l Q,d }

>= inf {f(a, u(a))" a

lirninf f(an,

-> lim inff(an, u (an)).

This is a contradiction and hence {an} cannot be a minimizing sequence.
Remark 2.3. The hypothesis on f of Proposition 2.2 is applicable to parameter

estimation problems; see 4 and [IK2]. Another condition on f that implies (H4) is
given by requiring that f(an, U(an)) is unbounded for any sequence {an} in 0 with
{a} bounded and {a} unbounded. It corresponds to an analogous assumption in
the theory of linear problems, which requires that f be radially unbounded on ker P;
see, e.g., [G].

Remark 2.4. In applications, P may be defined through

(2.2) (Px, Y)o ((x, y)) for all x, y e Q,

where ((.,.)) is a nonnegative continuous sesquilinear form on Q, [K], which has the
property that

(2.3) ((x, x)) -> rhlxl
for some rfi > 0 independent of x e N+/-, with N {x: ((x, x}) 0}.

In this case P defined through (2.2) is a bounded, linear, nonnegative, self-adjoint
operator and ker P N. It is obvious that ker P c N. To show the converse inclusion
let x e N and y e Q be arbitrary. We find

0 -<_ [((x, y))] _-< x/((x, x)) x/((y, y)) 0

and therefore ((x, y))-0 for all y Q. This implies that x ker P and that ker P N.
Hypothesis (H1) now follows from (2.3). A specific example for this setup is given by

O Hi(0, 1) and ((x, y)) (Vx, Dy)(o,,
where D denotes differentiation. In this case N {x: x is constant} and rfi-
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The use of the regularization term (/2)(Pa, a) and/or the constraint (Pa, a)<-3"
not only guarantees existence of a solution to (2.1), but also stabilizes problem (2.1)
in the sense of guaranteeing the continuous dependence of the solutions of (2.1) on
perturbations in f, e, and I. For the case of quadratic problems (i.e., a f(a, u(a)) is
quadratic) we refer to [TA] and [G], for general nonlinear problems, to [EKN], [SV],
and IV], and for parameter estimation problems, to [CK], [IK2], and [KS], for example.
If the problem with /3 0 and 3’ is not well posed, then the introduction of a
regularization term or of a constraint on the unknowns enhances well posedness, while
at the same time a new error resulting from these terms is introduced. From a practical
point of view, therefore, one of the most important questions in solving (2.1) in a
stable manner is the choice of/3 and/or 3’. Before we address this question we study
the solutions of (2.1) as functions of/3 and 3’. For future reference we specify the two
problems in which only the regularization term or the constraint (Pa, a)<= 3" are used:

and

[3
(Pa, a)min f(a, u) +-

subject to e(a, u)=0, l(a)K,

min f(a, u)
()

subject to e(a, u)=0, (Pa, a) <- 3", l(a) K.

Under the assumptions of Theorem 2.1 there exist solutions (as, us) (as, u(aS)) of
(s) for any/3 > 0 and (a v, u v) (a , u(aV)) for any 3’ < o (provided, of course, that
Q.a (R)).

Concerning the relationship between () and () it is easy to cheek that any
solution (a, u(a)) of() is also a solution of() if y (Pa, a). For the converse,
additional hypotheses will be needed. Let (ao, Uo) be a solution of (2.1).

(H5) f and e are continuous and twice continuously differentiable on
{(a, u(a)): l(a) K}.

(H6) (ao, Uo) is a regular point with respect to the constraints in (2.1), i.e.,

Pao, )(Q + + + Pao, ao)
I’(Q) -K l(ao)

Here e’(a, u) denotes the Fr6chet derivative of e at (a, u) and l’ stands for the
derivative of l, which is independent of the point where it is taken. The Lagrangian
’QxXx YxxZ is given by

(a, u, , , )=f(a, u)+ (Pa, a)+(x, e(a, u))
2

(2.4)
+/x ((Pa, a)-3")+(rt, l(a)).

2

If (ao, Uo) is a regular point, then there exists a Lagrange multiplier ()to,/Zo, r/o)
Y x R+ x K/, with K/ {z Z: (z, k) _-< 0 for all k K}, the dual cone of K such that

(2.5)
.Lt"(ao, Uo, )to,/Xo, ’qo) O,

e(ao, Uo) =0, tZo((Pao, ao)- 3") =0, (r/o, l(ao)) 0,
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where ’ denotes the derivative with respect to (a, u). The following second-order
sufficient optimality condition will be used frequently throughout this paper [MZ].

(H7) There exists K > 0 such that

"(ao, Uo, A0,/Xo, /o)((h, v), (h, v)) -> Kl(h, v)lx
for all (h, v) ker e’(ao, Uo).

Without change of notation we will refer to (H6) and (H7) in the context of the
solution (a/3, u/3) and (a v, u v) of the special problems (@) and (v). The Lagrange
multipliers will be denoted by (he, x) and (A v,/x v, r/v) in this case.

THEOREM 2.5. Let (H1)-(H4) hold. Then any solution (a/3, u/3) of (’/3) is also a
solution of (v) with y =(Pa/3, a/3). Conversely, if (a v, u v) is a solution of (v) and
(H5)-(H7) hold at (a v, uV), then (a v, u v) is a solution of (’/3) with

Proof. The first assertion is obvious. To verify the converse claim, let (a v, u v) be
a solution of (). Due to (H5)-(H7) there exists a Lagrange multiplier
Y x R+ x K/ for (v) such that

(2.6) f"(a v, u’)(z, z)+(h v, e"(a v, uV)(z, z))+ v(Ph, h) >- ]z[2x
for all z (h, v) ker e’(a v, u y). It is easy to check that (h v, r/y) is a Lagrange multiplier
for (/3) with/3 =/z. Moreover, (2.6) is a second-order sufficient optimality condition
for (a y, u y) to be a minimum for (/3) with/3 = [MZ]. This concludes the proof.

3. Differentiability lroIerties. In this section we investigate differentiability
properties of the Lagrange functionals associated with (/3) and (Y), and of the
solutions (a, u/3) and (a v, u v) with respect to / and 7, respectively. The results we
will present will be essential in justifying the model functions to be developed in 4
and 5. They follow from the general sensitivity analysis developed in [IK2]. We specify
some additional notation and hypotheses for a solution (ao, Uo) of (2.1). Without
change of notation we will use these concepts for solutions of the special problems
(/3) and (v). We define by B Q x X - Q x x the operator representation of

f"(ao, Uo)+(ho, e"(ao, Uo)(’," )) such that

(By, z)ox =f"(ao, Uo)(y, z) +(ho, e"(ao, Uo)(y, z))

for all y and z in Q x X, and by E:Q x X Y the operator

E e"(ao, Uo).

Since the discussion in this section is of a local nature, the inequality constraint
(Pa, a)<= 3’ can be dropped if (Pao, ao)< % and we therefore consider only the ease
(Pao, ao)= y here.

(H8) The operator Q x X x R Y x x Z given by

(h, v, r)= 1/2(Pao, h) ]
Lh + rl ao ]

is surjective.
Assume next that ^(H2) and (H5)-(H8) hold at a solution (at, u fi) of (t) for

some/3 0, and let (h r/ be an associated Lagrange ultiplier. Then by Theorem
2.1. of [IK2],^ there exist neighborhoods V(/3) of /3 and V(w(#)) of w(/3)=
(a/3, u/3, h/3, r//3) such that for all/3 V(/) there exists a quadruple
V(w()) of a solution (a/3, u/3) to (/3) and of an associated Lagrange multiplier
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(he, r/s), which depends Lipschitz continuously on /3 V(/). In particular, for /3
V(fl) the solution w(fl) to () is unique within V(w()). Henceforth, when referring
to a (unique) solution w(fl) of () it is always understood in this local sense. The
Lagrangian for the () problem is denoted by (a, u, A, r/) and is defined as in (2.4)
with the term (tx/2)((Pa, a)-y) deleted. Similarly, if (H2) and (H5)-(HS) hold at a
solution (a /, u 9) of (/) for some <, and if (h 9,/z /, r//) is an associated Lagrange
multiplier, then there exist neighborhoods V() of and V(w()) of w(/)=
(ag, ug, hg,/x/,r/9) such that for all yV() there exists a quintuple
(aV, ur, hv, tzv, qv) V(w()) consisting of a solution to () and an associated
Lagrange multiplier, which depends Lipschitz continuously on y V(). We introduce
the optimal value functions for () and ()"

(3.1) (Pa, a): e(a, u)=0, l(a) K}F(fl)=min f(a, u)+-
and

(3.2) F(y) min (f(a, u)" e(a, u)=0, (Pa, a)<-_ y, l(a) K}.

THEOREM 3.1. Let (H2) and (H5)-(H8) hold at a solution (a, u) of (), > O,
or (a ’, u ’) of (), " <, respectively. Then the functions defined in (3.1) or (3.2) are

differentiable at fl or , respectively, and

d d
7

1
F(fl) =-(a, u A, =- (Pa, a)

or

d

dy
d , ,) 1

txF(’ =-y (aV, u A/, txv, r -This result follows from Proposition 3.1 in [IK2]. The result in [IK2] in turn
depends on the Lipschitz continuity of the mappings/3- w(fl) at/ or y- w(y) at ,
on the uniqueness of the Lagrange multipliers due to (HS), and on the sensitivity
analysis of Lempio and Maurer [LM]. The significance of this theorem is given by the
fact that the sensitivity of the optimal value functions F(fl) and F(y) at specific values
/ and can be expressed in terms of the solutions of () and (/), respectively.

Remark 3.2. Let us point out that under the assumptions of Theorem 3.1 the
conclusions of this theorem remain valid in a neighborhood ’(/.) of/ or Q() of ,
respectively. Since the arguments for the () and (v) problems are analogous, we
only give it for the former. First, (H2) and (H6) are global assumptions, and (H6) is
used only to guarantee existence of a Lagrange multiplier, which we know to exist for
/3 sufficiently close to / from the discussion above. Since, moreover, w(/3) depends
continuously on/3 for/3 sufficiently close to/, hypotheses (H7) and (HS) hold in a
neighborhood of ft. Thus, under the assumptions of Theorem 3.1, fl- F(fl) is
differentiable with (d/d)F(/3)= 1/2(Pa, as) in a neighborhood of/.

We now describe differentiability properties of the mappings fl--> w(fl) and y-
w(y) for/3 V(/) and y V(). For the simplicity of the presentation we assume that
the infinite-dimensional inequality constraint is inactive, i.e., that the interior of K,
denoted by int K, is nonempty and that l(a) int K, respectively, l(a) int K. The
general case will be treated in Remark 3.5 below. A Hilbert space-valued function
g(t), R, is called directionally ditterentiable at to with directional derivative (or
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(d/dt),(to)) if

lim
t-0

g(to+t)-g(to)

THEOREM 3.3. Let (H2), (HS)-(HS) hold at a solutionA(a, ut) of (), > 0 or
(a /, u) of (), < c, respectively, and assume that l(at) int K, respectively, that
/(a4) int K with int K # (. Then w(fl) and w(y) are directionally differentiable at
and , respectively, and the following equations hold"

(3.3) 0= B(d )+E*+ 0= E(d a)

respectively,

(3.4)

The proof of Theorem 3.3 can easily be derived from Theorem 3.4 of [IK2]. An
analogous result holds for the weak limits of the backward difference quotients of
w(fl) at/3 and w(y) at . For the former, the term Pa in the first equation of (3.3)
has to be replaced by -Pa, and for the latter the term 1/2 in the third equation of (3.4)
is replaced by -1/2.

Remark 3.4. The conclusions of Theorem 3.3 remain correct in neighborhoods of
fi and , respectively.

Remark 3.5. Here we provide the results on the differentiability of w(fl) and w(y)
without the assumption that the infinite-dimensional inequality constraint is inactive.
These results follows from Theorems 3.4 and 3.5 of [IK2]. Additional hypotheses and
the concept of polyhedricity of a cone K with respect to z Z are required.

The cone K is called polyhedric with respect to z Z if

U A(K-Pz)CI[z-Pz]+/-= U h(K-Pz)[z-Pz]-,
h>O h>O

where P denotes the projection onto K and [z-Pz]- stands for the orthogonal
complement of the subspace spanned by z-Pz.

(H9) K is polyhedric at l(ao) + r/o.
(H10) The operator

(h, v)-*
L(h

from Q x X to Y x Z is surjective.
(H11) The operator

(h, v, r)- 1/2(Pao, h)
L( h + rL(o)

from Q x x x R to Y x R x Z is surjective.
Here L denotes the Fr6chet derivative of the affine function and the index 0

with ao and 7o is used to denote (at, 7) in case of the (t) problem and (a v, v)
for the (v) problem.
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Now let us assume that (H2) and (H5)-(H11) hold at a solution (a fi, u t) of (),
/ > 0. Then w(/3) is directionally differentiable at/ and

0= B(d ft)+ E*+(Pdt+fiPd+ L*l)0

(3.5) 0= E(d, f),
o La+o,/(),

where K/ is the dual cone of

U A(K l(a, ut)) D [r/B] +/-

and OOg:(x) is the subdifferential of the indicator function q of/ at x, i.e.,

O0(x)={{yZ: (y, c-x)z<=O for all cI} ifx/,
4 if x/.

Analogously, if (H2) and (H5)-(Hll) hold at a solution (a, u) of (), < o, then
w(y) is directionally differentiable at and

0 B(d, ti/)+ E*,/+ (/zPd+ 12"Pa/+L*)0

0 E(i, ri),
(3.6)

O +1/2-(Pa / d)+{0

o
where K+ is the dual cone of

if/x>O
if/x O,

U A(K l(a ’, u/)) fl [/]-.

4. Model function for (). In this section we concentrate on the regularized
problem (). For the class ofproblems that we have in mind, solving the unregularized
problem () would be numerically infeasible due to lack of continuous invertibility
of f The regularization term will guarantee that (t) can be solved in a numerically
stable way if /3 is sufficiently large. The use of the regularization term, however,
introduces error, the regularization error, since () is solved instead of (). Increas-
ing the regularization parameter implies an increase in the regularization error, while
decreasing the regularization parameter to 0/ increases the error due to lack of
continuous invertibility of f The problem of the optimal choice of the regularization
parameter arises. It has received a considerable amount of attention for linear problems;
see, e.g., [B], [G], [M], and [L]. The use of model functions for the () and ()
problems was inspired by a similar technique developed by Hebden, Mor6, and Reinsch
for quasi-Newton methods (see [DS, p. 136]).

In this research we propose a four-parameter family of functions m(fl), which
describes the minimal value function F(/3). The family of model functions m(/3) will
subsequently be used for two purposes:

(i) To estimate the value F(0) of the (unstable) unregularized problem (o),
from evaluations of the stable regularized problem (),/3 > 0.

(ii) To determine a "best" parameter value/3* to solve the regularized problem
(t*) for (a*, uS*). Here additional techniques, such as the Morozov principle, will
be used.
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Throughout this section it will be convenient to think of u as a dependent variable
defined through e(a, u)= 0. The problem under investigation is thus

fl (Pa, a) subject to l(a) K.() minf(a)+
We give some preliminary results. Let (H1)-(H4) hold so that by Theorem 2.1

there exist solutions a of (), /3>0. Then/3-* F(fl) is monotonically increasing,
-f(a) is monotonically increasing in a multivalued sense, and -(Pa, a) is
monotonically decreasing in a multivalued sense. For the precise statement we define

A ={a: a is a solution of ()}, for/3>0.
PROPOSITION 4.1. Let (H1)-(H4) hold and let/3>/3o>0o. Then we have
(i) 0 <- F(/3o) <= F(/3),
(ii) supa,of(at) <--infAf(a),
(iii) supao (Pa, a) -< infao (Pas, ate).
Assumptions (H1)-(H4) guarantee the existence of solutions to (). The proof

of the proposition is quite analogous to that of Lemma 3.2 in [CK].
PROPOSITION 4.2. Assume that int K and that f is twice cgntinuously Frdchet

differentiable on {a" l(a) K}. For/>0 let at be a solution of (t) such that l(ag)
int K and

(4.1) f"(a)(h, h)+ (Ph, h)>=

for some > 0 i.,ndependent of h Q. Then there exists a neighborhood V() of such
that for V(fl

(i) - a is continuously differentiable,
(ii) F’(/3) 1/2(Pa, ate), F"() (Pa,
(iii) F"(B)=- ((B+BP)dt,

where B B(B) is the operator representation of the bilinear form f"(a).
Under the assumption of Proposition 4.2, the extremal value function associated

with () is monotonically nondecreasing and convex downward in the neighborhood
of fl-values where the second-order sufficient optimality condition (4.1) is satisfied.

Proof of Proposition 4.2. Theorem 3.3 is applicable, since (H7) is implied by (4.1)
and the remaining hypotheses are clearly satisfied. From (3.3) and Remark 3.4 we find
for the directional derivative from the right,

(4.2) 0= Pat +(B()+ flP)d,
for in a neighborhood of/. The directional derivative from the left satisfies (4.2)
with Pa replaced by -Pa and hence/ - a is differenfiable for/3 in a neighborhood
of/. The smoothness property of f together with (4;1) and (4.2) imply that B +
has a bounded inverse for/3 in a neighborhood of/3 and that/3- i is continuous.
Thus (i) is verified. Theorem 3.1 implies (ii), and (iii) is a consequence of (4.2) and
(ii). This ends the proof.

The starting point for the derivation of the model function for F(fl) is (4.2).
Assuming that the hypotheses of Proposition 4.2 hold at/> 0, taking the inner product
of (4.2) with a solution a of () with/3 V(/) leads to

0= (Pat, at)+((B + P)(tt, ate),

which further implies

(4.3) O= 2F’+ SF"+(Bd3, ate).
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The following step is the heuristic one in the derivation of our model function. If P
were invertible so that (B(t t3, at3)=(BP-1Pdt3, ate), and BP-1 which depends on as

had a Riesz representation of the type c + c2, with ci R, then (4.3) would become

(4.4) O=2F’+flF"+(Clfl+c2)F" for fl V(/).
Solving the ordinary differential equation (4.4) we obtain

b
(4.5) m(/3) e-

(/3 + c)-for F(/3), where d 2/(1 + c)- 1, c c2/(c + 1), and b and e are integration constants.
This is the desired class of functions. For future reference we specify the first and

second derivatives of m"

bd -ba(d+l)
(4.6) m’(fl)

(fl + c)d+l, m"(fl)=
(fl + c)d+2 for d -1, d # -2.

While m(fl) was derived as a local model function, we hope that it is a good
approximation to F for a large range of/3 values. We proceed with some comments
and observations.

(i) Solving (t) once for some/3>0, we obtain values for F(fl) as well as for
F’(fl)=1/2(Pa, at3), which correspond to values for m(fl) and m’(fl). Consequently,
solving () for two values of/3 gives four conditions that can be used to determine
(e, b, c, d) for the model function m.

(ii) The model function will be used in an iterative process starting with a "large"
value for /3 and decreasing /3 until a stopping criterion has been reached. For the
problems that we have in mind, solving () for a large value of/3 is stable and
computationally easy. Moreover, for a large value of/3, the value of F(fl) should be
a good approximation to the parameter e in m.

(iii) The model function will be used in an iterative scheme to determine the
"best" regularization parameter. At each stage of the iteration procedure we use the
model function together with a criterion which will be specified below to determine a
new value for/3. This new/3-value, together with a combination of old /3 values, is
used to update the model function. In general, we expect that only a few iterations
are required.

(iv) In our numerical experiments with specific problems the evaluation of the
global model function (one of the fl-values for determining m was large) at 0 gave a
good approximation to F(0).

Let us next consider the range in which the parameters (b, c, d, e) determining m
should vary. At least two aspects have to be kept in mind: first, the absolute value of
/3 from which, by evaluation of F(fl) and F’(fl), the parameters determining m are
calculated; second, the relative distance between these/3 values. If the/3 values are
"large" with "large" relative distance, we expect that the model function possesses
the properties of F described in Propositions 4.1 and 4.2 and that the parameters satisfy

(4.7) b>0, c>0, d>0, e>-b/cd.

These conditions are based on the assumption that c < 1 (which is quite reasonable,
e.g., for linear inverse problems and large values of/3). The assumption c < 1 implies
that d > 0. We exclude the case in which m has a pole for/3-> 0 and require that
c > 0. From Propositions 4.1 and 4.2 it is known that F’(fl)>= 0 for all/3 _-> 0. Hence
we require m’_-> 0. We also assume that m is not a constant. In view of (4.6) this leads
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to b > 0. The condition e > 0 is obvious from the expected asymptotic behavior of
m(fl) as /3-, and the fact that the range of m should be in +. The requirement
m(0)->_0 leads to e->_ be-d. As /3 decreases with the relative distance between the

fl-value still sufficiently large, the parameters in m are expected to satisfy

(4.8) bd>O, d>=-l.

Here the requirement cl < 1 is dropped and we use Proposition 4.2 to argue that m’
and m" should be positive, respectively, negative, for sufficiently large/3. This leads
to bd > 0 and d + 1 > 0. As the/3 values decrease further and become relatively close,
we expect that m is still monotonically increasing, i.e.,

(4.9) bd>O.

We next describe two possibilities for choosing an optimal regularization parameter.
This is done in the context of inverse problems that were already discussed in 1. Let
z and z denote the error-free and error-corrupted observation, with Iz-zl a, and
let a- u(a) denote the parameter-to-output mapping. Note that we have not distin-
guished between z and zS, as in the introduction. The problem consists of determining
a best parameter to fit the data. The classical regularized least squares formulation for
this problem is

l[u(a) z fl (Pa, a) overaQ,(4.10) min [ +-
where Q,d is the set of admissible parameters. In this case we have

f(a) 1/2[u(a) z[x.
According to the Morozov principle, the regularization parameter is chosen such that
the (output) error due to regularization equals the error level in the data, i.e., /3,, is
chosen such that

a)

This principle has received a considerable amount of attention for linear inverse
problems [M] and was also recently studied in the context of nonlinear inverse problems
in [EKN] and [N], where convergence and rate of convergence of a’ in terms of
the error level 6 are studied. Expressing (4.11) in terms of the model function leads to

(4.12) m(M)--Mm’(flM)--1/262.
In our experience with the use of Morozov’s principle for parameter estimation
problems, we found that it worked well, but that it gave a too conservative estimate
for the regularization parameter when compared to the best possible choice. One
possible explanation is that it takes into account only the image space of u. We have
therefore also carried out experiments with another principle by choosing the regulariz-
ation parameter according to

(4.13) [u(a
for some 71 e 1, 2] and y [1/2, 1 ]. In terms of the model function this can be expressed
as

’Y2 a2(4.14) m(p)-F(fl>+flp)m’(flp)= forsome Tic[I,2], y2[1/2,1].

Theoretical aspects of this principle are discussed in [Ku2]. Let us point out that
for both the Morozov principle and the principle in (4.13), information about the error
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level 6 is required. For inverse problems where the unperturbed observation z is
attainable so that there exists a* Qad with u(a*)= z, we have

F(0) min 1/21u(a)- zalx <=1/2[u(a*)- za[ =1/2=.

It follows that

(4.15) F(0)-< 1/26:

and F(0) can be used to obtain a lower bound on the error level. In some of our
calculations, assuming that was unknown, we successfully replaced : in (4.12) or
(4.14) by 2m(0). This was motivated by (4.15) and the success was possibly due to the
fact that for practical computations due to approximation and numerical error, m(0)
(which is calculated from evaluations of () for/3 > 0) actually overestimates F(0).

We now present a pseudoalgorithm for the solution of (4.10) with an optimal
regularization parameter that is based on iterative use of model functions and the
Morozov principle or, alternatively, the principle described in (4.13). Let us define the
functions

(4.16) M(/3) m(/3) -/3m’(/3)

and

2 2(4.17) P(/3) m(/3) + (/3,-/3)m’(/3)-- 8
Z

PSEUDOALGORITHM.
INPUT /3o startup value for regularization parameter

u nonlinear function
za observation
6 error level (if available)
e parameter that distinguishes a "local" from a

"global" model

OUTPUT /3* best regularization parameter
as* regularized solution

FEST estimate for F(0)
(e, bl, Cl, dl): first model function
(e*, b*, c*, d*): converged model function
k: number of iterations

1. Initialization of model function.
1.1. Solve (o) to obtain F(at3), F’(at),
1.2. eo:= F(at),

bo := 2eo.
1.3. Calculate Co, do from

m’(/3o) F’(/3o),
m(0) =0.

1.4. Calculate the tangent to m at/30 and intersect the tangent with the m(fl) axis to
obtain (0, o-) in the (/3, m(/3)) plane. If r<0 give error message and stop.

1.5. Calculate/31 from m(/3)= (r/2); if no solution exists, give error message.
1.6. Solve (a) to obtain F(at), F’(at3).
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1.7. Calculate (el, bl, Cl, dl) from
m’(/o) F’(/o),
m’(l)-- F’(I),
m(o) F(o),
m(/l) F(/I).

1.8. FEST:- el--(bl/cdl’) (estimate for F(0)).
1.9. FLAG := GLO,

k:=l.
2. Iteration
2.1. k=k+l.
2.2. Calculate/+ as root of M(/3+)= 0 or P(/+)=0. If this equation has no solution

and k=2 then choose /+ such that M(/3+)=.3084cl (respectively, P(/3+)=
.3084c), otherwise put/+ =/1/2. In case 6 is not known replace it by FEST in
M, respectively, P.

2.3. If FLAG LOC and

fl+ [min (/o,/,) -1/21/o-/,1, max (/o, fl,)

then create OUTPUT and STOP (convergence achieved).
2.4. If ]fl+-flll < e/l put FLAG= LOC; otherwise put FLAG LOC.
2.5. fl_, := flo, flo := 1 :-’- +"
2.6. If FLAG= GLO or (FLAG= LOC and ]fl_,-/ll -> I/o -fl,I) then calculate

(e, b, c, d) from the equations in step 1.7. Otherwise exchange the roles of/o
and B_ and calculate (e, b, c, d) from the equations in step 1.7.

2.7. GOTO 2.1.

Comments on the pseudoalgorithm.
ad 1.2. We suggest choosing/30 large. The resulting problem (o) will be stable

and the second summand in the model function is small, which suggests choosing
eo F(at). The choice bo := 2eo is heuristic.

ad 1.3. The requirement m(0) 0 means that for the zeroth-order model function
we ignore possible error in the data. If the error level is known with high confidence,
we might want to use it. At the end of step 1.3 the zeroth-order model function,
characterized by (eo, bo, Co, do), is available. It is used in steps 1.4 and 1.5 to calculate
a problem-dependent second choice for the regularization parameter. Alternatively,
we could have simply chosen/ =/3o/2 and skipped steps 1.2-1.5.

ad 1.7. There are several possibilities for approximately solving the equations in
1.7. We eliminated, analytically, the variables e, b, and d and obtained a single equation
for c, which was solved numerically.

ad 1.8. As explained above, FEST is an estimate for F(0) and a lower bound for
the error in the data. In the numerical experiments where 3 was assumed to be
unavailable, 6 was replaced by FEST.

ad 2.2. For the origin of the factor .3084, we refer to the discussion further below.
ad 2.4. The condition I/3+-/311 < e/31 is the criterion that determines whether the

next model function is considered to be a global or a local approximation to F. In our
calculations we took e .1. The stopping criterion is fulfilled if the next fl value, fl+,
calculated in step 2.6 satisfies the criterion of step 2.3 while FLAG LOC.

Illustrative examples of numerical results obtained with an implementation of the
above algorithm will be presented. Prior to that, let us explain an alternative heuristic
approach to quickly obtaining an acceptable regularization parameter, which requires
only the initialization stage of our pseudoalgorithm. Let us note that in view of
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F’(fl 1/2(Pa, a3),
.(fl 2( m(fl m’())

is an approximation to the function

J(fl lu( al3 zlx
where as is a solution to (). We find that

/3baa + 1 ,, 2baa + 1 ( a +2
C + fl )d+2 C + fl )d+2 _l-tic+ill’

and if (e, b, c, d) satisfy the constraints of (4.7) or (4.8) with d >-1, then

]’()0
and if" has precisely one zero fl given by

-d+’
which characterizes the maximum of J’. Let , be defined by

(4. 8) Y(,) (0) +(Y() Y(0)).
The idea behind this choice of t is that we allow for half of the total decrease of J
between and 0. Solving (4.18) approximately by setting d 1, we obtain

(4.19) , [2+].

In many of our numerical experiments d was close to 1 and these observations
suggested the choice of + in step 2.2 of the pseudoalgorithm. With our numerical
results we will also specify f .3084c, with c calculated from the initialization phase.
It will be seen to be a conservative estimate for the optimal regularization parameter,
which is simple to obtain. We should also mention that we did not enforce the constraints
in (4.7), (4.8), or (4.9), but rather we were interested in observing whether the model
functions automatically behaved in the way expressed by these inequalities.

We next illustrate the applicability of the results of 2 and 3 and the results of
the above algorithm by means of a specific example. Consider the two-point boundary
value problem

(4.0
-(aux + u g on (0, ),

u(0 ux(=0,
with g L(0, 1). The problem consists of determining the coecient a from knowledge
of u by solving the nonlinear least squares problem

(4.21) min u(a)-z+

where z e L(0, 1) denotes the peurbed observation and Qe ={a e Hi(0, 1)"
a > 0}. The error-free observation is assumed to be z (u, a*), with a* the true"
coeNcient. In terms of the general framework of 2 and 3 we have Q z H(0, 1),
K {a e HI(0, 1)" a(x) 0}, {Pa, b}=(a, b), /(a)= -a, and f: QN+ given by

Here we treated the boundary value problem as an implicit constraint and hence X,
and e are not needed. This is due to the choice we made for the numerical solution
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of (4.21), for which we used a Levenberg-Marquardt algorithm, recalculating the value
for u(a) whenever an update for a was made. We refer to [IK2], where conditions
similar to those of (H 1 )-(Hg) were checked for a boundary value problem with Dirichlet
boundary conditions.

It is easy to check that ker P={a H(O, 1): a =constant} and that (H1)-(H3)
hold. To discuss (H4) we use Proposition 2.2 and assume that {a,} is a sequence that
satisfies the hypotheses specified there. It follows that {a,} is a sequence of positive
functions with lim, inf a,(x)= c. This implies that u(a,,)O in L(0, 1). Moreover,
{u(a,)} is bounded in H(0, 1). This implies that a subsequence of {u(a,)} converges
weakly in H(0, 1) to a constant. Since integration of

-(a,,u,(a")),+u(a,,)=g
gives u(a,,)dx=gdx, we obtain weak convergence in H(0, 1) of the sequence
{u(a,)} itself to the constant function g dx. Hence, if

(4.22) g dx z > inf {lu(a)- zl: a , a constant},
L

then Proposition 2.2 implies (H4). The conditions (H5) and (H6) are simple to check.
As for (H7), we refer to [CK], where it is shown that this second-order sucient
optimality condition holds, provided that Iz- zl is suciently small and that is
chosen appropriately. Conditions (H8), (Hg), and (Hl l) are easy to check, and (H10)
holds, since H(0, 1) is polyhedric at any of its elements [H]. Thus the results of 2
and 3 are applicable to the parameter estimation problem (4.21).

Next we present a specific numerical example.
xample 1. We choose

a*(x)=2+sin x and z(x)=u(a*)(x)=-4x3+6x2.
The inhomogeneity is given by g(x)= 1-x. In this case the singular set S of the
observation z is found to be S {0, 1} and there exists a unique coefficient a H
satisfying u(a) z given by a* [Kul]. It is also the unique solution ofthe unregularized
problem with error-free observation z:

min [u(a)- z[.
ad

The problem (4.21) is infinite dimensional. It was discretized by approximating the
unknown coecient a by linear splines on a uniform grid with mesh {i/(N + 1)}=on+
and by approximating (4.20) by a standard Galerkin procedure, also employing linear
elements on the same grid as used for the coecients. Thus we have finite-dimensional
coecients an and a finite-dimensional state un=un(an). The finite-dimensional
problem that we considered was

u (a a+! ( _z 12mn 2N+l i= N+I N+I 2

1 N aN z6(4.23) + I. (1))- (1)

i+1+(N+2 a -a
2 =o kN+ 1]

where z is calculated from z by fitting a cubic interpolation polynomial z through

(4.24) z(y) +rand (y). ,
with {y} equidistant rid points in [0, 1], rand (y) a uniformly distributed random
number in [-1, 1], and eN. For the numerical results of this section we chose n =9.



ON THE CHOICE OF THE REGULARIZATION PARAMETER 393

The noise level 8 relevant to our subsequent computations is given by

82 1 (
(4.25) M+I \"i=1

llz(O z+ -(0)12

+-Iz(1)-z(1)
2

The initial choice for/3 was taken as /30 .01 and the parameter distinguishing the
global from the local model, as e .1. In all calculations that we present here, N 16.
We did not realize the constraint a(x) >= a, which is known from previous experiments
to have no effect.

The first numerical question that we raised was whether there existed an optimal
/3-value. To obtain an answer, we solved (4.23) for 101 equidistant values of/3 in the
interval [0, 5 x 10-5] (and for several values of/3 largerthan 10-3). The results in terms
of the L2-distance la’- a*l for various values of 8 is shown in Fig. 1. Here a u’

denotes the solution of (4.23). We observe that, in the sense of L2, there exists a unique
optimal/3-value that we hope to approximate reasonably well with our algorithm. It
can also be noted that the optimal/3-values increase as 8 (and 8) increase. With Fig.
1, as well as with the other figures, we ask the reader to observe the varying scales
that are being used. In Fig. 2 we compare the optimal fl-values (indicated by 0) of
Fig. 1 to the/3-values /3M obtained as the solution of the Morozov equation

1 ( uNN’13( -z
N+I i=a N+I N+I

(4.26)
1 ,,,

(a ,,)(o)- z’ (o)1

N (aN,,)(1)_
/

0.3
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(indicated by ,). In order to obtain the exact value for/3 according to the Morozov
principle we have not yet used our algorithm; we used instead the fact that

2 N+I uN(aN’)--Z’(N+i l) 1
/- lu(a’,)(O) z

1 N N,t3, Z+-[u (a )(1) (1) F(fl)-flF’(fl);
2 ]

the values for F(/3) and F’(/3) were available from the computations for Fig. 1 and
thus F(fl)-flF’(fl)=1/23 2 could be solved almost exactly. The purpose of this com-
parison was to study the behavior of the Morozov principle without the additional
influence of the model function technique. We observe that the Morozov principle
gives good, but somewhat conservative, estimates for the optimal fl-value (in the sense
of the L2-error for a). A similar calculation was carried out with the principle described
in (4.13) with 71 3/2 1. The results are given by the +-line of Fig. 2. Larger values
of 72 gave less favorable results. The results of Fig. 2 were obtained with the exact
6-value given by (4.25). We also carried out analogous calculations to those of Fig. 2
but with 6 replaced by x/2 FEST, with FEST obtained from the initialization phase
of our algorithm. The results for the Morozov principle and the principle according
to (4.13) with 71 1, T2 are shown in Figs. 3 and 4. These results show the reliability
of the initialization phase of our algorithm in using v/2FEST as an estimate
for the error & The power of the initialization phase to estimate 6 via FEST for the
example under consideration is demonstrated independently in Fig. 5, in which we
compare (dashed line) to FEST=v/2m(0) (solid line) for the values /= ix.005,
i=0,..., 14.

Finally we show the iterates of the Morozov function M and of the function P
defined in (4.16) and (4.17). For the Morozov function, 6 was replaced by q’2 x FEST,
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which was obtained from the value (el, bl, Cl, dl) of the iterative stage of the algorithm.
For these calculations, 3 =.03. The dotted lines in Figs. 6 and 7 show the model
function at various stages of the iteration. The solid line is obtained from (4.16) and
(4.17) by replacing m and m’ by F and F’ (for which the values were calculated exactly
with N 16). Let us point out that the iterates approximate the exact Morozov function
well, especially in the neighborhood of the ordinate value 0. This is also true for the
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iterates of Fig. 7 based on the principle of (4.13). The optimal/3-value (in the sense
of L2) is opt--0.12 10-4; the exact Morozov/3-value is/34- 0.52 x 10-4.

In Table 1 we give the values for the parameters (e, b, c, d) characterizing the
model functions at consecutive iterations of the algorithm. In all cases the algorithm
converged. Observe that FEST gives a good estimate for 3 (Table l(i), (ii)). In these
examples the Morozov principle overestimates the best fl-values, and principle (4.13)
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xlO-S iterations of principle (4.13) function (yl 1, ?’2= 1)
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with 71 72 1 should be preferred. Comparing (ii) and (iii) of Table 1 we observe
that due to the slight underestimate of FEST to 6, the converged value for/3 based
on the Morozov principle is a little smaller in (ii) than in (iii). The exact value for the
Morozov regularization parameter is .796x 10-4 if g=.03 (Table l(i)) and it is .154 x
10-3 for g .05 (Table 1 (ii)). The exact value for the regularization parameter according
to principle (4.13), with Yl 72-- 1, is .305 10-4 if 6 .03 (Table l(iv)).

5. Model function for (9’). In this section we consider the () problem.
Although the equivalence between the/3 problem and 3’ problem under the second-order
sufficient optimality condition (H7) is established in Theorem 2.5, they differ because
in the y problem the functional to be minimized is fixed while the constrained set is
adjusted by changing 3’ > 0. The parameter y, which characterizes the constrained set
{(a, Pa)<-_ y}, should be chosen so that a certain performance level is achieved (i.e.,
the minimal value function F(y) is smaller than an a priori chosen constant) and the
stability of the minimization problem (i.e., the coercivity of the second Fr6chet deriva-
tive of the Lagrangian) is maintained. In view of Theorem 3.1, the Lagrange multiplier
/x(y) provides a measure of how tightly the constraint is satisfied. In general, it is
assumed that the constraint is active and/x(3,) > 0 and that condition (H7) holds only
when/Zo > 0. Otherwise, the problem is well posed. In fact, for the case of the parameter
estimation problem (1.5), the second derivative of the Lagrangian is given by

"(ao, Uo, Ao,/Xo, r/o)(h, v)2=f"(ao)(h, v)2+(Ao, e"(ao, yo)(h, v)2)
+ lxo(Ph, h).

Because of lack of eoercivity off"(a) (in some eases it may even be indefinite), condition
(H7) requires that tZo> 0 [CK], [IK1]. Our numerical calculations for (1.5) show that
there exists a threshold value 3’* such that if 3,=> 3,*, then the solution a(3,) starts to
oscillate. In the context of the above discussion, this can be understood as losing
stability since under the assumptions of Theorem 3.3, tz(3,) is decreasing with respect
to 3,. This can be seen from (5.6).
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TABLE
Example 1.

(i) Morozov in 2.2, i .03, 6 replaced by FEST, corresponds to Fig. 6.

Iteration e b c d fl
.282 x 10-3 .150 10-7 .931 10-4 .974 .287 10-4

2 .285 10-3 .102 10-6 .320 x 10-4 .723 .536 10-4

3 .492 10-3 .792 10-4 .310 10-5 .135 .515 10-4

4 .489 10-3 .773 x 10-4 .342 x 10-5 .137 .513 10-4

The value for fl is given by .287 10-4, flopt =.12 10-4, 6 =.0186, FEST=.0176.

(ii) Morozov in 2.2, d .05, 6 replaced by FEST.

Iteration e b c d /3+
.579 10-3 .195 10-7 .116 10-3 .962 .357 10-4

2 .582 10-3 .124 10-6 .157 10-4 .713 .107 10-3

3 .608 10-3 .140 10-5 .464 10-5 .473 .108 10-3

4 .604 10-3 .113 10-5 .471 10-5 .492 .108 10-3

The value for/3t is given by .358 10-4,/3opt .55 x 10-4, .031, FEST--.030.

(iii) Morozov in 2.2, g= .05, 6 exact.

Iteration e b c d /3+
.579 10-3 .195 10-7 .116 10-3 .963 .357 10-4

2 .582 10-3 .124 10-6 .157 10-4 .713 .149 10-3

3 .601 10-3 .906 10-6 .621 10-5 .513 .154 10-3

4 .595 10-3 .603 10-6 .676 x 10-5 .552 .154 10-3

The value for/3 is given by .358 10-4

(iv) Principle (4.13) in 2.2, i =.03, 8 exact, corresponds to Fig. 7.

Iteration e b c d /3+
.282 10-3 .150 10-7 .931 10-4 .974 .287 10-4

2 .285 10-3 .102 10-6 .320 10-4 .723 .305 10-4

3 .240 10-3 .528 10-9 .333 10-4 1.217 .305 10-4

The value for/31 is given by .287 x 10-4.

In this study, based on the sensitivity analysis described in 3, we construct a
model function m(y) for the minimal value function F(T), which is characterized by
four parameters. Using this model function we propose two procedures to determine
the "best" value y*. Specifically, the family of model functions will be used for the
following objectives"

(1) to accelerate the process of finding the value of y satisfying, for instance, the
Morozov principle (4.11);

(2) to estimate the value of F(T) at infinity, i.e., to evaluate the minimal value
function without the seminorm constraint which allows us to estimate the noise in the
data; and

(3) to obtain an estimate of the threshold value of/x*=/x(y*).
Assuming that the conditions ofTheorem 3.3 hold at y > 0, it follows from Theorem

3.1 and Remark 3.5 that
d

(5.1) d-- F(’y)=-1/2/x(7),

[IzPt +12Pa + L*](5.2) B(ti, fi)+ E*.+ =0,
0
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(5.3) E(ti, ti) 0,

(5.4) (Pti, a> 1/2,

(5.5) LdI and (l,z-Ld)<=O forall z/,

where we used the notation of 3.
Taking the inner product of (5.2) with (ti, ti), it follows from (5.3)-(5.5) that

(5.6) 1/2/ =-(Pd, d>/z-(B(d, fi), (d, fi)).

In order to construct model functions for/x and F we assume that the quadratic forms
appearing on the right-hand side of (5.6) are constant. Then we obtain the differential
equation for (m,/2)"

(5.7) m=-/2 and a(/+d)
d3,

where m(3,) and /2 represent approximations to 2F(3,) and /z(3,), respectively. This
system of differential equations yields the model function m of the form

m( 3,) e-"’+b + c + d3,.

Although (a, b, c, d) R4 may vary with 3,, we treat (a, b, c, d) as constants over the
range of 3,-values that we deal with.

Remark 5.1. (1) Since the constant a approximates 2(Pd, d), it should be positive.
(2) Note that t2=-(d/d3,)m=ae-ar/b-d. Thus /2(3’) is decreasing, just like

/x(3,), for values at which (H7) holds.
(3) Assume that d>0. Then/2(4/)=0 for "=(b-log(d/a))/a. This may mean

that for 3, > 4/the seminorm constraint is inactive. Consequently, rh := m(3) provides
an estimate for 2F(+).

(4) Assume that d <0. Then (3,)-d as 3,az. This may correspond to the
case where the constraint is always active and -d gives an estimate for the asymptotic
value of the Lagrange multiplier/x(3,). Recall that 2ad describes the action of B. Since
we assume that a > 0, the case d > 0 can be expected to hold when B is nonnegative
and a discretization of the problem is made for practical computations. On the other
hand, d < 0 describes the case where B is indefinite.

(5) The solution of (P) for a given value of 3’ yields a pair (F(3,), tx(3,)). Thus
solving .(PV) for two distinct values of 3’ gives four conditions that can be used to
determine (a, b, , d) R4 appearing in (5.8).

Based on the model function m of the form (5.7), we now propose two procedures
to determine the "best" value of 3’.

PROCEDURE 1. Assume that d>0. From Remark 5.1(3) tfi=m() with =(b-log (d/a))/a can be used as an estimated noise level in the Morozov principle;
i.e., 3"* will be determined as the root of F(3,)= 1/2tfi.

PROCEDURE 2. Assume that d <0. From Remark 5.1(4) we may use /2 =-Ad,
1< A <2 as a threshold value for /x(3,); i.e., 3’* will be determined as the root of
/x(3,) =/2. The larger the value of )t is, the more conservative (i.e., smaller) the solution
of /z(3,) =/2 will be. In our calculations we used A 1.75, which was determined
empirically.

From Remark 5.1(5) two distinct values of 3, are required in order to construct
the model function. We proceed as follows.
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ALGORITHM (construction of model function m(y)).
Step 1. Assume that a good estimate of the lower bound of y, say Yl, is known.

Then solving () with y= Yl, we obtain a pair (F(yl), /X(yl)). Otherwise, set/31
I x 10-2 and let (a1, u1) be a solution to () with/3 fla. Then, set 3’1 Pat, a),
/X(yl) =/3, and F(yl)=f(a, utl)(by Theorem 2.5).

Step 2. Compute the Newton correction p=2F(yl)/tX(yl). If p_-< yl/2, then let
y2 yl +P and solve () with y y2. This yields a pair (F(y2),/x(y2)). Otherwise,
set 2 2.5 x (Yl) and solve () with fl 2 to obtain y2=(Pat2, at2), (y2) 2,
and F( y2) f(at, ut).

Step 3. Determine the parameters (a, b, c, d) in (5.8) by minimizing the functional

2

Y’, (12F(3"i)--(e-aV’+b+ C+
i=1

subject to a > 0; i.e., (a, b, c, d)4 is determined in the least squares sense.
We then combine the procedures to determine the best value of 3’ and the use of

the model function m(3’) in an iterative procedure as follows.

ITERATION
Step 4. From Step 3 we have the model function m(3").
Case 1. If d>0, then compute =(b-log(d/a))/a and n= m(4/). Set 3’3=

and k 3.
Step. 5. Solving (v) with 3, 3’k, we obtain a new pair (F(3"k), tx(3"k)). Update

the values of (a, b, c, d)4 by minimizing the functional
2

(5.9) 2 (12F(3’,)-( e+r’+b + c+ d3",)12+ll.e(3"i)-(e-v’+b- d)l2)
i=l

subject to a > 0, where the new conditions at 3’k are added to the least squares criterion.
Step 5. Calculate 3’k+l as the nearest root to 3’k of m(3’)= rh where the updated

model function obtained in Step 5 is used.
Step 7. If 1(3’ 3"k+1)/3"1 -<- e 1 10-3, set 3’* 3’ and stop. Otherwise set

k k + 1 and return to Step 5.
Case 2. If d < 0, then compute/2 -1.75d and let 3’3 be the root of/2(3’) fi: i.e.,

3’3 (b-log (-.75 x d)/a)/a and set k= 3.
Step 5. This step is the same as Step 5 above.
Step 6. Calculate 3"k+1 as the root of fi(3’)= fi; i.e., 3"k+l=(b--log ((fi+d)/a))/a

where (a, b, c, d) are obtained through Step 5.
Step 7. This step is the same as Step 7 above.

Remark 5.2. The validity of the model function m(3") can be determined by
checking the minimal value of the functional (5.9) for each k. The values of (a, b, c, d)
obtained in Step 5 and the pairs (F(3"k), l(3"k)), k _-> 1 along with a sequence of solutions
{a(3"k)}k=l can be used to analyze the behavior of the function 3" a(3") and the validity
of the procedure. In the case when the noise level t2 is known, the steps in Case 1
can be used to determine 3’* according to the Morozov principle.

We tested the proposed algorithm using the following parameter estimation prob-
lem, which consists of determining the positive coefficient a(x) in the two-point
boundary value problem:

-(au,,),,- g in (0.1), u(O) u(1)=0,

knowing the measurement z of u(a); i.e., finding an inverse of the solution map
aHl(O, 1)- u(a)H(O, 1). This is an ill-posed problem in the sense that a does
not depend continuously on u [CK]. As in [IK1], the problem can be cast as a
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constrained minimization problem for (a(x), u(x)) Hi(O, 1) x H(0, 1)"

minimize 1/2[u ZIH

I0 1
(5.10)

subject to -(au,)-g=O, [a dx<-_y, >=a>0.

It is of the form (1.6) and (), and the conditions (H1)-(H10) are satisfied (see [I]
and the discussion in the previous section) and thus the results in 2 and 3 can be
applied to (5.10). In order to solve this minimization problem we employ the augmented
Lagrangian method (see the detailed discussions in [IK1] and [IKK]). The problem
is discretized using the standard finite element method, i.e., we represent

u’(x)= Z uB")(x) H(0, 1),
k=l

"(x) s"(x) H(O, ),
k=0

where B")(x) is a piecewise linear B-spline given by

(x- x_) on [x_, x],
B"(x) (x+ x) on [x., x+],

otherwise,

with x k/n, Ok n. That is, we solve the following minimization problem in
(a",u")"

minimize uHu + ub
(5.11)

subjectto-H(a)u-g=0, aWa y, aa,
where a =col (ao," , a,)e"+ and u=col (u,. ., u,_) e - are the coefficient
vector of a"(x) and u"(x), respectively. H, H(a), and W are symmetric tridiagonal
matrices and they are given by

’ (x(a= a (} ax, i,j= , n- ,
0

The vectors b and f N- are given by

b= (B)xZ& and g= gdx, 1NiNn-1.

The augmented Lagrangian method applied to (5.11) involves a sequence of minimiz-
ations of functionals of the form

Le(a, u; ,) urHu + u rb + e(a, u)

(5.) N_+-e(a,u) e(a,u)
2

1
max O, - a TWa / +
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over (a,u)En-ll subject to a>=a, where e(a,u)=-H(a)u-gER"-1. The
sequence of Lagrange multipliers A En-1,/z R+ is updated by

k+l= Ak + cH-le(a k, ilk),

max 0, (arWa y) + x

where (a, u) minimizes (5.12). We refer to [IK1] and [IKK] for a detailed discussion
of the convergence properties of the augmented Lagrangian method.

We generated the test examples as follows. First, we chose the pair (a*, u*)e
H(0, 1)x H(0, 1) and set g=-(a*u*). Then the measurement z(x) is constructed
as the linear interpolation of point measurements : u*(x) + n at x, 1, , n 1,
where {n} are independent, uniformly distributed random variables in [-A, A], i.e.,

(5.13) z(x)= 2 iBl"(x) e H(O, 1).
i=1

We varied the parameters n (equal to the number of elements for approximating a(x)
and u(x)) and A.

We used the following two examples for testing the proposed algorithm.
Example 2 (smooth a). We consider

u*(x) e-" sin 27rx, a*(x) 1 + x2.

TABLE 2
Example 2, n 10.

A .01 .03 .05

No. of iterations 4 5 5

Initial set of parameters in (5.8) a 2.8937 10-1 2.7121 3.1762
b -5.3986 10-1 -1.9551 -1.8582
c -5.4079 10-1 4.7566 10-2 1.5498 10
d 1.1077 10-1 -1.1903 10-2 -3.8191 10-2

Final set of parameters in (5.8) a 3.5932 2.7337 2.7138
b 1.9587 -1.9565 1.8521
c 4.0059 10-3 4.8304 10-2 1.4302 10-d -1.5692 10-3 -1.2362 10-2 -3.0294 10-2

updates 3’2 1.20 0.57 0.42

3’3 1.43 1.39 1.24

3’4 1.36 1.261 1.175

3’5 1.265 1.177

Best 1.30 1.20 1.16

3.17 10-2 5.39 10-2 7.229 10-2

a3,best 3.14 10-2 5.36 10-2 7.227 10-2

t/,(3’best) 6.31 10-3 2.72 10-2 4.88 10-2

Noise level 6.06 10-3 5.46 10-2 1.52 10-1
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TABLE 3
Example 3, n 50.

.01 .03 .05

No. of iterations 4 4 4

Initial set of parameters in (5.8) a 1.2027 x 10-1 1.0876 x 10-1 1.0752 x 10-1

b -1.0209 -1.0016 -7.2539 x 10-1

c 2.2913 x 10-1 -1.4299 3.8563
d -1.4964 x 10-3 -3.1721 10-3 -5.3218 10-3

Final set of parameters in (5.8) a 1.1500 x 10-1 1.0431 x 10-1 1.0572 10-1

b -1.0383 -1.0068 -7.2714 x 10-1

c 2.2312 x 10-1 1.4227 3.8524
d -1.3460 10-3 -2.9982 10-3 -5.2273 10-3

updates 2’3 39.5 36.0 34.1

2’4 37.8 35.2 33.9

Best 2’ 49 51 57

Ila* av IlL2 7.26 x 10-2 1.42 x 10-1 2.03 10-1

]la* avbo,,llL 6.92 X 10-2 1.39 X 10-1 1.82 X 10-1

/Z(2’best) 1.24 10-3 2.73 10-3 4.82 10-3

Noise level 1.61 10-1 1.45 4.03

The computations were carried out with n 10, the startup value 2, 1, and the penalty
parameter 1 in the augmented Lagrangian method (5.12).

Table 2 summarizes our numerical findings. Plots comparing the minimal value
function with the model function show very good agreement of these functions over
the interval [1, 1.5]. For A .01, .03, and .05 we also plotted the values of la*-a(
with a(2,) the solution of (5.10) against 2, 1, 1.15] and we observed that these functions
have a distinct global minimum.

Example 3 (rapid change in the derivative of a*). We consider

u*(x) e sin 27rx, a*(x) 1.5+.5 tan-1 (1500(x-.4)).

The computations were carried out with n 50 and the penalty parameter --5 in
(5.12). In order to obtain accurate solutions to the constrained minimization (5.10) for
this example we used 2,1 15 and 2’2 30 in Step 2 of the algorithm. It was necessary
to start the algorithm with a relatively small 3’ in order to calculate accurate Lagrange
multipliers /x(2,) successively. The corresponding numerical results are shown in
Table 3.

As a conclusion to our numerical studies, we observe that in both examples that
we considered, the algorithm performed very well. The model function of form (5.8)
provided a good approximation to F(3,) over the range of 2,-values that we dealt with.
We used a priori knowledge for the lower bound of 2, in both examples in this section.
It is possible to obtain an estimate for such a bound by solving the/3 problem with
an a priori chosen/30 as described in Step 1 of the algorithm. A preliminary numerical
study indicates that. use of such an estimate as the startup value is very promising. A
detailed study will be reported elsewhere.
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SECOND DERIVATIVES OF A CONVEX FUNCTION AND OF ITS
LEGENDRE-FENCHEL TRANSFORMATE*
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Abstract. In 1977 Crouzeix established a simple relationship between the second-order differentials of
a convex function f:En-->U {+c} and its Legendre-Fenchel transformate f* :n __> U {+c}. In the first
part of this paper, the importance of Crouzeix’s formula is enhanced by illustrating how it can be applied
to a large number of classical and modern mathematical problems. In the second part, the result of Crouzeix
is extended to the case in which the functions f and f* are not necessarily smooth. This generalization is
based on the works of Hiriart-Urruty and Seeger concerning the so-called second-order subdifferential of
a convex function.

Key words. Legendre transformate, conjugate, subdifferential, second-order subdifferential, second-
order directional derivative, Monge-Ampre measure, Monge-Ampre operator, curvature, umbilic point,
infimal convolution, Cramer transform, canonical exponential family, maximum likelihood, second-order
epidifferentiability, piecewise linear quadratic function
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1. Introduction. This paper turns around a result established by Crouzeix [Cr]
concerning the second-order differentials of a convex function f: R -> R [_J {+o} and
of its Legendre-Fenchel transformate f*:En --> ELI {+c}. He showed that iff is twice
continuously differentiable on a neighborhood of E and if the Hessian matrix
V2f() of f at is nonsingular, then f* is twice continuously differentiable on a
neighborhood of 37 Vf() and, moreover, the Hessian matrix V-f*(37) of f* at 37 is
given simply by

V2f*(3) [V2f(:)] -1

This formula reminds us of an analogous one, already mentioned in classical texts of
variational calculus, for the Legendre transformate of a function that is smooth but
not necessarily convex. In Crouzeix’s paper, as throughout this work, the function f*
is given by

f*(y) := sup {(x, y)-f(x)} Vy "EI

and is called simply the conjugate off.
In 2 we introduce some notation and recall properties of the conjugacy operation

f -> f* we should keep in mind throughout the paper.
Section 3 illustrates how Crouzeix’s formula can be applied to different types of

situations and how its use considerably simplifies the proof of some well-known
theorems. We should not underestimate the importance of this formula since it can be
used as a basic tool toward a better understanding of several classical and modern
mathematical problems. We will try to convince the reader of this fact by exhibiting
some of its applications to domains as different as large deviations theory, convex
analysis, differential geometry, and the statistical theory of canonical exponential
families.
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" Department of Mathematics, University of Washington, GN-50, Seattle, Washington 98195. Present
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Section 4 extends Crouzeix’s result to the case in which the functions f and f*
are not necessarily smooth. The concept of a Hessian matrix is, of course, meaningless
in this more general setting and, therefore, it is replaced by the so-called second-order
subdifferential of a convex function. The later notion, introduced by Hiriart-Urruty
[H3] and further developed by Seeger [Se], is a suitable tool for formulating and
extending Crouzeix’s theorem. Indeed, the fact that the Hessian matrices V2f*(97) and
V2f(2) are inverse to each other can be expressed by saying that the second-order
subdifferentials 02f*()7) c R and 02f()) c Rn are polar to each other. Similarly to what
is done in 3, the polarity relationship between the second-order subdifferentials can
be used as a basic tool to handle some mathematical problems involving nonsmooth
convex functions. However, in this already lengthy paper we will not repeat the same
steps as before. Some of the examples of 3, as well as many others not mentioned,
constitute an open field of applications, which we encourage the reader to explore.

2. The conjugate of a convex function: Generalities. Throughout this paper Fo(")
denotes the set of functions from " into U {+} which are convex lower-semicon-
tinuous and not identically equal to +. We are concerned with the conjugacy operation

ro(") - ro("),
f -> f*,

where the conjugate f* of f is given by

f*(y) := sup {(x, y)-/(x)} Vy
xER

It is a well-known fact that the correspondence f f* is an involution on Fo(") and
therefore the symmetric formula

f(x) sup {(y, x)-f*(y)} Vx
yE[

also holds. The above conjugacy operation can be found in the literature under different
names, such as polarity correspondence [Mo], Fenchel transformation [At], Young
transformation [Ku], or maximum transformation [Ir].

We are also concerned with a conjugation of the type

(2.1)
Fo(") x P(IR")- Fo(IR") x P(IR"),

(f, a) ---> (f*, a*),

where P(R’) stands for the class of all subsets of . For the sake of symmetry and
in order to fix some notation, let us define the set A*" in a rather indirect way.
Let 7rx and 7r be the projection mappings from ’" into R" defined by

7rx(x, y) x and 71"y(X, y) y,

respectively. Following a procedure that can be found in Kiselman [Ki], we write

G := {(x, y) e N" x N’: f(x) +f*(y) -(x, y) 0}

and then define

(2.2) A* := try[G fq rrTx’(A)] ’q’A c ".

The relationship between A* and A can be expressed, of course, in terms of the
subditterential mapping

x -> Of(x):= {y e R": f(x’)>-f(x)+(x’-x, y), Vx’"}
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or, alternatively, in terms ofy -> Of*(y). It is obvious that A* can be defined equivalently
by

(2.3) A* Of(A):= {Of(x)" x A}

or

(2.4) A* (Of*)-l(A):= {y c E"" Of*(y) intersects A},

respectively. The equivalence between (2.2), (2.3), and (2.4) is an immediate con-
sequence of the following result, which should be kept in mind throughout this paper.

PROPOSI:ION 2.1 (cf., for instance, JR1, Thm. 23.5]). Letff* Fo(E") be a couple
of conjugate functions. Then the following statements are equivalent"

(a) (x, y) G,
(b) y c Of(x),
(c) x c Of*(y).
It is possible, of course, to repeat the same procedure once again in order to

obtain the conjugate (f**, A**) of the pair (f*, A*). Although the equality f**=f
holds for each fe Fo("), the set

A** := 7rx[G fq "n’-l(A*)] Of*(A*)

could include A strictly.
The correspondence (2.1) is intimately connected with the classical Legendre

transformation for functions that are smooth but not necessarily convex. If f is .a
ditterentiable real-valued function on an op.en, subset f of " and A is an arbitrary
subset of f, then the Legendre conjugate (f, A) of the pair (f, A) is defined by

A := {Vf(x)" x A},

](y) := ((Vf)-l(y), y)-f((Vf)-l(y)) Vy c .
Note that Vf" A--> is not necessarily one-to-one since a set like

(Vf)-l(y) := {x e "" Vf(x) y}

could have more than one element. In such a case, f should be interpreted as a
multivalued mapping.

3. Second-order differentiability of the conjugate: The smooth case. For each f
Fo(n) we write, as customary,

domf:= {x e n" f(x) < +}

and

dom Vf:= {x e domf: f is differentiable at x}.

The definition of the sets domf* and domVf* is obvious. Recall that on the set
dom Vf, and only there, the subditterential mapping Of is single valued and reduces
to the gradient mapping Vf (cf. JR1, Thm. 25.1]).

A natural question to ask in the context of the present section is" Which conditions
should we impose on fe Fo(") to ensure that the conjugate f* is twice differentiable
at a given point? We would also like to know how the functions y V2f*(y) and
x V2f(x) are related to each other when the Hessian matrices involved are well
defined. A full answer to this question can be found, for instance, in a short paper by
Crouzeix [Cr].
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THEOREM 3.1 [Cr]. Letf Fo(Rn) be twice continuously differentiable on a neighbor-
hood of Rn and assume that the Hessian matrix Vf() is nonsingular. Then the
conjugate function f* Fo(n) is twice continuously differentiable on a neighborhood of
37 Vf(:) and we have

(3.1) V2f* (37) [vEf()]-.
It is fair to say that an analogous version of the formula (3.1) for the Legendre

transformate f was anticipated by other authors. For instance, it was already mentioned
in classical texts of variational calculus (cf. [Fu, p. 107], [GF, p. 72], [Ru, p. 18]). In
the framework of the theory of elastic materials, Hill and Rice [HR, pp. 451-452] stated
in 1973 that, under suitable assumptions, the fourth-rank tensors of elastic moduli and
compliances

L := V2f(x) and M := V2f(y)
are inverse to each other if the symmetric strain tensor x and the symmetric conjugate
stress tensor y are related by the law

y=Vf(x).
The functions f and f are interpreted as a work potential and a complementary
potential, respectively. The inner product (.,.), which appears in the definition of f
takes the form

(x, y)= xoyo
i,j

in this case. We have intentionally modified the notation of Hill and Rice in order to
put in evidence the connection existing between their statement and Crouzeix’s theorem.
Although in a very particular setting, the formula

(3.2) 72’(y) [V2f(x)] -1 with y Vf(x)
was also exploited by Sewell [S1, p. 148] in the context of the theory of elementary
catastrophes (see also [$2, p. 285]). Despite the references quoted above, it seems to
us that many authors are not completely aware of the large domain of applications
for the formulae (3.1) and (3.2). It is the purpose of this-section to enhance the
importance of Crouzeix’s theorem by illustrating how it can be applied to different
types of situations and how its use considerably reduces the proof of some well-known
theorems.

For convenience, let us introduce the following notation. Forf Fo(") we write

def f is twice continuously differentiable on a
x C(f) "[.neighborhood of x and 2V f(x) is nonsingular

and set

w:={(fA):fFo(R") and Ac C(f)}.
This allows us to state in a compact way most of the results given in this section, in
particular, the next trivial corollary of Theorem 3.1.

COROLLARY 3.2. The following equivalence holds:

(f, a) C(f*, a*) .
Moreover, the conjugacy correspondence (2.1) restricted to c Fo(") P(") is an
involution.

Proof The proof is trivial. [-I

We point out immediately that (f, A)-- (f*,A*) coincides over with the
Legendre transformation (f, A) (f, A). Keeping in mind Crouzeix’s theorem and
the above corollary, let us consider then the following mathematical problems.
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3.1. The Monge-Ampire measure associated to a convex function. The Monge-
Ampere measure my associated to a convex functionf has a long history. It is intimately
connected with the multidimensional Monge-Ampre equation

(3.3) det [Vf(x)] o(x) Vx e 12,

where stands for a known continuous function that is nonnegative on the nonempty
open convex set c Rn. If f: fl c R - R is a twice continuously differentiable convex
function which solves the above equation, then, of course, we can write

(3.4) mf(A) IA (x) dx VA Ba,

where Ba denotes the class of Borel sets in l-I and

(3.5) my(A) :- IA det V2f(x) dx.

A convex function f:E-R that verifies (3.4) is called a generalized or weak
solution of the Monge-Ampre equation (cf., for instance, [P, p. 70] and ICY]). This
concept is meaningful as long as my is well defined. The following well-known
proposition (cf. [RT, p. 355]) gives a different characterization of my and shows that
weak solutions do not actually need to be twice continuously differentiable.

PROPOSITION 3.3. Let A be the (n-dimensional) Lebesgue measure. If (f,),
then

rex(A) h({Vf(x): x A}) UA e Ba.

Proof. Let A be an arbitrary Borel set in ft. Since (f, ) e , the function Vf: A--> A*
is invertible and has Vf* A*--> A as its inverse. Moreover, the Jacobian determinant
of the change of variables x Vf*(y) is well defined and verifies

det V2f*(y) > 0 Vy e A*.

The general formula for a change of variables in a multiple integral yields in this case

f det V2f(x)dx f det V2f(Vf*(y))det V2f*(y) dy
3A Vf*)-I(A)

f(A)

The last equality is obtained, of course, by using Crouzeix’s formula (3.1) where the
roles off and f* are exchanged. The proof is then completed.

Note that in the statement of Proposition 3.3 there is no explicit mention of the
Legendre transformation. This concept is used only as an auxiliary tool in the above
demonstration. Note also that the assumption (f, 12)e arises in a natural way if we
expect that f:12c-->E solves the Monge-Amp6re equation (3.3) for a positive
continuous function .

3.2. Integrating a function of the Monge-Ampre operator. In some applications
it is not the density

x - Mf(x):= det V2f(x)
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we should integrate, but some function u of it. In other words, we are concerned with
the evaluation of an integral of the type

IA U Mf := fA U[Mf(x)] dx.

A typical one-dimensional example is the expression

[f"(x)] dx,

which appears in the variational characterization of the cubic interpolation spline (cf.
[Li, Thm. 2.10]).

Suppose for simplicity that u: ]0, [ -> ]0, oo[ is a continuous function. For con-
venience, let us introduce the "dual" function : ]0, oo[ -> ]0, oo[ of u given by

a(s) su(1/s) Vs e ]0, [.

Note that a is also continuous and has u as its dual function, i.e.,

(a)^= u.

Important examples of pairs of dual functions are:
(a) u(t)= t, a(s)= 1;
(b) u(t)= vq, a(s)= x/;
(c) u(t)= 2, a(s)= l/s;
(d) u(t) log t, a(s) -s log s.
The following result is then a generalization of Proposition 3.3.
PROPOSITION 3.4. Let u: ]0, oo[ --> ]0, oo[ be continuous and (f, 12) . Then

IA U Mf-- IA Mf VA

Proof The proof is similar to the demonstration of Proposition 3.3.
Since the function --> u(t) x/ is dual of itself, we get, in particular, the following

invariant property of the conjugacy operation (f, A) -> (f*, A*).
COROLLARY 3.5. Let (f, ) Z Then, for all A Ba,

3.3. Umbilic points of conjugate convex hypersurfaces. Let us consider the hyper-
surface

a(f):={(x,f(x)): X t 12} C [] n+l

associated with a convex function f’fl c R"--> R. There are some particular points in
fl that deserve special attention, namely, the points in the subset

Uy := {x 12: V2f(x) exists and ,max(72f(x)) --/min(V2(f(x)))},
where ,max(H) and A.min(H denote, respectively, the largest and smallest eigenvalue
of the matrix H. If x Uy, then the quadratic form

h - (h, V2f(x)h)
is constant over the unit sphere

S:= {h ff": Ilhll 1}
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and this means geometrically that the "curvature" of the hypersurface ,(f) at the
point (x,f(x)) is the same in all the directions h R". For this reason a point x Uy
is simply called an umbilic point off (although this is not the most common definition
of this concept found in the literature).

Similar definitions and remarks apply, of course, to the conjugate hypersurface

Ea.(f*) := {(y,f*(y))" y a*} c Rn+l.

The next proposition establishes a relationship between the umbilic points of f and
those of its conjugate function f*.

PROPOSITION 3.6. Let (& fi) G (cf. Proposition 2.1). Then thefollowing statements
are equivalent:

(a) C(f is an umbilic point off;
(b) 37 C(f*) is an umbilic point off*.
Proof. As an immediate consequence of Crouzeix’s theorem, it follows that

and

V2/max( Y (Y)) max([V2f(3)]-1) [/min(V2f(3))]-1

,min(V2/*(y)) min([V2/(’)]-1) [max(V2/())]-1.

This proves, of course, the equivalence announced in the present proposition. E]

Note that the points in C(f)fq Us are necessarily "nonflat" umbilic points of f
COROLLARY 3.7. There is a biunivoque correspondence between the nonflat umbilic

points off and the nonflat umbilic points off*. More precisely,

Vf: C(f) 71 Uf- C(f*) n Uu.
is a bijection.

3.4. The Hessian matrix of the infimal convolution. There is a basic operation in
convex analysis that has proven useful in many branches of applied mathematics. We
are speaking about the infimal convolution

(3.6) x n
_

[fl [] fz](X):= inf {fl(Xl) +f2(x2)}
X1-F’X2

of two functions fl,f2 Fo("). The subdifferential of the convex function fl [] f2 at

" admits the characterization

(3.7) O[fl [] f2](:) of(Xl) (q 0f2(X2),

where (1, :2) is any pair at which the infimum in (3.6) is attained, i.e.,

: 1 +,
(3.8)

[f [] fd() =f(x) +f(&) n.

For a proof of this fact and for conditions ensuring the existence of such a pair (1, ff),
see, for instance, [La. 6] or [Mo]. These conditions are related to the lower-semicon-
tinuity of fl [] f at the point .

Note that the equality (3.7) takes the form

(3.9) 7[f [] f2]()= 7f1(1)-- 7f2(2)

if the functions f and f2 are differentiable at 1 and 2, respectively. The following
result concerning the Hessian matrix off1 [] f2 was established by Hiriart-Urruty [H1].
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PROPOSITION 3.8. Let fl, fzFo(R") and ()1,)2) be a pair verifying (3.8). If
:gl C(fl) and 2 C(f), then C(fl [] f2) and we can write

V2[f, f](X)= {[V2fl(X,)] -1 + [Vf(X)]-’}-1.

Proof. The demonstration is based on the conjugacy formula

(f, [] f2)* =fl* +f*.
If) e R" denotes the common vector in (3.9), then Crouzeix’s theorem allows us to write

C(fl*) VI C(f2*).(3.10)

Therefore

and

V(fl* +f2*) (37) Vfl*(fi) + Vf2*(y) ’1-11 X2 X

V(fl* +f*)(3) Vfl*(if) + V2f2* (y).
Using Crouzeix’s formula (3.1) for each of the above matrices, we get finally

[V(fl* +f*)*()]-’ [V2fl(Xl)] -1 + [V2f2(X2)] -1.

But

(fl* +f2*)* fl [] f2]** cl [fl [] f2]

and it can be proven that, in this case,f1 [] f2 and its lower-semicontinuous hull cl [f [] f2]
coincide. For this it suffices to consider (3.10) and to apply JR1, Thm. 16.4]. The proof
is completed in this way.

3.5. The Hessian matrix of the Cramer transformate. The Laplace transformate of
a probability measure/z on E" is the function L:E"- ]0, +oo] given by

L,(x) := I e(x’t) dtx( t) Vx .
The cumulant transformate K, "--> R U {+oo} of/z is simply defined as

K,,.(x) := log L.(x)
and its conjugate

ye[R" K*(y) := sup {(x, y)-log L,(x)}
x

is usually referred to as the Cramer transformate of /z. The multiple uses of the
transformates K and K* explain the diversity of names attributed to each one of
these functions. The reader who is interested in their different interpretations and their
main properties may find Table 1 helpful.

TABLE

K K* References

cumulant generating function

cumulant transformate
free energy function

Cramer transformate
sup-log-likelihood function
(level 1) entropy function

Rahman Ra]
Azencott [Az]

Barndorff-Nielsen [B-N]
Ellis [Eli, [E2]
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For later use let us recall some basic properties of the functions L. and K, that
are well known in the literature. Let us introduce first the set

D := {x En. L.(x) < +}
{x "’/(x) <

and denote by int D its interior.
LEMMA 3.9 (cf. Barndortt-Nielsen [B-N, Thm. 4.1]). The Laplace transformate L,

is infinitely often differentiable at everypoint int D and the derivatives may be computed
by differentiation under the integration sign. In particular, the gradient VL,() and the
Hessian matrix V2L,(ff) are given by

O
L.() [ t, e(’’> dlz(t) Vi 1, n

Oxi

and

Vi, j=l,. .,n,

VK(X) L(ff)]-’VL,()
and

v/%(x) L(x)]-[L,(X)VI(X) VL(X)V:(X) ].
Now we are ready to establish the following result.
PROPOSITION 3.11. Let Y int D and assume that the matrix

A(X) := L()V2L,()-VL(X)VL,(X) T

is nonsingular. Then the Cramer transformate K* is twice continuously differentiable on
a neighborhood of=[L.()]-IVL,() and we have

V2K*(2) [L.(X)]2[A(X)]-’.

Proof The proof is an immediate consequence of Crouzeix’s theorem and
Lemma 3.10.

The above proposition can be complemented with the use of the Sherman-
Morrison formula [Ho, p. 123]

[o.H_ppT]-=o.-{H-+ H-PPTH-1 }tr- (p, H-lp)

Suitable assumptions could be made, then, on cr L()), p VL,()), and H 72L(9)
to ensure that A()= crH-pp r is a nonsingular matrix; namely, we could assume that
H is nonsingular and (p, H-lp)

A very important particular case of Proposition 3.11 is the one in which ) 0.
The condition 0 e int D amounts to saying that L,, or equivalently K,, is finite on a
neighborhood of 0. In such a case Lemmata 3.9 and 3.10 show that

(o)=1 t,d(t) Vi= l, n
Oxi

respectively.
LEMMA 3.10 (cf. Barndortf-Nielsen [B-N, Thm. 4.1] and Ellis [El, Thm. 7.5.1]).

The cumulant transformate K, belongs to Fo(Nn) and is infinitely often differentiable at

every point int D. In particular
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and

OZK (0)= I titjdtz(t)-Itidtx(t)Itjdtz(t Vi, j=l,...,n.

In other words, VK,(0) and V2K,(0) coincide, respectively, with the mean value vector

m, and the covariance matrix
COROLLARY 3.12. Let L, be finite on a neighborhood of 0 and assume that the

covariance matrix V, is nonsingular. Then the Cramer transformate K* is twice
continuously differentiable on a neighborhood of m, and we have

VK*(m,) V’.
Under the hypotheses of the above corollary it follows that K* has a second-order

Taylor expansion around m, and it takes the form

K*(y) 1/2(y m, V’(y rn,))+O(lly tn,ll) Vy ’
3.6. Maximum likelihood estimation in canonical exponential families. Let us recall

some basic facts concerning the canonical exponential families. For this material, the
reader is referred to Barndorff-Nielsen [B-N]. Let
and let L,’n-> ]0, c] be its Laplace transformate. Let us denote by 19 the set of
"parameters" for which L, is finite, i.e.,

By the canonical exponential family generated by/z we mean the family {/xo" 0 19}
of probability measures on R" which are absolutely continuous with respect to/x and
such that their densities are given by

_a(O) e<,’>.

The normalizing coefficient a(0) verifies, of course,

1
a(O)- V0 19.

L(O)
A more general definition for this type of family can be found in the literature. Usually,
{/z0" O (9} is defined not only in terms of /z, but also in terms of a measurable
vector-valued function T defined over
given by

(3.11) T(t)= Vt

Let us denote the cumulant transformate of/x simply by K, i.e.,

K(0):= log f e(’t) dtz(t)

The log-likelihood function ofthe family {/z0" 0 19} corresponding to the observa-
tion is defined as

log[dlxo/dlz](t) if 0eO,
0 " -> l(0; t) := - otherwise.
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A straightforward calculus shows that

l(O;t)=(O,t)-K(O)

and therefore the sup-log-likelihood function

sup l(O; t)

coincides with the conjugate K* of K (cf. [B-N, Thm. 6.1]).
In the next proposition the mean value vector EoT and the covariance matrix VoT

of T, with respect to 0, play an important role. Recall that T is given by (3.11) and
therefore

(EoT),= I tidlzo(t) fi= l, n

and

(VoT), =ft,t d o(t)-It, d o(t) f tjdtzo(t) /i,j=l,...,n.

The next result, due to BarndortI-Nielsen [B-N, Thm. 6.3], can be proved in a straight-
forward manner by using Crouzeix’s theorem.

PROPOSITION 3.13. Let 0 be in the interior of 0 and assume that the covariance
matrix VT is nonsingular. Then the sup-log-likelihood function

I -> K*(t) sup 1(0; t)
0

is twice continuously differentiable on a neighborhood of ET and we have

(3.12) V2K*(?) VT]-.
Proof. A direct calculus shows that

ET= ta() e’0 dtx(t) L()
e<’t> dtx(t)= VK(ff).

The last equality was obtained by using Lemmata 3.9 and 3.10 with the obvious change
D-O, 0, and K, K in the notation. In a similar way we can get

VT= V2K ).

Formula (3.12) is then a consequence of Proposition 3.11, which in turn was obtained
by using Crouzeix’s theorem. 1

Usually the value of ? is known first and then the parameter 0 is estimated by
solving the so-called log-likelihood equation

(3.13) Vol(O; ?)=0,

where V ol denotes the gradient of the log-likelihood function with respect to O. Under
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the hypotheses of the above proposition it is clear that ? EaT if and only if one of
the following equivalent conditions holds"

(a) 0 solves the equation (3.13), i.e., Vol(O, ?)=0;
(b) ?=VK(O);
(c) 0 vr*().
In connection with the log-likelihood equation (3.13), the mapping r--> V2K*(r)

plays an important role from a theoretical and from an algorithmic viewpoint.

4. Second-order differentiability of the conjugate: The nonsmooth case. In a first
attempt to generalize Crouzeix’s theorem, we could try to remove the nonsingularity
assumption made on V2f() and obtain a similar version of the formula (3.1) with the
generalized inverse [V2f()]+ used in the place of [V2f()]-1. Nevertheless, this
approach does not lead us too far because, at any rate, the use of the Hessian matrix
Vf() is involved. In this section we are concerned with convex functions that are
not necessarily differentiable and therefore we need to consider a quite different
approach. It is based on the so-called second-order subdilIerential of a convex function,
which has been introduced by Hiriart-Urruty [H3] and further developed by Seeger
Se]. We now recall this notion and its main properties, and we point out the references
[H3], [Se], [HS1], and [HS2] for a more complete discussion.

Forf Fo(") and domf we write, as customary,

f( + th)-f(X)
f’(; h)= lim Vh I".

tO

The above limit always exists in R U {+o} and for those directions h " in

domf’(X; .):= {h R"’f’(X; h) <+}

we set

2[f(+th)-f()_f,(2;h)]"f"(2; h) := lim sup -tO

If the above upper limit is actually a limit, then f"(; h) is denoted simply by f"(; h).
If this occurs for all h " and f"(;. is finite everywhere, then f is said to be twice
directionally ditterentiable at .

Given : and 37 Of(), the (upper) second-order directional derivative off Fo([)
at relative to 37 is defined as

2[f(+th)-f()_(,h)].h W’ f"(, y; h) lim sup -t-O

The main properties of the function f"(, y; .) are"

f"(2, 37; O) O, f"(2, )7; h) [0, eo] /h ".

f"(), 37; .) is convex and positively homogeneous of degree 2.

It follows then that the square root of the lower-semicontinuous hull of the function
f"(, 37; .) is the support function of a unique closed convex set in " containing 0.
This unique set O2f(, ), called the second-order subdifferential of f at : relative to
y-, is given by

02f(., if) {Z n. (Z, h) <= Jf"(2, y; h), Vh "}.

As said before, we have the equality

/cl f"(2, 37; .)= q*[. 02f(2, y)],
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where

h-- b*[h; C]:= sup (z, h)
zC

denotes the support function of a set C c " and el g denotes the lower-semicontinuous
hull of g.

An intrinsic concept associated only with the point g is the second-order sub-
differential 02f(2) off at 2, which is merely defined as

02f(2) {02f(2, )7)" )7 Of(2)}.

The main properties of this set are summarized in the next proposition.
PROPOSITION 4.1. Let fe Fo(R") and 2 domf. Then
(a) The second-order subdifferential 02f(2) off at 2 is a closed convex set in

containing O.
(b) If 2 int (domf), then the support function of 02f(2) is equal to the largest

convex lower-semicontinuous function, which minorizes x/f"(2; "). In particular, the set
02f(2) is compact iff"(2; .) is finite everywhere.

Iff is twice differentiable at 2, then

f"(2; h)=f"(2, Vf(2); h)=(h, V2f(2)h) Vh

and the set O:zf(2)=oaf(2, 7f(2)) reduces to the ellipsoid associated to the Hessian
matrix 72f(2), i.e.,

(4.1) 02f(2) {z 6 "" (z, h) -< x/(h, V2f(2)h>, Vh ["}.

This set does not necessarily contain 0 in its interior, since the matrix vzf(2) could
be singular. The possibility of a "degenerate" ellipsoid is therefore not excluded. If
V2f(2) turns out to be nonsingular, then the ellipsoid (4.1) also admits the character-
ization

O2f(2) {u ca"" (u, [V2f(2)]-lu> 1}.

In this case Crouzeix’s formula (3.1) amounts to saying that the sets 02f*(y) and
are polar to each other, i.e.,

(4.2) 02f*Qg) [02f(2)]
where

cO: {v ["" (v, u)_-< 1, Vu C}

denotes the polar set of C c R". We claim that the polarity relationship (4.2) holds
not only under the hypotheses of Crouzeix’s theorem, but also in a much more general
setting. To begin, let us consider the following example in which the Hessian matrix
vzf(2) exists but is singular.

Example 4.2. Let f" 2 be defined by

f(Xl, X2) 1/2(Xl)2 -}" 41-(X2)4

and 2 (0, 0) r. Then

Vf(2)=[: ] and 0f(2)=[-1,1]x{0}.

In this case

f*(Y,, Y2) 1/2(y,)2 +_](y2)4/3
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and for 7 X7f() (0, 0) 7- we have

(f*)"(37; h) [ hi)2

(+

and

if h2--0
otherwise,

02f*()7) [-1, 1] x [02f()]o.

The purpose of this section is to explore the type of assumptions we should
consider to ensure the validity of the polarity relationship (4.2). More generally, it is
intended to obtain some estimates for the sets 02f*(y) and Of*(., 2) in terms of Of()
and Of(, ), respectively. For this purpose it is convenient to introduce beforehand
some definitions and to establish some useful lemmata.

Recall that f"(, 37; is by definition the (upper) pointwise limit as 0/ of the
sequence of functions {,},>o given by

2 [f(+ th)-f()_(,, h)] lh in.(4.3) ,(h) :=-
Some variants of this second-order directional derivative are provided by the
expressions

f’e’(, 37; ") := epi-- lim inf ,, f’e’(, 37; ") := epi-- lim sup
t->0 t->0

where the symbol e refers to the fact that the above lower and upper limits are taken
in the "epigraphical" sense. These epilimits of the second-order difference quotient
(4.3) were introduced by Rockafellar [R2] and used extensively by him [R3], [R4]
and his students Poliquin [Po] and Do [D]. For the purpose of this section it suffices
to mention that f’e’(,37; ")’"-[0, OO] is the lower-semicontinuous function given
simply by

f(, 37; h) lim inf o,(h’) Vh
t_>0

and that we can write, in general, the inequalities

f’e’(:, 37; ") --<- f’e’(), 37; ") -< el f"(), 37; .).

Ndoutoume [Nd, Prop. 4.1] noticed that, in the same way as x/cl f"()L Y; "), the function
/f’e’(2, Y; ") is also a support function. Following Hiriart-Urruty [H3] and Seeger [Se],
he introduced the following variation of the set O2f(2, .f)"

OZef(, .p)= {Z "" (Z, h)<= /f"e(,, .f; h), Vh "}.

The later second-order subdifferential is a suitable tool for handling the problem we
are considering in this section. However, the computation of the upper epilimit
f’e’(, 37; ") is usually a heavy task and this makes the set Oef(, y) less useful than
Of(, .9) for practical purposes. To eliminate the gap existing between these two sets
and to put ourselves in a convenient framework, it is natural to introduce here the
following definition.

DEFINITION 4.3. The function fe Fo(N") is second-order regular at 9 relative to
y of() if

(4.4) f’e’(:, 37; ") cl f"(ff, 37; ").
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If the above equality holds true for each 37 in 0f(2), then we say simply that f is
second-order regular at 2.

Note that if the condition (4.4) holds, then the epilimit

(4.5) f’e’(& )7; .)= epi-- lim q,
t0

exists and we can write

(4.6) O*[’; Oef(2, )7)] V’f’e’ (2, 37, ") /cl f"(2, 37, ") *[’; 02f(& fi)].

The mere existence of the epilimit (4.5) is a condition referred to by saying that f is
twice epidifferentiable at 2 relative to 97 (cf. JR3, Def. 2.2]).

For a geometric interpretation of (4.4) and for examples of functions that are
second-order regular at a given point & the reader can consult Hiriart-Urruty and
Seeger [HS2, 3.2]. Besides the case of a function f that is twice continuously
ditferentiable on a neighborhood of & let us mention here two nontrivial examples.

Example 4.4. If the function f Fo(R") is differentiable and twice directionally
ditterentiable at the point 2 R", thenf is second-order regular at 2 relative to 37 Vf(2).
The proof of this fact is given in the Appendix. It involves the use of many technical
tools that are of minor importance in this paper.

Example 4.5. Let fFo(R") be a piecewise linear-quadratic function, i.e., its
effective domain domfcan be expressed as the union of finitely many convex polyhedral
sets and the restriction off to each one of these sets is a quadratic (or affine) function.
According to Rockafellar [R3, Thm. 3.1], for all 2 domf and all 37 Of(2), we can
write in this case

f’e’(2, 37; "):= epi-- lim , lim , =: f"(2, 37; ").
t0 t-0

Thus, f is second-order regular at each point 2 domf
Let us now establish the next result.
LEMMA 4.6. Let f, f* Fo(") be a couple of conjugate functions and let (2, fi) G

cf Proposition 2.1). Then
(a) fis twice epidifferentiable at 2 relative to fi ifand only iff* is twice epidifferentiable

at fi relative to 2.

(b) Under the equivalent conditions stated in (a), we can write

ltt- ,( [n[-fe(X, 2 Vd-(f*)e(Y, 2; d)= ;.)] d e(4.7)

and

(4.8) 0ef*(), 2)= [0ef(2, ))]0.

Proof. The proof of Lemma 4.5(a) and the conjugacy formula (4.7) can be found
in Do [D, Thm. 1.2.7]. Let us prove, then, the polarity formula (4.8). The nonnegative
function

-Je[,X, 2; )

is lower-semicontinuous, convex, positively homogeneous of degree 2, and vanishes
at 0. According to [R1, Cot. 15.3.2] the sets

C {h e JR": /21(h)_-< 1}

and

D={d N": /2/*(d)_<- 1}
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are polar to each other. Taking into account the definition of and the formula (4.7),
it is clear that

v’21(h) qtfJ(2, fi; h) q*[h; O2f(2, fi)]

and

Therefore

coincides with

x/2/*(d) =x/(f*)(.9, 2; d)= tp*[d; 02f*(, 2)1 Vd

C [02f(2, )7)]0

DO= {[02f*(37, 2)]}= 02f*(, 2)

as we wanted to prove.
Taking into account the previous lemma it is easy to now prove the following

generalization of Crouzeix’s theorem.
THEOREM 4.7. Letf f* Fo(E") be a couple ofconjugatefunctions and let (2, ) G.

Assume that either
(a) f is second-order regular at

or
(b) f* is second-order regular at

Then the inclusion

(4.9) af,(y, ) [af(, y)]o

holds true. Furthermore, we have the equality

(4.10) a/*(y, z)= [af(, y)]o

if both conditions (a) and (b) are satisfied.
Proof It is clear that we always have the inclusions

and

02f(2, Y) ozf(2, Y)

O2f*(, 2) c 02f*()7,
which follow immediately from the very definition of the above sets. If either (a) or
(b) of Theorem 4.7 is true, then the first or, respectively, the second inclusion becomes
an equality. Moreover, the equivalent conditions stated in Lemma 4.6(a) are satisfied.
The formula (4.8) can be applied in such a case and yields the inclusion (4.9). If (a)
and (b) of Theorem 4.7 are true, then (4.8) reduces, of course, to the desired equality
(4.10). 1

Theorem 4.7(a) and (b) are not equivalent and therefore the set 02f*(.9, 2) could
include [Of(2, .9)]0 strictly. Let us illustrate this fact with an example.

Example 4.8. Letf and f* be, respectively, the indicator and the support function
of the (Euclidean) closed unit ball B of [". We intentionally choose 2 in the boundary
of domf, i.e., satisfying IIzil- 1. We then have Of(2)= {h2: h _-> 0}. Let us now choose
.9 A2 with h > 0. Then f* is twice continuously differentiable on a neighborhood of
)7 (therefore Theorem 4.7(b) holds), but f is not second-order regular at 2 relative to
y-. As shown by Seeger [Se, Ex. B.2.70], in this case the set
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is strictly included in

0:f*(y, 2) 02f*(y) ellipsoid associated to V2f*(37).
The theorem just established is not only a slight generalization of Crouzeix’s result,

but also a considerable one. Not only is the nonsingularity assumption made on
removed, but we are also allowed to consider a function f Fo(R") that is not even
differentiable at 2. We do not need to illustrate this point with further examples.
Instead, we will establish some important corollaries.

COROLLARY 4.9. Suppose that thefunctionf* is differentiable and twice directionally
differentiable at the point . Assume also that f Fo(") is second-order regular at
2 Vf*()) relative to ft. Then

02f,()) [02f(2, fi)]o.
Proof. The proof is immediate. The fact thatf* is second-order regular at relative

to 2 Vf*(37) is proved in the Appendix. [3

For the sake of completeness let us write the analogous version of Corollary 4.9,
which is obtained by exchanging the roles of f and f*.

COROLLARY 4.10. Suppose that the function fF0(") is differentiable and twice
directionally differentiable at the point 2 . Assume also thatf* is second-order regular
at 37 Vf(2) relative to 2. Then

02f* (., 2) [02f(2)]o.
In the next corollary no differentiability assumption is made either on f or on f*.

In his recent dissertation Sun [Su] demonstrated that a functionf Fo(E) is piecewise
linear quadratic if and only if its conjugate f* Fo() is piecewise linear quadratic.

COROLLARY 4.11. Let f,f*Fo(R) be a couple of conjugate functions that are
piecewise linear quadratic and let (2, ) G. Then

02f* (y, 2 02f(2, .P) ]o.
Proof The proof is immediate. See Example 4.5.
Let us end this section by giving an estimate of the second-order subdifferential

of the conjugate f* at a given point y. Again, no differentiability assumption is made
either on f or on f*.

COROLLARY 4.12. Assume that f* is second-order regular at " and that f
Fo(E") is second-order regular at each point in the nonempty set

0/*(y) { "- y 0/()}.

Proof. Under the hypotheses of this corollary, the set

of*(Y) := (of*(Y, )" d*(Y)}
can be written as

a/*(y) n {[a=/(z, y)]o: z af*(y)}.
The equality (4.11) is then obtained by using the general calculus rule

C = CO

(cf. Ma, p. 84]).
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Appendix. The demonstration of the next result is rather technical. For this reason
it has been postponed until the Appendix.

LEMMA A. Suppose that the function f Fo(") is differentiable at and that, for
all h ", the limit

f"(; h)- lim
2 [f(+ th)

t+o L

exists and is finite. Then, for all h , we can write

2 [f( + th’)-f()
(A.1) f"(; h)= lim -.

t-O t
h’- h

(Vf(:), h)]

(Vf(), h’)].
Proof. Under the hypotheses of this lemma the second-order directional derivative

f"(g; .) admits also the characterizations

(A.2)

and

f"(:; h)=(d/*[h; O2f(g.)])2 VhN

[f’(:; h)-(Vf(g), h)]2
(A.3) f"(g; .) lim Vh N.

e-+0 2E

The first equality is immediate from Proposition 4.1. The second equality was estab-
lished first by Hiriart-Urruty [H2], at least for those h for which f"(g; h) > 0. A proof
of the case remaining can be found in [Se, Prop. B.4.3] or [HS2, Thm. 4.1]. Equality
(A.3) asks for an explanation. For us it suffices to know that the e-directional derivative
f’(; .) of f at g coincides with the support function of a set denoted by 0f(g) and
called the e-subdifferential of f at :. Here 0f(g) is for all e _>-0 a nonempty convex
compact set in . What (A.3) says, then, is that x/f"(g; ") is a pointwise limit of a
sequence of support functions. We have, more precisely,

O*[h; 02f(g)] x/f"(g; h)= lim O*[h; A] Vh
eO

where

Of(2) W(.)

Since, in this case, the sets 02f(g) and A are compact, the convergence of *[. ;A]
towards *[.; 02f(g)] as e -+ 0+ is not only pointwise, but it is also uniform in the sense
that

Hence we can write

@*[h; O2f(2)] lim @*[h’; A]
e-O
h’-* h

[f’(g; h’)-(Vf(g), h’>]2
(A.4) f"(g; h) lim Vh

_o 2e

Now, following step-by-step the proof given by Lemarechal and Zowe [LZ, Thm. 2.1]
for equality (A.3), we demonstrate that the existence of the limit on the right-hand
side of (A.4) implies the existence of the limit on the right-hand side of (A.1). This
proves, of course, the result announced in the present lemma.
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ON THE CONVERGENCE OF THE PRODUCTS OF FIRMLY
NONEXPANSIVE MAPPINGS*

PAUL TSENG

Abstract. Consider a finite collection of firmly nonexpansive self-mappings on a Hilbert space
whose fixed-point sets intersect. It is shown that, in the finite-dimensional case, any iteration of
mappings drawn from this collection converges. This resolves, for the finite-dimensional case at least,
a popular conjecture concerning the convergence of the successive projection method. In the infinite-
dimensional case, it is shown that if the mappings are drawn according to a certain order, called
the quasi-cyclic order, then the iteration converges weakly in a sense. The quasi-cyclic order may be
viewed as an extension of the well-known cyclic order in which the lengths of the cycles are permitted
to grow without bound.

Key words, firmly nonexpansive mapping, successive projection, convex set, quasi-cyclic order
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1. Introduction. Let T/ be some real Hilbert space endowed with an inner
product (., .), and let T 7 - T/, i 1,... ,m (m _> 1) be a collection of firmly
nonexpansive mappings, i.e., for each x, y E T/,

(1) x y) IT (x) T (Y)II 2,

whose fixed-point sets, denoted by F1,..., Fro, respectively, make a nonempty inter-
section. Here I1"11 is the norm induced by the inner product (., .) (i.e., Ilxll V/(x,x)).
Our problem is to find a common fixed point of the Ti’s, that is,

(P) find a point in F- Nm__l F.

Firmly nonexpansive mappings are nonexpansive and are closely related to the
notion of maximal monotone operators. In particular, we can take each to be the
resolvent of some maximal monotone operator A in T/(see [Roc76]); i.e.,

(2) T (I + A)-1.

In this case, the problem (P) reduces to finding a common zero for the A’s. (See
[Br73] for general discussions of maximal monotone operators. See [Eck89, Chap. 3]
for a detailed discussion of firmly nonexpansive mappings and their relation to maximal
monotone operators.)

Another way to get a firmly nonexpansive mapping T is to take

1/2(Z +

where S /- 7-/is any nonexpansive mapping. (The converse of this in fact also
holds. See, for example, [Roc76].) In this case (P) reduces to finding a common fixed

*Received by the editors January 10, 1990; accepted for publication (in revised form) September
9, 1991. This work was supported by the U.S. Army Research Office contract DAAL03-86-K-0171
(Center for Intelligent Control Systems).

Department of Mathematics, GN-50, University of Washington, Seattle, Washington 98195.
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point of the Si’s. (See [Bro76] and [Sin83] for surveys of results on nonexpansive
mappings.)

Consider the following iterative method for solving (P). We begin with an arbi-
trary x(0) E 7-/. At the tth iteration (t _> 0), we are given an x(t) E 7-/; we choose an
index a(t) e {1, 2,..., m} and apply T(t) to x(t) to obtain a point y(t); i.e.,

u(t)

Then we move x(t) in the direction y(t) x(t) with a step size of w(t) to obtain the
new iterate x(t + 1); i.e.,

(3b) x(t + 1) w(t)y(t) + (1 w(t))x(t).

To ensure convergence of the iterates, we impose the standard restriction that the step
sizes are bounded inside (0, 2); that is,

(3c) e <_ w(t) <_ 2-e Vt,

where e is any fixed scalar in (0, 1].
In the case where m 1, it readily follows from a result of Opial [Opi67] on

asymptotically regular mappings (of which firmly nonexpansive mappings are special
cases) that the sequence {x(t)} generated by (3a)-(3c) converges weakly to an element
of F (also see [Roc76, 1]). If rn 2, it is but a slight modification of Opial’s proof
to show that, again, {x(t)} converges weakly (although not necessarily to an element
of F). But what about m >_ 3? Does {x(t)} still converge weakly then?

The above question is motivated by a long-standing question about the conver-
gence of the successive projection method. Let C1, C2,.-., Cm be closed convex sets in
7-/with nonempty intersection. Consider the following classical problem in optimiza-
tion:

(I) find a point in Nim__l Ci.

This problem is a special case of (P) in which each Ti is taken to be the projection
(or proximity) mapping onto Ci; i.e.,

(4) Ti(x) arg min IIx YlI.
yCi

That Ti given by (4) is firmly nonexpansive readily follows from the properties of the
projection mapping (see [Bre65] and [GPR67]). In fact, T is of the form (2) with As
being the subdifferential of the indicator function for C (see [Roc76]). With T given
by (4), the method (3a)-(3c) becomes what is commonly known as the successive
projection (SP) method for solving (I).

The SP method was first proposed by Kaczmarz [Kac37] for the special case in
which the sets C1,. ., C, are linear varieties (i.e., translates of subspaces) and was re-
discovered by von Neumann [voNh0], Agmon [Agm54], and Motzkin and Schoenberg
[MOS54]. (Also see lAmA65], IDes85], [Gof80], [Gof82], [Ha162], [Man84], [Mer62],
[Pra60], [SSW77], and [Wan71] for more detailed treatments of the linear case.) Exten-
sions of the SP method to problems with general convex sets were made by Bregman
[Bre65] and Eremin [Ere65] (also see [Bru82], [ChG59], [Ere66], [GeS66], [GPR67],
[Ott88], [Po169], [You87], and [You89]). The SP method can also be applied to prob-
lems in a product space to obtain a highly parallelizable method of barycenters [Pie84].



PRODUCTS OF FIRMLY NONEXPANSIVE MAPPINGS 427

(There has also been some work analyzing the case in which the number of sets is in-

finite [Bre65], [Bru83], [GPR67] or where the Ci’s do not intersect [GPR67].) The
notion of a step size (also called relaxation parameter) w(t) [cf. (3c)] was introduced in
[Agm54] and [MOS54]. It has been observed that, in certain cases, a value of w(t) dif-
ferent from 1 (i.e., under- or over-relaxation) can significantly improve the convergence
(see [Gof80], [Her80], [LeS83], and [Man84]).

An important question associated with the SP method concerns the convergence
of the iterates generated by it. In most of the analyses it is assumed that the sets are
chosen either in an essentially cyclic order (i.e., every set is chosen at least once every
B iterations, for some fixed B _> m) or according to a maximal distance rule (i.e.,
choose a set that is in some sense farthest away from the current iterate). Under such
assumptions, one can prove weak convergence of the iterates [Bre65]; if, in addition,
either the Ci’s are linear varieties or a certain regularity condition holds, then one can
also prove strong convergence [GPR67], [Ha162], [Ott88], [VoNh0]. (A related question
concerns the rate of convergence of the iterates. However, rate of convergence anal-
ysis requires fairly restrictive assumptions, such as that Ci’s are halfspaces [Agm54],
IGor80], [Gof82], [GPR67], [Man84], [Mer62], [SSW77] or that a certain regularity
condition holds [GPR67]. It also requires the order of projections to be restricted to
either essentially cyclic or one given by a maximal distance rule. Finite convergence of
the iterates can also be proven under more restrictive assumptions [MoS54], [Gof80],
[Gof82], [GPR67].)

Can the above assumptions on the order of projections be weakened? In particu-
lar, if no assumption on the order of projections is made, would the iterates converge
weakly? The answer was shown by Prager [Pra60] to be "yes" if 7-/is finite-dimensional
and the C’s are linear subspaces of 7-/. Prager’s result was later extended by Amemiya
and Ando lAmA65] to the case where the Ci’s are closed linear subspaces. Bruck
[Bru82] proved a similar result assuming that m 3 and Ci -Ci for all i. (Strong
convergence can also be shown if one of the Ci’s is compact [Bru82], lYon87, p. 74] or if
a certain regularity condition holds [Ott88].) The most general result in this direction
is perhaps that given by Youla [You89] (also see lYon87, 2.6]), which proves weak con-

vergence assuming only that the Ci’s share an "inner" point. (An x c Ci is said to be
inner if it is the only point in the linear manifold spanned by Ci whose projection onto
Ci is x.) In a finite-dimensional space, this amounts to the regularity condition that
the relative interior of the sets C1,..., Cm make a nonempty intersection. Although
such a regularity condition is fairly mild, nonetheless there are problem instances for
which it fails to hold. For example, when a primal-dual pair of linear programs is
formulated as a feasibility problem of the form (P) (see [Bre65] and [Sh86, p. 125]),
the relative interior of the corresponding Ci’s typically do not intersect.

The contribution of this article is threefold: First, we prove that when T/is finite-
dimensional, no assumption is needed to guarantee convergence of the SP method
(see Corollary 1). This resolves, in the finite-dimensional case at least, a conjecture
of Bruck [Bru83, p. 37]. Second, we prove a weak convergence result under a new
order of projections, called quasi-cyclic order. The quasi-cyclic order may be viewed
as an extension of the essentially cyclic order in which the lengths of the cycles,
namely the B given previously, are allowed to increase without bound, but not too
fast. Although this order is clearly more restrictive than having no restriction on the
order of projections at all, it has the advantage that no additional assumption on the
problem is needed to obtain weak convergence. Third, we prove the above results in
the more general context of the products of firmly nonexpansive mappings, not just
projection mappings, and obtain the results for the SP method as simple consequences



428 PAUL TSENG

of these results.

2. Convergence analysis. Before we prove our main results, we need the fol-
lowing known technical lemma.

LEMMA 1. Let {x(t)} be a sequence generated by (3a)-(3c). Then,

{lly(t) x(t)ll} --, 0.

Moreover, for any 2 E F, there holds

I1 (t)ll > I1 (t + )11 vt > 0,

(8) (2) lim I1 y(t)ll
t----+ (:x)

where we let

(9) 0(2) lim 112 x(t)ll 2.
t--- (:x:)

Proof. Fix any 2 e F. For any integer t _> 0, we have y(t) T(t)(x(t)) [cf. (3a)]
and 2 T(t)(2) [cf. 2 e F], so the firmly nonexpansive property of Ta(t) [cf. (1)]
yields

< (t), x(t)> > ]1 (t)ll

or, equivalently,
(2 y(t),y(t) x(t)) >_ O.

Since [cf. (3b)]

[I2 x(t)l[ 2 =112 x(t + 1)1 {2 + 2w(t)(2 y(t), y(t) x(t)>
+ w(t)(2 w(t))lly(t x(t)ll 2,

this, together with (3c), implies

I] (t)ll -> I1 x(t + 1)ll e + eellx(t + 1) x(t)l] Vt _> O,

so (5) and (7) follow. Equation (7) implies that (2) given by (9) is well defined, and
(5) implies that

{][x(t + 1) x(t)l]} -, 0.

Since y(t) x(t) (x(t + 1) x(t))/w(t) [cf. (3b)] and w(t) >_ e [cf. (3c)] for all t, then
the latter proves (6), which together with (9) proves (8). El

By using Lemma 1, we can show our first main result.
THEOREM 1. Suppose that ?-I is finite-dimensional. Let {x(t)} be a sequence

generated by (3a)-(3c) under the assumption that each element of { 1, 2,..., m} appears
in the sequence {a(0),a(1),...} an infinite number of times. Then {x(t)} converges
to a point in F.
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Proof. Equation (8) shows that (y(t)} is bounded, so it has a cluster point in /.
(Recall that in a finite-dimensional space, weak convergence is equivalent to ordinary
convergence.) Let Y denote the set of cluster points of (y(t)}.

We claim that Y F 0. We argue this by contradiction. Suppose that
YCF 0. Fix any E F (so yo) and any y E yo. Let N be any
subsequence of (0, 1,...} such that

(10) (Y(t)}teN converges to y.

By passing into a subsequence if necessary, we can assume that, for some i, a(t) i for
all t e N. Then y(t) Ti(x(t)) for all t e N [cf. (3a)], so (6), (10), and the continuity
property of Ti imply y Ti(y) or, equivalently, y Fi. Since y F, then, by
reindexing the Fi’s if necessary, we can assume that for some i (1,..., m- 1}, there
holds

(11) y E Fl C3...n F, y F Vi>.

For each t G N, let A(t) be the smallest integer T _> t such that a(T) > . A(t) is well
defined for all t N because, by hypothesis, each element of {+1, +2, , m} appears
in {a(0),a(1),...} an infinite number of times. Notice that A(t) is monotonically
increasing with t and tends to cx) as t --, cx). More importantly, we have, by the
construction of A(t), that a(T) <_ for all T {t,t + 1,..., A(t)- 1}. Since yO
F1N... NF (cf. (11)), then an argument analogous to the proof of (7) (with t, , and
F therein replaced by, respectively, T, yO, and F1 N... N F) yields

Ily -X(T)I >_ Ily --X(T + 1)11, T t,t + 1,...,A(t) 1,

so that

(12)

Since our choice of t E N was arbitrary, then (12) holds for all t N. Also, since
{y(A(t))}teN is bounded (cf. (8)), it has some cluster point (so Y). By
reindexing the Fi’s and further passing into a subsequence if necessary, we can assume
that

(13) a(A(t))=+l VteN

and

(14) {y(A(t))}teN converges to

Equation (13), together with (3a), implies y(A(t)) T+(x(A(t))) for all t e N.
Since T+ is continuous, this, together with (6) and (14), implies T+() or,
equivalently, E F+i. Hence ) : y (cf. (11)). Also, we have

for all t N. Upon passing into the limit as t -- (x), t N and by using (14), we
obtain

lim sup Ily y(A(t))ll 2 _> Ily 112.
t-c,tEN
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By using (6) and (12) to upper bound the left-hand limit in the above relation, we
obtain

lim Ily y(t)ll 2 >_ Ily 900112.t--oo,te_N

By (10) the left-hand limit vanishes, so we are left with

0 11oo-9ooll
a contradiction of the fact y o shown earlier.

We now show that {x(t)} has a unique cluster point in F. Since
then we can find an e F and a subsequence N of {0, 1,...} such that {y(t)}teN
converges to . This implies {11- y(t)ll}teN -- O, so (8) yields 0() 0. By (9), the
entire sequence {x(t)} converges to

COROLLARY 1. Suppose that 7-l is finite-dimensional. Let {x(t)} be a sequence
generated by (3a)-(3c). Then {x(t)} converges.

It is an open question whether Theorem 1 can be extended to the infinite-
dimensional case (and thus completely resolve the conjecture of Bruck noted earlier).

Below we consider an order of iterations more restrictive than the one in Theorem
1, under which a weak convergence result is obtainable in the infinite-dimensional
setting as well. This order, introduced in [TsB87], is as follows.

Quasi-cyclic order. There exists a sequence of integers {T1, T2,’" "} satisfying

(1ha) TI--1, ’k+l--Tk>_m Vk>_l, E ---oc,
k=l Tk+l Tk

such that

(15b) {1,2,...,m}C_{a(T}),a(T}+l),...,a(T}+--l)} Vk>_l.

Roughly speaking, the quasi-cyclic order of iterations means that every Ti is applied at
least once between the Tkth and the (Tk+ 1)th iteration (called the kth quasi cycle)
for all k (cf. (15b)) and that the length of the kth quasi cycle, namely Tk+--Tk, cannot
grow too fast with k (cf. (1ha)). One particular choice of the k’s, namely Tk re(k-l)
for all k, gives rise to the well known cyclic order for which a(t) t(mod m) + 1 for
all t (and the length of each quasi cycle is exactly m). A more interesting choice of
the T}’S is given by

T+l =T + km k >_ l,

for which the length of the kth quasi cycle increases linearly with k.
By using Lemma 1 we can show the second main result of this investigation. The

proof of this is based on an interesting application of the Cauchy-Schwartz inequality.
THEOIEM 2. Let {x(t)} be a sequence generated by (3a)-(3c) under the quasi-

cyclic order (15a)-(15b). Then {x(t)} has a unique weak cluster point in F.
Proof. First, we claim that there exists a subsequence K of {1, 2,-..} for which

Tk+l

(16) E IIx(t + 1) x(t)ll- 0 as k - oo, k e K.
t=r+l

To see this, suppose that such a subsequence does not exist. Then there would exist
a positive scalar 5 and an integer k such that

7"k+
< IIx(t + 1)- x(t)ll w > k.
t=’+
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Since by the Cauchy-Schwartz inequality there holds

7"k+l Tk+l

Ilx(t + 1) x(tlll _< Ilx(t + 1/- x(tlll. /r+ r,
t--r+ t--r+

this implies

so that

Yk+
II(t + 1 (tlll(/l rl >_ ,

t=r+

(7)

62 E 1

= T+I --T -- k- Lt--rk-t-1
I’CC(t + 1) =(t)ll

llx(t + 1) x(t)ll.
t:r+

By (1ha) the left-hand side of (17) has the extended value of oo, whereas the right-
hand side of (17), according to (5), has finite value, thereby reaching a contradiction.
Hence, (16) holds for some K C_ {1,2,...}.

Let K be any subsequence of {1,2,...} satisfying (16). Since {x(t)} is bounded
[cf. (7)], there exist some x E 7-/and some subsequence K’ of K such that

(8) {X(Tk + 1)}keK’ converges weakly to x.
We claim that x E F. To see this, fix any i {1, 2,..., m}. Since the mappings
are applied in the quasi-cyclic order, then for each integer k >_ 1 there exists some

Pk {Tk, Tk + 1,’’’, Tk+l 1} satisfying a(pk) i (cf. (155)). By using the triangle
inequality, together with the fact that
for all k _> 1 (cf. (35), (3c)), we have

(19)
Tk+I

llx(- / 1)- y(p)ll-<
t:rk+
rk-

t=r+

lx(t + 1) x(t) ll + lx(p + 1) y(p)ll

llx(t + 1)- x(t)ll + (--)llx(p+l)-x(p)II Vk.

Equations (16) and (19), together with {llx(t + 1) x(t)ll} ---, 0 [cf. (5)], imply

lim ll(r + 1) y(p)ll- o,
k---+oo,kEK’

which, combined with (18), yields

lim <u,y(pk)> lim <U,X(Tk + 1)> <U,X> Vu e 7-/,
k--+oo,kEK’ k-+ca,kEK’

so that {Y(Pk)}keg’ converges weakly to x. Since y(pk) Ti(x(pk)) (cf. a(pk) i
and (3a)) for all k, this, together with {IlY(Pk)- x(pk)ll} --+ 0 (cf. (6)), implies
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{11(I- T)((P))II)K, - 0 and {x(pk)}keg, converges weakly to x
is nonexpansive so that the mapping I- Ti is demiclosed (see [Opi67, Lemma 2]), we
have (I- T)(x) 0 or, equivalently, x E F. Since the choice of i was arbitrary,
we obtain x E Fi for all i, and therefore x F.

We now show that (x(t)} has a unique weak cluster point in F. Our argument
follows that given in [Bre65] (also see [Roc76, p. 885]) and is presented here for com-
pleteness. Suppose that (x(t)) does not have a unique weak cluster point in F. Then
there would exist x e F and x e F with x x and subsequences
(x(t))eN. converging weakly to, respectively, x and x. By replacing in (7) by
x, we find that Ix x(t)ll is nonincreasing with t, so there exists a scalar al such
that

(2o) {llx x(t)ll =} --+ .
Similarly, by replacing in (7) by x, we find that there exists a scalar a2 such that

(20b) {llx x()ll} --+ 2.

Now, for any t N1 we have

IIx x(t)ll 2 -I1 11 + 2<x ,x x(t)> + IIx x(t)ll 2,

so that, by letting t cx, t E N, we obtain from (20a) and (20b) and the weak
convergence of (x(t))egl to x that c2 IIx -xll2 -4-c. By an analogous
argument with the role of x and x reversed, we also obtain
c2. Adding these two relations yields 0 Ix- xll2, and hence x x, a
contradiction.
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ON IMPLEMENTING MEHROTRA’S PREDICTOR-CORRECTOR
INTERIOR-POINT METHOD FOR LINEAR PROGRAMMING*

IRVIN J. LUSTIG, ROY E. MARSTEN$, AND DAVID F. SHANNO

Abstract. Mehrotra [Tech. Repor 90-03, Department of Industrial Engineering and Manage-
ment Sciences, Northwestern University, Evanston, IL, 1990] recently described a predictor-corrector
variant of the primal-dual interior-point algorithm for linear programming. This paper describes a

full implementation of this algorithm, with extensions for solving problems with free variables and
problems with bounds on primal variables. Computational results on the NETLIB test set are given
to show that this new method almost always improves the performance of the primal-dual algo-
rithm and that the improvement increases dramatically as the size and complexity of the problem
increases. A numerical instability in using Schur complements to remove dense columns is identified,
and a numerical remedy is given.

Key words, linear programming, interior-point methods, predictor-corrector algorithms

AMS(MOS) subject classifications. 90C05, 90C06

1. Introduction. Mehrotra [10] has recently introduced a remarkable higher-
order primal-dul logarithmic barrier method for linear programming. He motivates
this method as a power series method, but in a nonstandard way. He also introduces
a potential function that can be linearly searched to ensure a constant reduction at
each step. A numerical algorithm using this method is described, and computational
comparisons are given to MINOS 5.3 and OB1, the primal-dual interior-point code
of Lustig, Marsten, and Shanno [8]. These new results indicate that the method
represents a significant computational advance for linear programming.

The test set that Mehrotra used to evaluate his method is a small subset of the
NETLIB [6] test set, excluding all problems with upper-bounded variables, free vari-
ables, and ranges. Since most of the large and difficult problems in the NETLIB test
set were omitted from Mehrotra’s tests, the initial goal of this paper is to describe
an implementation extending Mehrotra’s algorithm to solve all standard form linear
programs. Mehrotra’s initial results tend to sell his method short, because its perfor-
mance, when compared with that of the pure primal-dual algorithm, improves even
more as the problems get larger and more complex.

A second goal of this paper is to isolate the effects of various new components
of Mehrotra’s framework. Mehrotra discusses the results of his code compared only
with OB1. However, because OB1 has many safeguards (such as iterative refinement)
needed to solve large ill-conditioned problems, and because OB1 incurs overhead to
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handle upper bounds (which are always assumed to be present), direct comparisons
of the two codes and evaluations of the relative effects of components of the algorithm
require a common implementation. Once this was accomplished within the framework
of OB1, it became easy to compare Mehrotra’s algorithms more accurately with the
primal-dual algorithms of OB1.

Another purpose of this paper is to develop Mehrotra’s algorithm, including
bounds, ranges, and free variables, within the framework of a predictor-corrector
method. Although Mehrotra’s paper [10] uses a power series motivation, Mehrotra
himself gave a different motivation for the method in a presentation at a conference in
Asilomar. In this presentation, he described a method drawn from predictor-corrector
methods for ordinary differential equations. This interpretation is particularly seminal
in motivating effective higher-order methods and is extremely clear geometrically in
showing how the methods incorporate higher-order information. Therefore, our paper
uses the predictor-corrector motivation.

Finally, since we are concerned with solving large, difficult problems, we again
confront the enigma of removing dense columns. This is essential for solving two new
problems, fitlp and fit2p, of the NETLIB test set within our memory constraints.
We identify an instability that arises from using Schur complements to accomplish
this task and suggest a remedy that has worked well in practice.

Section 2 briefly introduces the primal-dual algorithm OB1, with some minor
improvements. Section 3 derives the predictor-corrector method for bounded prob-
lems and discusses some of the difficulties that had to be overcome. Section 4 deals
with dense column removal, and 5 gives computational results indicating that the
predictor-corrector method is indeed a major advance in the state of the computa-
tional art.

2. The primal-dual method for linear programming. Lustig, Marsten,
and Shanno [8] describe in detail a path-following primal-dual interior-point method
for linear programming derived from a logarithmic barrier method. Here we briefly
recapitulate the algorithm both for the convenience of the reader and because the first-
order conditions will be required to motivate subsequent work on the new primal-dual
predictor-corrector method. The primal problem we are concerned with here is

(1) min cTx subject to Ax b, 0 <_ x <_ u,

where some or all of the upper bounds may be infinite. We assume that A E mn,
b E m, c n, u n, and x n. Adding slack variables s to transform the
upper-bound inequalities to equalities and eliminating the inequality constraints by
incorporating them in a logarithmic barrier term appended to the objective function,
the Lagrangian for (1) becomes

n n

(2) L(x, s, y, w, #) cTx #E In xj #E In sj yT(Ax b) wT(u x s).
j=l =

The first-order necessary conditions for a stationary point of (2) are

Ax b,

(3) ATy w + z c,
XZe #e,

SWe #e,
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where X, Z, S, and W are diagonal matrices with the elements xj, zj, sj, and wj,

respectively, and z E n is the vector of the dual slack variables.
The primal-dual algorithm is derived from the first-order conditions (3) by ap-

plying one iteration of Newton’s method to find an approximate solution to (3) for a
fixed value of # and continuing until the complementarity xTz + sTw is reduced to a

predetermined tolerance. In [8] this algorithm was implemented specifically by assum-
ing that a current estimate x, y, z, w, s was available satisfying x > 0, z > 0, w > 0,
and s > 0, with the further restriction that x + s u, i.e., that the upper bounds
were always explicitly satisfied. Fixing # and applying one step of Newton’s method
to (3) yields the set of equations

(4)

AAx b- Ax,
Ax + As O,

ATAy + Az Aw c- ATy z + w,
ZAx + XAz -XZe + #e,

WAs + SAw -SWe + #e.

Defining

0-- (X-1Z+S-1W)-1

and

the solution to (4) is

p() (S-1 X-1)e- (W- Z)e,

Ay (AOAT)-I[(b- Ax) + AO((c- ATy- z + w) + p(#))],
Ax O[ATAy p(#) (c- ATy z + w)],
AZ tX-le- Ze- X-1Znx,
Aw ttS-le We + S-1WAx,
As -Ax.

A new point x*, s*, y*, z*, w* is then defined by

(8)

X* X + OpAX

y* y +
z* z ODAZ
W* W ODAW

where p and cD are respective step lengths in the primal and dual spaces chosen
to assure the nonnegativity of the variables x, s, z, and w. At each step the barrier
parameter # is reduced by a method discussed below, and the algorithm continues
until the relative duality gap satisfies

cTx bTy + uTw
(9)

1 + IbTy uTwl
<
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for a user-predetermined e.
In [8] # is chosen at each step to be

(10)

where

cTx bTy + uTw + M5I + M52
()

(11)
(12)

(3)

-lib- Axlllllb- Axll,
-IIc- ATy z + wll/llc ATy z + wll,

n2, if n <_ 5000,(n) / n3/2, if n>5000,

and M is an appropriately chosen large constant, which in [8] was given by

(14) M--(n) max{ max (Icjl}, max
_j_n

A somewhat complex algorithm for choosing x, y0, z0, and is documented in [8]. In
the numerical results given in [8], it was noted that for these choices of x, y0, z0, and, 69 of the 71 problems of the NETLIB test set tested in [8] converged to eight digits
of accuracy, whereas pilot4 and capri required to be reduced in order to obtain
that degree of accuracy.

The algorithm corresponding to (7) and (8) that we use to compare with the new
predictor-corrector algorithm modifies the of [8] to achieve eight digits of accuracy
on all problems with the default settings. Here we choose initially, as in [8], and
compute the initial search vector. Denoting this vector by

(15)

Ax Axl + Ax2,
Ay Ayl q- iAy2,
Az Az + #Az2,
Aw Aw + #Aw,

we compute the vector norms

i IIAx / Ay / Az1 - Awlll
and

(16) Au --IIAx / Ayu / Azu / Awll.

Then, if #A2 < 0.TA1, we increase by a factor of 10, and if 10A < #A2, we decrease
by a factor of 10. Thus, is dynamically adjusted to attempt to bring the lengths

of the optimality-feasibility vector A and the centering vector A2 to approximately
equal magnitudes, where in (16) I1" is the 11 norm.

This readjustment of allowed all previously tested problems, plus 14 of the 15
additional problems recently added to the NETLIB test set, to be solved to 8 digits
of accuracy using the default options. Moreover, a comparison between the iteration
counts given in 4 for this method and the counts of [8] shows that overall the method
is not only more stable, but more efficient. Thus, if a pure primal-dual method is
desired, it seems important to choose the initial # to roughly equate the initial norms
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of the vectors A1 and A2. However, because of the clear numerical dominance of the
method that is documented in the next section, the importance of the pure primal-
dual algorithm is questionable at best.

3. Mehrotra’s predictor-corrector method. Mehrotra [10] introduces a
power series variant of the primal-dual algorithm without considering explicit bounds.
This algorithm was initially described by Mehrotra [9] without any given motivation.
Here we derive a version of the method described in [9] including bounded variables
but, as previously noted, using the predictor-corrector motivation. This algorithm
can also be viewed as an extension of one of the algorithms presented by Mehrotra
in [10]. The method again uses the logarithmic barrier Lagrangian (2) to derive the
first-order conditions (3). Rather than applying Newton’s method to (3) to generate
correction terms to the current estimate, we substitute the new point into (3) directly,
yielding

(17)

A(x + Ax) b,
(x + + + u,

AT(y + Ay) (w / Aw) + (z + Az) c,

(x +
(s +  s)(w +

where AX, AZ, AS, and AW are diagonal matrices having elements Ax, Az, As,
and Aw, respectively. Simple algebra reduces (17) to the equivalent system

(18a)
(18b)
(18c)
(18d)
(18e)

AAx b- Ax,
Ax + As u- x- s,

ATAy Aw -F Az c- ATy + w z,
XAz + ZAx #e- XZe- AXAZe,
SAw q- WAs #e SWe ASAWe.

The left-hand side of (18) is identical to (4), while the right-hand side has two
distinct differences. The first deals with the equation defining the upper bounds. In
the algorithm of 2 we always choose x and so so that x > 0, so > 0, and x + so u.
Thus the right-hand side of equation (18b) is always zero. For reasons to be discussed
later, this proves to be computationally unstable for the predictor-corrector method
on problems with small upper bounds. Thus we assume only that x > 0 and so > 0
but not that the upper-bound constraint x + so u is satisfied initially. Rather,
we allow the method to iterate to bound feasibility in precisely the same manner it
iterates to primal and dual feasibility.

The major difference between (4) and (18) is the presence of the nonlinear terms
AXAZe and ASAWe in the right-hand side of (18d) and (18e). Thus (18) implicitly
defines the step Ax, Ay, Az, As, Aw. To determine a step approximately satisfying
(18), Mehrotra suggests first solving the defining equations for the primal-dual affine
direction:

(19)

AA& b- Ax,
A& + A u- x- s,

ATAI ACv -+- A c- ATy + w z,
XA + ZA -XZe,
SACv + WA -SWe.
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These directions are then used in two distinct ways: to approximate the nonlinear
terms in the right-hand side of (18) and to dynamically estimate #.

To estimate #, Mehrotra performs the standard ratio test on both the primal and
dual variables to determine the step that would actually be taken if the primal-dual
affine direction defined by (19) were used. Thus, we define

(20)

and let

Then the new complementarity gap that would result from a step in the affine direction
is

(21) (x + + + + +

Mehrotra’s estimate in [9] for #, generalized to include lower bounds, is then

(22) xTz -- 8Twwhich chooses a small # when good progress can be made in the affine direction and a
large # when the affine direction produces little improvement. This is appealing, since
poor progress in the affine direction generally indicates the need for more centering
and hence a larger value of #. In [10] Mehrotra uses a cubic rather than a quadratic
multiplier, but comparison of the iteration counts of 5 with those of [10] indicates
that this appears to make little difference.

In the implementation tested and documented in 5, we have essentially adopted
this same algorithm for choosing # with one minor difference. We found that choosing
# by (22) can result in numerically unstable systems as the optimum is approached
on poorly conditioned problems, such as the pilot models. Thus when the absolute
complementarity xTz "[" 8Tw

_
1, we define # by (22), but when xTz -{’- 8Tw < 1, we

define

(23) #-- (xTz + sTw)/(n),

where (n) is defined by (13). In practice this proved totally satisfactory and far more
stable than always choosing # by (22).

The actual new step Ax, Ay, Az, As, Aw is then chosen as the solution to

(24)

AAx b- Ax,
Ax + As u- x- s,

ATAy Aw + Az c- ATy + w z,

XAz + ZAx #e- XZe- AA2e,
SAw + WAs #e- SWe AAIfVe.
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Clearly, all that has changed from (4) is the right-hand side, so the matrix algebra
remains the same as in the solution (7). Ratio tests identical to (20) are now done
using Ax, Ay, Az, As, and Aw to determine actual step sizes ap and aD, and the
actual new point x*, y*, z*, s*, w* is defined by (8).

After the coefficient matrix AOAT has been factored, the additional work of the
predictor-corrector method is in the extra backsolve to compute the affine direction
and the extra ratio test used to compute #. What is gained from this extra work
is approximate second-order information concerning the trajectory from the current
estimate to the optimal point as # is varied continuously.

To see this, note that the full primal-dual affine correction terms, A.A2e and
AAe, are added to the right-hand side of (24). The step lengths tip and tip
defined by (20) are used to compute # but not to modify the correction. Thus the
correction added is one that would result from taking a full step of length 1 in the
affine direction. Whenever a primal and dual full step of length 1 can be taken, primal
feasibility and dual feasibility are achieved exactly within the numerical accuracy of
the computations. Now the solution to (24) can be written as

(25)

Ay A + cy,
Ax A& + cx,
Az A + cz,

As A + c8,

where A&,A,A,A,A are the solution to (19) and the correction terms cx, cy,
cz, c8, and c satisfy

(26)

Acx O,
cx -- Cs -0,

ATcy + Cz Cw O,

Xcz + Zc #e- AA2e,
Sc + Wc #e- AAIe.

Now, if the full step of 1 were achieved on this affine step, the new complementarity
would be precisely

as by the definition of A&, A, Af,A in (19),

xTz + AcTz -{" AfTx 8Tw + AfTw + AT8 O.

Thus (26) could describe a centered Newton step from the point x +
z + Af, s + A, w +A except that the corrections A&, A, Af, A, A have not
been added to the diagonal matrices on the left-hand side of (26). Thus the correction
terms are a Newton step from the point achieved by a full affine step, but using the
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FIG. 1. Diagram of direction vectors.

second-derivative matrix at the current point x, y, z, w, s as an approximation to the
Hessian at the point corresponding to a full affine step.

The effect of this is demonstrated in Fig. 1, shown in terms of the primal variables
x. Here the vertex v* is the desired optimum. The affine direction A from the current
estimate x is a vector tangent to the continuous trajectory as tt 0, as is shown in
the figure. The point Xa is the new point predicted by the affine variant with a step
of length 1, which by the previous analysis must lie outside the feasible region. The
correction term cx that is added at Xa is not tangent to the trajectory through Xa
for two reasons. First, a centering term corresponding to # > 0 is added, rotating
cx toward the center of the polytope. Second, the second-derivative matrix used to
calculate c is computed at x and not at Xa. Hence, even without a centering term,
the vector c would not be exactly tangent at xa. However, the curvature of the
trajectories defined through each point by continuously varying # is clearly estimated
by the method. The results of 5 show this to be extremely effective computationally.

Higher-order methods for interior-point algorithms have been proposed by Bayer
and Lagarias [2] and implemented by Adler, Karmarkar, Resende, and Veiga [1] and
Domich, Boggs, Rogers, and Witzgall [5]. Each of these implementations uses power
series estimates to the trajectory at x and shows that higher-order methods reduce the
iteration count, with occasional significant reductions. However, Adler et al. report
that the increased costs of computing the higher-order terms generally eliminate any
effective advantage gained from the lower iteration counts, whereas Domich et al. do
not provide comparative timings. As previously noted, Mehrotra [10] uses a different
power series derivation for the predictor-corrector method.

The resUlts of 5 show that the predictor-corrector method almost always reduces
the iteration count and usually reduces computation time. Furthermore, as problem
size and complexity increase, the improvements in both iteration count and execution
time become greater. Thus the predictor-corrector method is a higher-order method
that is generally very computationally efficient.

Another small variant in the algorithm involves the choice of step size. Zhang,
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Tapia, and Dennis [11] have recently shown that for nondegenerate problems the
primal-dual method will have an asymptotic quadratic rate of convergence if a steep of
length 1 is taken as the optimum is approached. Thus, if 0.99995ip > 1 or 0.999955D >
1, we restrict the step length to 1. Further, if ip and 5D are both equal to 1, a correction
is not added on this iteration, but the affine direction is accepted with a step length
of 1, thus attaining primal and dual feasibility in one step in the affine direction.

As a final note on this section, we have stated that this implementation of the
predictor-corrector algorithm allows bound infeasibility. This proved to be necessary
for the predictor-corrector method as it is more sensitive to the starting point than
the pure primal-dual method. Although it is theoretically always easy to maintain
bounds exactly, the predictor-corrector method performs best with relatively large
initial estimates to the primal variables x. Some models of the NETLIB test set,
notably the p+/-:tot models, have upper bounds of 10-5 for some variables, and hence
maintaining bound feasibility requires very small initial estimates to x. For these
estimates, the method has proved quite unstable and often fails to converge because
of numerical problems. Allowing the initial estimates for x and s to violate the bounds
resolves these problems and is quite efficient in practice.

4. Yet again dense columns. In Choi, Monma, and Shanno [4] the use of
Schur complements to eliminate dense columns from A to assure a sufficiently sparse
factorization of AOAT is discussed. In [8] the authors discuss the effects of this in
greater detail and document numerical stability problems with the algorithm. It is
the purpose of this section to identify the instability, suggest a possible remedy, and
advise that the remedy be used with extreme caution.

The nature of the problem can be seen easily from the following simple linear
programming problem:

(27)

min -Xl
subject to Xl - X2 2,

Xl --" X3 1,
Xl, X2, X3

__
0.

This has the solution xl 1 and x2 1. If we consider the first column to be dense,
the resulting sparse matrix factored during the Schur complement procedure is

(28)
AsOsAT

O1 x3/z3 0

0 X3/Z3"

LsDLT AOAT.(29)

As the solution is approached, X3 0 and this matrix becomes rank deficient. This
introduces sufficient instability into the Schur complement procedures to make it im-
possible at times to achieve the desired accuracy. Further, this is not a contrived
example, for often the removal of dense columns leaves all remaining elements of one
or more rows identically zero. Thus an artificial variable must be added to each of
these rows to assure that AOsAT is not rank deficient. Since these artificial variables
must be driven to zero, rank deficiency always results as the optimum is approached,
and the desired accuracy is almost never attained.

To attempt to alleviate this problem when Schur complements are being used, the
algorithm monitors the spread between the largest and the smallest diagonal elements
of the factorization
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When this spread becomes large, all smaller diagonal elements are set to 1 and the
remaining elements of these columns are set to 0. These Cholesky factors are used
as preconditioners for a preconditioned conjugate gradient method [1] with the dense
column added to the matrix A. This eliminates rank deficiency and removes much
of the instability. Although, in general, Schur complements are more efficient than
preconditioned conjugate gradients, in this case preconditioned conjugate gradients
allowed for accurate solutions while Schur complements did not.

For example, the linear program (27) is easily solved in 10 iterations by the
primal-dual method of 2 without dense columns removed and by the same method
combined with the preconditioned conjugate gradient method with the single dense
column removed. However, failure occurs because of numerical instability when (27)
is solved by using pure Schur complements. Interestingly, (27) is easily solved with
the single dense column removed by using the predictor-corrector algorithm of 3 and
Schur complements, indicating that the new method may be much more stable than
pure primal-dual algorithms. On problem seba, when columns of length 50 or more
are removed and the minimum local fill-in ordering for the matrix AsOsAT is used, the
predictor-corrector method can achieve only seven digits of accuracy before failing at
the 19th iteration. However, the pure primal-dual method easily achieves eight digits
of accuracy in 28 iterations.

It is indeed instructive to examine how the predictor-corrector method performs
on seba under different options. Five runs were executed and are identified in Table
1 as minfil for Schur complements with the minimum local fill-in ordering, mm+/-nd for
Schur complements with the multiple minimum degree ordering, nodense for a pure
Cholesky factorization with no dense columns removed, switch for Schur complements
with the minimum local fill-in ordering switching to preconditioned conjugate gradi-
ents when the spread of the diagonal elements was greater than 1014, and conjgrad
for removing dense columns by the preconditioned conjugate gradient method at each
iteration. The times reported are simply solution times.

TABLE 1

Timings on SEBA.

Method

minfil

remind

nodense

switch

conjgrad

CPU seconds

14.60

14.70

388.70

32.44

86.85

Accuracy

10-7

10-8

10-8

10-8

Clearly, removal of dense columns on seba is valuable. Each of the four methods
that removed dense columns took approximately 0.15 seconds to do the ordering, inde-
pendent of whether it was minimum local fill-in or multiple minimum degree. However,
minimum local fill-in without removal of the dense columns required 91.05 seconds to
do the ordering. The fact that the same predictor-corrector algorithm achieved dif-
ferent accuracies with different orderings indicates the sensitivity of the algorithm to
ill-conditioned matrices. Finally, the results clearly show that even for problems with
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a few dense columns (seba has 14 dense columns), preconditioned conjugate gradient
methods are much slower than Cholesky factorizations and should be used sparingly.
In view of this, the switch option appears sensible when accuracy is being lost using
Schur complements, but further experimentation is needed to determine the optimal
time to switch from Schur complements to preconditioned conjugate gradients.

For the NETLIB test set we needed to remove dense columns for only four prob-
lems: israel, seba, fitlp, and fit2p. Problems israel and seba can both be
solved without removing dense columns. However, fitlp and especially fit2p must
have dense columns removed in order to be solved, due to their sufficient size and
density. Problems fitlp and fit2p demonstrate that the capability of removing
dense columns is not just more efficient, but at times is actually required. In view of
this need, the computational results of the next section give the results for israel,
seba, fitlp, and fit2p with pure Schur complements. However, only seven digits
of accuracy were achieved for seba. Eight were achieved by using the switch option.

5. Computational results. OB1, a modularized FORTRAN-77 code that was
developed to implement the primal-dual barrier method, is documented by Lustig,
Marsten, and Shanno [8]. This code for the pure barrier method was modified to
alter the initial #, as described in 2, but otherwise remains as in [8] with the single
further exception that at each step we move to a point corresponding to 0.99995 of
the distance to the boundary, rather than 0.995.

The predictor-corrector method described in 3 was implemented within the same
software, for which the method is selected by a user-specified parameter. As noted in
3, the predictor-corrector method is quite sensitive to the initial guess to the optimal
solution. Following Mehrotra [9], an initial estimate to the primal variables x was
chosen to be

(30) if:- AT(AAT)-lb.

We then define

(31) max(- min 5:j, 100, Ilbll/lO0) and 2 1 + Ilcll
l<_j<_n

where II" is the 11 norm.
Then, for each j 1,

(32) 0 max(l uj x)xj max(&j, 1) and sj

We set yO 0 and the pair z, w to satisfy

(33)

zi ci + (:, wj (z, ifci>(:,
zj=-cj, wj=-2cj, ifcj<-(2,
zj=cj+(2, wj=(2, if0_<cj<(2,
z=2, wj=-c+2, if -2_<c_<0.

In addition, if we have upper bounds satisfying uj < 0.001 for any j, the components
of x are all set to 100. We believe that further experimentation along the lines of
Mehrotra [9] would yield a more stable algorithm to determine the starting point.

Besides adding the predictor-corrector method to OB1, we implemented the op-
tion of ordering the matrix AOAT by either multiple minimum degree or minimum
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local fill-in. These are discussed in detail by de Carvalho [3]. His tests show that
overall performance on large problems indicates a definite preference for minimum
local fill-in. We tested both orderings as well, and the results of our experiments on
a large test set totally reinforce his conclusion, although no strong inference can be
drawn from testing on small problems.

The numerical experiments conducted here were done on 86 problems of the ex-
panded NETLIB [6] test set. We did not solve problems stocfor3 or truss because
they require substantial time to generate the MPS file from FORTRAN code. The
problem stocfor3 is large enough to be difficult to solve in our computing environ-
ment. All experiments were conducted on a Silicon Graphics 4D/70 workstation with
16 megabytes of memory and one processor. The code was compiled with the MIPS
f77 compiler using options -02 and -0limit 800.

The main results compare the relative efficiency of the primal-dual and predictor-
corrector algorithms. The results are documented in Tables 2 and 3. Solution times
do not include preprocessing time or the time to compute the minimum local fill-in
ordering. Each method solved 85 of the 86 test problems with the default settings.
As previously noted for seba, once dense columns of more than 50 elements were
eliminated, the predictor-corrector method attained only seven digits of accuracy.
The primal-dual method achieved only seven digits of accuracy on fit2p with the
standard default and dense columns again removed, but easily achieved eight digits of
accuracy with the value of in (14) raised from the default of 0.1 to 1. Both methods
in this comparison used the minimum local fill-in ordering.

The predictor-corrector method outperformed the primal-dual method on itera-
tion count for 85 of the 86 problems. More importantly, it outperformed the primal-
dual in execution time for 71 of the 86 problems. As expected, the percentage decrease
in iterations is always greater than the percentage decrease in run time because of the
extra back solve and ratio test required. However, the percentage decrease in run time
is still quite impressive, especially on large, difficult problems. Yet the run time per-
centages can still be improved. Both methods test to assure that AAx is sufficiently
close to b- Ax, which entails calculating AAx at each iteration. When this test fails,
iterative refinement is invoked. Here, we use the specific form of iterative refinement
devised for least-squares problems [7]. We have found this to be an important safety
feature for large, difficult problems, but on most problems of the NETLIB test set it
represents unnecessary overhead and could be removed. It should be noted that on
many problems the number of nonzeros in A and L are of the same order of magni-
tude; hence, this test can be as expensive as a forward and backward pass through
L. OB1 has been designed to solve difficult problems with little intervention from the
user. Therefore, we prefer to present results on an algorithm designed for maximum
stability. For the user who never requires iterative refinement, the computational su-
periority of the predictor-corrector method may be even more pronounced. The one
unmistakable conclusion, with or without iterative refinement, is that the predictor-
corrector algorithm is substantially superior to the pure primal-dual algorithm and
that this superiority grows with problem size and complexity.

Iteration counts of the algorithms documented here are comparable to Mehrotra’s
algorithm [10], even though small differences occur on individual problems. Thus
Mehrotra’s somewhat greater computational advantage in terms of computation time
over the primal-dual algorithms of OB1 is due almost entirely to the extra overhead
imposed by the check for iterative refinement, inclusion of bounds, and other safe-
guards we found necessary for larger, more complex problems. The one check that we
have not included is one to assure that his potential function is reduced sufficiently at
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TABLE 2

Computational results for OB1 (A-N).

Problem No. of No. of No. of primal/Dual Meth. Pred./Corr. Meth. Dynamic l.t
Name Rows Cols. Nonzeros Its. ;ol. Time Its. Sol. Time Its. Sol. Time

25fv47 821 1571 10400 47 14818 25 92.4i 46 167.55
80bau3b 2262 9799 21002 70 363.72 38 253.98 64 425.97
adlittle 56 97 383 16 0.70 12 0.73 17 1.03
afiro 27 32 83 13 0126 9 0.28 11 0.32
agg 488 163 2410 28 19.24 24 19.52 29 23.65
agg2 516 302 4284 27 46.34 18 36.22 27 53.62
agg3 516 302 ,1300 26 44.82 17 34.50 25 49.99
bandm 305 472 2494 28 7.53 17 5.87 28 9.41
beaconfd 173 262 3375 18 3.39 10 2.45 14 3.31
blend 74 83 491 15 1.07 14 1.26 18 1.61
bnll 643 1175 5121 56 54.05 27 32.77 49 58.49
bnl2 2324 3489 13999 59 1037.78 33 632.11 61 1159.18
boeinl 351 384 "3485 38 15.72 24 12.8,1 40 21.08
boeing2 166 143 1196 27 3.39 14 2.41 23 3.75
bore3d 233 315 1429 39 4.69 18 2.87 27 4.28
brandy 220 249 2148 28 6.41 19 5.35 24 6.77
capri 271 353 1767 44 16.07 18 8.43 29 13.48
cycle 1903 2857 20720 51 196.09 30 137.74 48 218.43
czprob 929" 3523 10669 59 48".58 35 40.09 53 60.14
d2qOOc 2171 5167 32417 53 804.24 31 525.11 51 856.96
degen2 444 534 3978 24 38.44 14 26.31 23 42.02
degen3 1503 1818 23,646 31 766.81 20 551.83 40 1’082.’83
e226 223 282 2578 27 7.01 22 7.19 34 11.07
etamacro 400 688 2409 45 37.61 29 28.80 50 49.30
fffff800 524 854 6227 60 79.15’ 28 42.99 44 67.21
finnis 497 614 2310 41 13.96 26 11.78 42 18.88
fit d 24 1026 13404 22 16.19 18 17.16 28 26.39
fitlp 627 i677 9868 22 34.01" 16 29.9i’ 23 42.89
fit2d 25 10500 129018 47 320.21 24 219.82 40 361.11
fit2p 3000 13525 50284 32 302.19 18 206.91 31 366.76
forplan 1’1 42’1 4563 40 16.71 21 10.71 30 15.20
ganges 1309 1681 6912 33 43.49 16 27.10 30 50.13
gfrdpnc 616 1092 2377 27 8.29 18 8.07 27 11.97
greenbea 2392 5405 30877 62 29’.71’ 41 218.21 61 340.34
greenbeb 2392 5405 30877 70 287.16 33 167.31 60 301.41
growl5 300 645 5620 26 14.33 16 11.61 20 14.42
grow22 440 946 8252 2 23.73 i6 17.44 21 22.40
grow7 140 301 2612 22 5.49 14 4.54 19 6.12
israel 174 142 2269 30 13.61 23 12.19 33 17.44
kb2 43 41 286 23 0.91 15 0.81 24 1.24
lotfi 153 308 1078 34 4.46 16 2.94 24 4.30
nesm 662 2923 13288 66 148.57 30 86.46 57 161.93

each step. Since our only difficulties with convergence occur through failures of linear
algebra, we have not found this test to be necessary. However, this test may be re-
quired later if we have unexplained computational difficulties. Also, work is underway
to create a stripped-down version of OB1 that allows the user to choose speed rather
than safety if experience indicates this will be satisfactory for a given problem. Thus
our results and Mehrotra’s are totally compatible for an efficient algorithm restricted
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TABLE 3

Computational results for OB1 (P-W).

Problem No. of No. of No. of Primal/Dual Mcth’ pred./Corr. Mcth. Dynam t
Name Rows Cols. Nonzcros Its. Sol. Time Its. Sol. Time its. Sol. Time

perold ’625 1376 6618 62 178.54’ 33 104.66 55 173.56
pilot4 410 1000 5141 56 71.72 36 54.63 50 78.63
pilot.ja 940 1988 14698 66 537.75 46 408.00 56 ,500.32
pilotnov 975 2172 ’130’57 36 369198 20 230.03 29 330.19
pilot 1441 3652 43167 67 3813.52 29 1784.35 63 3798.77
pilot.we 722 2789 9126 57 94.67 46 100.60 56 ,,120.59
recipe 91 180 663 17 1.17 10 0.96 13 1.22’
sc105 105 103 280 16 0.78 10 0.66 14 0.89
sc205 205 203 551 21 1.83 11 1.31 15 1.83
s50a 50 48 i30 14 0.42 10 0.37 13 0.47
sc50b 50 48 118 12 0.36 8 0.30 11 0.43
scagr25 471 500 1554 24 4.86 16 4.51 24 6.65
seagr7 129 140 420 20 1.16 12 0.87 18 1.40
scfxml 330 457 2589 29 9.11 17 7.03 26 10.48
scfxm2 660 914 5183 36 23.30 19 16.07 32 26.73
scfxm3 990 1371 7777 37 36.27 20 25’170 33 41.74
scorpion 388 358 1426 21 3.25 14 2.94 21 4.32
scrs8 490 1169 3182 36 15.73 27 15.84 48 27.82
scsdl 77 760 2388 12 2.52 11 3.01 13 3.63
scsd6 147 1350 4316 15 5.67 12 6.10 17 8.46
scsd8 397 2750 8584 14 11.18 10 10.98 15 16.08
sctapl 300 480 1692 ’21 4.28 15 4.12 25 6.77
sctap2 1090 1880 6714 23 23.85 20 26.73 27 36.41
sctap3 1480 2480 8874 24 34.13 17 32.24 30 55.52
seba 515 1028 4352 ’2g 15.38 19 36.88 29 21.51
sharelb 117 225 1151 36 3.55 20 2.68 35 4.71
share2b 96 79 694 18 1.37 12 1.21 18 1.72
shell 536 1775 3556 31 13.67 21 12.96 32 19.58
ship041 402 2118 6332 25 13.20 15 11.02 23 16.57
shipO4s 402 1458 4352 24 8.62 15 7.47 22 10.72
ship081 778 4283 1280’2 26 23192 16 20.65 26 ’32.62
shipO8s 778 2387 7114 25 12.02 14 9.50 24 15.82
shipl21 1151 5427 16170 29 35.35 18 30.58 28 46.53
shipl2s 1151 2763 8178 30 17.52 18 14.71 28 22.34
sierra 1227 2036 7302 31 40.14 18 31.41 30 51.25
stair 356 467 3856 25 25.87 16 19.75 23 27.92
tandata 359 1075 3031 18 6.13 15 7.04’ 24 11.05
standmps 467 1075 3679 28 12.19 24 13.97 ,34 19.60
stocforl 117 111 447 18 1.09 19 1.46 21 1.63
stocfor2 2157 2031 8343 "34 51.78 22 44.14 36 71.28
tuff 333 587 4520 45 30.13 19 15.69 31 25.05
vtp.base 198 203 908 24 1.17 13 0.91 15 1.09
woodlp 244 2594 70215 ’22 108.18 14 80’.6" 20 "119.66’
woodw 1098 8405 37474 35 156.05 20 108.83 34 181.96

to his simple test set.
The predictor-corrector algorithm introduces two new concepts, namely, the cor-

rection term and the dynamic choice of # by (22). It is interesting to study the effects
of each concept by eliminating the corrective term and comparing the primal-dual of
2 with a pure primal-dual using the # given by (22). The results in Tables 2 and
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3 (columns labeled "Dynamic #") clearly demonstrate that the improvement in the
algorithm is attributed largely to the correction term rather than the choice of #.
Nevertheless, we found that the predictor-corrector worked best with the algorithm
for it documented in 3, rather than the simpler it of 2. Therefore, whereas the dy-
namic it given by (22) has a largely negative effect on the primal-dual algorithm in
terms of execution time, it significantly helps the predictor-corrector algorithm. For
the version labeled "Dynamic it," numerical difficulties prevented convergence to eight
digits of accuracy on problems greenbea and p+/-lot, we.

On the Silicon Graphics 4D/70, our tests strongly substantiated de Carvalho’s
conclusion [3] that minimum local fill-in generally outperforms multiple minimum
degree. However, this result is very architecture dependent and is certainly invalid for
vector architectures such as the CRAY Y-MP. Careful testing must be done on any
specific architecture to determine the correct default algorithm.

In conclusion, the predictor-corrector algorithm of 3 implemented with the mini-
mum local fill-in ordering is a substantial improvement over the primal-dual algorithm
of [8]. Compared with other interior-point methods, the predictor-corrector algorithm
is to date the most computationally efficient method for solving large-scale linear pro-
grams.
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method for convex quadratic programming. Convergence properties can be maintained even if the
projection is done inexactly in a well-defined way. Higher-order derivative information on the mani-
fold defined by the apparently active constraints can be used to increase the rate of local convergence.
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1. Introduction. We address the problem

(1) min f(x) s.t. ATx <_ b,

where x E Rn and b Rm and f is assumed throughout to be twice continuously
differentiable on the level set

E, {x ATx < b, f(x) < f(x)},
where x is some given initial choice for x. Recent literature on this problem can
for the most part be divided into two main classes. On the one hand, there are the
"active set" approaches, such as sequential quadratic programming, which are most
suitable when the constraints ATx

_
b lack any special structure, such as separability.

In these algorithms a model of f (for example, the quadratic approximation f(x) +
Vf(x)Td + (1/2)dTV2f(x)d) is formed at each "outer" iteration and minimized over
some subset of the feasible region. The algorithm tends to move along edges and faces
of the boundary of the feasible set, changing its set of currently active constraints by
at most one element on each "inner" iteration. A second class of methods, known as
"gradient projection" methods, allow more substantial changes to the active set at
each iteration by choosing a direction g (for example, Vf(x) or some scaled version
of it) and searching along the piecewise linear path P(x- g), where > 0 and P
is the projection onto the feasible set. Gradient projection methods are best suited
to the case in which the projection P(.) is easy to perform, for example, when the
feasible region is a box whose sides are parallel to the principal coordinate axes.

In this paper, our aim is to describe an algorithm of the gradient projection class,
in which we allow the projections to be performed inexactly. We focus on the case
of Euclidean norm projections, which can be solved by using interior-point meth-
ods for convex quadratic programming problems. In this way, general polyhedral
feasible regions can be handled. We thus hope to combine the much-vaunted advan-
tages of interior-point methods with the desirable properties of gradient projection
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algorithms--most notably, rapid identification of the final active set. In addition, we
allow second-derivative information to be used in the definition of g (as is also done
by Dunn [3], [4] and Gafni and Bertsekas [5]) to speed up the asymptotic convergence
rate after the correct active set has been identified.

The "inexactness" in the projection is quantified by a duality gap, which is up-
dated at each iteration of the projection subproblem. The global convergence analysis
in 4 is not tied to the use of an interior-point method for the projection; any algo-
rithm (including an active set method) that allows a duality gap to be calculated for
each iterate may be used.

The point x* is a critical point for (1) if there are scalars Yi >_ 0 such that

-Vf(x*) yiai,

where ai are columns of A and

Equivalently,

(2) Vf(x*) e N(x*;X),

where X is the feasible set (xlATx <_ b} and N(x; X) is the normal cone to X at x
defined by

N(x; X) {v vT(u- x) <_ O, for all u e X}.

In the next section, we specify the algorithm. The interior-point method that may
be used to perform the projection is discussed in 3. The global and local convergence
properties of the algorithm are analyzed in 4 and 5, respectively.

In the remainder of the paper, the following notational conventions will be used:

IlXll--- (xTx)1/2 (the Euclidean norm), unless otherwise specified.
Py(x) denotes the Euclidean projection of the vector x onto the convex set
Y c Rn; that is,

Py(x) arg min IIz- xll.zEY

If the subscript is omitted from P, projection onto X is assumed.
intY denotes the interior of Y, and 0Y denotes its boundary.
When x is a vector, relations such as x > 0 are meant to apply componentwise.
Subscripts on vectors and matrices denote components, while superscripts are
used to distinguish different iterates. Subscripts on scalars denote iteration
numbers.
When {} and {k} are nonnegative sequences, the notation k O(k)
means that there is a constant s such that k <_ Sk for all k sufficiently large.
k o() means that there is a nonnegative sequence {s} converging to
zero such that k <_ Skk for all k sufficiently large.
The sequence {vk } is said to converge Q-quadratically to v* if IIvk+l v* II
O(I]vk v*l12). It is said to converge R-quadratically if there is a sequence
{k} that converges Q-quadratically to zero such that I[vk- v*ll <_ k for
all k.
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If (vk } and (0k } are two sequences of vectors, the notation "vk -+ 0k’’ means
that limk-o I[vk ok[I O.
In 4 and 5, we introduce constants denoted by C and C with a subscript.
In all cases these represent strictly positive constants, even where not stated
explicitly.

2. The algorithm. We start this section by giving an outline of the major op-
erations at each iteration of the basic algorithm. Then we state a formal outline and
conclude by mentioning possible variations.

The algorithm first defines an "almost active" set of constraints at each iterate
xk. It partitions the gradient into two orthogonal components (which are orthogonal
to and tangent to the manifold defined by the almost active set, respectively) and
then scales the tangent component by a matrix with suitable positive-definiteness
properties (possibly an inverse reduced Hessian or a quasi-Newton approximation to
it). A projected Armijo-like line search is then performed along the resulting direction.

The activity tolerance at the point xk is ek, where for the moment we require
only that ek _> 0. The almost active set Zk is defined by

(3)

We use Tk to denote the tangent manifold corresponding to this set"

(4) T {z aTz 0, all/e zk}.
The negative gradient is then decomposed by using Tk and setting

(5) dk PT(--Vf(xk)), dk+ -[Vf(xk) + dk].
The tangent component dk is modified by setting

(6) 0k Dkdk,

where Dk is a matrix such that PT o Dk o PT Dk and

(7) )IzTz <_ zTDkz <_ )2zTz, all z E Tk,

where A1 and ’2 are positive constants. The search direction is assembled as

(8) gk _(k + dk+).
A projected Armijo search is carried out along the path

xk(a) p(xk agk),

where the values a 1,/3,/2,/3,... (/ E (0, 1) is some constant) are tried. For each
such value of a, the projection is calculated with the algorithm described in the next
section. This algorithm generates a sequence of feasible approximations to xk(a),
which we denote by xkj (a). For each such estimate, the algorithm produces a duality
gap "kj (a). Defining the more convenient quantity

we can obtain upper and lower bounds on the distance from xk -agk to X; that is,

IIxk () (xk gk)l[2 () < IIx() (xk gk)ll2 _< IIxkj () (xk gk)l[2.
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These "inner iterations" are stopped at a value of j for which 6kj(a) becomes suffi-
ciently small according to the following criteria:

(9) _< / iid ll

and

Here T, C1, and are constants that satisfy the conditions

T > 2, C1 < 1.

We denote the final computed 6kj (a) by 6k (a), and we denote the corresponding
xkJ(a) by xk(a;6k(a)). The step a is then accepted if the following "sufficient de-
crease" test is satisfied:

(11) S() S(x(; k())) _> {dkrDkdk + IIx ( ; + d)ll },
where a E (0, 1) is a constant.

The algorithm can be summarized as follows:

Step 1: Choose ek. Compute Zk from (3), and compute gk according to (5)-(8).

Step 2: For a 3p, p 0, 1,2,.-. (in sequence) approximately calculate xk(a)
P(xk -agk), terminating when xk(a; k(a)) xkJ(a) and its associated k(a)
6kj(a) are found that satisfy (9), (10). If the test (11) is passed for this value of a,
set ak a P, xk+l xk(o;6k(O)), k - k + 1, and go to the next iteration.
Otherwise, increase p by 1, and try the next a =/3p.

In its "exact" form (i.e., 6k(a) 0), and when Dk is defined as the reduced Hes-
sian or a quasi-Newton approximation to it, the step gk is the same as that obtained
by specializing the algorithm of Dunn [4] to the linearly constrained case. The calcu-
lation of gk is somewhat different in Gafni and Bertsekas [5]. They define an "almost
tangent cone" at xk by

c {z < 0, i e z*)

and then define dk as the projection of-Vf(xk) onto this cone. Additionally, the
conditions on Dk are slightly different, and ok is the projection of Dkdk onto Ck. Our
reason for following Dunn [4] and using the simpler decomposition relative to Tk is our
assumption that projection onto the subspace Tk can be done exactly and cheaply.
This is not unreasonablethe cost would normally be comparable to one iteration of
the interior-point algorithm used for the projection onto X. Projection onto Ck may,
on the other hand, be as expensive as projection onto X. Still, there are intuitive
reasons for preferring Ck to Tk, and it would be of interest to see whether the extra
cost per iteration (and the extra algorithmic complexity of doing the projection onto
Ck inexactly) is justified.

The step-length rule (11) reduces to the one proposed by Gafni and Bertsekas [5]
(and also used by Dunn [3]) when k(a) =- O. Another obvious possibility, to which
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we will return briefly in 5, is

(12)
>_ a (adkTDkdk + Vf(xk)T[xk + 0k Xk(O; 5k())])

3. Projection onto X. Projection onto the polyhedral set X can be achieved
by solving a convex quadratic program or, equivalently, a linear complementarity
problem (LCP). In this section we formulate the problem and outline a primal-dual
potential reduction algorithm for solving it. The discussion will be brief, since other
papers, such as [6], [7], [10], and [11], can be consulted for details about motivation,
analysis, and implementation issues for this class of interior-point algorithms.

Throughout the remainder of the paper, we use the following assumptions:
(A) The feasible set X has an interior in Rn.
(B) At the solution z* P(t) of the projection subproblem, the set of vectors

(ai aTz* bi }

is linearly independent.
The (unique) vector P(t) is obtained by solving

or, equivalently,

min1/211z-tll 2 s.t.ATz<_b,

2 AT(13) min [Iz tll s.t. z + b, >_ 0.

Introducing Lagrange multipliers y for the constraints, we find that (13) is equivalent
to the (mixed) LCP

(14) [0 ] [ I A] [z]+[-bt ] >0, y>O, Ty--O.-AT 0 y

The coefficient matrix in (14) is clearly positive semidefinite.
The progress of the interior-point algorithm can be gauged by using the potential

function defined by
m

(15) (u, y) pp log(uTy) E log(,iyi),
i--1

where pp >_ rn + v/-. In Kojima, Mizuno, and Yoshise [7], the step from iterate j to
iterate j + 1 is obtained by solving the linear system

(16) 0 I [ I A] [Az]A, -AT 0 Ay

together with

-y + i 1,-.-,m,(17)
1-py

where / i=l y ym
Y and the value of py is as discussed below. A step length 0y is

chosen such that

< T, _<% i= 1,...,m
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for some T E (0, 1). Trivial modifications of the results of Kojima, Mizuno, and
Yoshise [7] indicate that for the choices pj =_ pp m+x/ and T 0.4, we have that

(19) (J + OjA, yj +OjAy) _< (, yJ)- 0.2.

When some iterate (zj, J, yJ) satisfies (J, yJ)

_
-O(v/-L), it can easily be shown

that (pj)Tyj

_
2-O(L). This suggests that, provided the initial point (z, 0, y0) sat-

isfies (0, y0) O(vfL), convergence to a point with duality gap less than 2-(L)

can be achieved in O(vf-L) iterations. (For purposes of the complexity analysis, L
is taken to be the "size" of the problem.) Although this choice of py yields the best
complexity result to date, it has been observed that, in practice, larger values of p
lead to fewer iterations. In Han, Pardalos, and Ye [6], the choice py m2 is made
for convex quadratic programs. In the context of linear programs, Zhang, Dennis,
and Tapia [11] observe that it is even desirable to let pj grow unboundedly large as
the solution is approached. (The steps produced by (16), (17) are then very close to
being Newton steps for the nonlinear equations formed by the equalities in (14).) Ye,
Kortanek, Kaliski, and Huang [10] have shown that such "large" choices of pi are not
incompatible with obtaining reductions in the potential function. In practical imple-
mentations, the line-search parameter Oj is also chosen differently. In Han, Pardalos,
and Ye [6], the following choice appeared to give good experimental results:

0j 0.99 min (min v min Y)i----1,...,m, A<O Al/i i-1,...,m, Ay<O Ay

An issue of particular concern in this context is the choice of a feasible initial
point at which to start the interior-point iteration. Such a point can be found by
augmenting the problem in a simple way. We can reasonably assume that a vector
z that satisfies ATz < b is available from some previous iteration. If y0 is also
chosen from a previous iteration, we usually have, from the first equation in (14),
that z + Ay is similar in magnitude to the primal quantities z and t. We can thus
define a (reasonably scaled) vector q by

q -(z t + Ay)

and obtain the following augmented version of (14)"

(20) -AT 0 0 y d-
l]m/ _qT 0 0 Ym+l bm+l

/

_
0, /m-t-1 -- 0, y >_ 0, Ym+l >_ 0, Ty d- m+lYm+ O.

The corresponding projection problem is

(21) min 1/211z- tll 2 s.t. ATz
_

b, qTz
_

bm+l.

If we choose bm/l to satisfy

bm+l > max(qTz, qTp(t)),

then we find that a feasible initial point for (20) is

(z,’,’m+,y, ym+) (z,b ATz,bm+ --qTzO, yO,1).
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At the optimal solution, /]n+l bm+l -qTp(t) and Yn+l 0. A practical choice for
bm+l can be made as follows: When t x ag with x feasible, note that

qTp(t) qT[p(x ag) (x ag)] + qTt
<_ IlqllllP(x ag) (x ag)l + qTt <_ allqllllg[I + qTt.

Hence bm+l can be chosen as any number greater than

max(qTz, cllq]l Ilgll + qTt)

We tacitly assume throughout the remainder of the paper that bm+l is chosen large
enough that the extra constraint in (21) does not come into play during the projection
process (that is, m+l stays reasonably large).

Two more points about the computational aspects of the projection should be
made since, for many variants of the algorithm described in this paper, it will be the
most time-consuming step, apart from the function evaluations. First, note that the
cost per interior-point iteration, which is dominated by the cost of solving augmented
versions of the linear system (16), (17), is similar to the cost of decomposing the
gradient, as in (5). (The latter operation may be performed by solving a system
whose coefficient matrix is a submatrix of the matrix in (16).) Second, the number
of interior-point iterates that will be necessary for a given c should not be too large.
A rule of thumb seems to be that 20-30 iterates are required for an accurate solution
when no a priori information about the solution is known. In our case, the situation is
better: Good starting points will usually be available from previous iterates and from
approximate projections for larger values of (. A priori information has been observed
to significantly decrease the number of interior-point iterations (see, for example, [9]).

In 5, we assume that the points (zj J J yJm+l Ym+l) generated by the interior-
point algorithm do not stray too far from the central path defined by

(Z,l],l]m+l,y, ym+l) feasible in (20)I uiyi uyg/(m + 1), i= 1,...,m + 1
/=1

The following sumption is used to prove that unit steps ak 1 are always eventually
used by the method.

(C) There is a constant > 1 such that the final iterate (z, ", Um+l, y, Ym+l)
generated by the projection algorithm, each time it is called, satisfies

1=1 uy/(m + 1).uY

Although this sumption conflicts to some extent with the desire for ft ymptotic
convergence of the interior-point method, Zhang, Dennis, and Tapia [11, Thm. 3.1]
observed that, at let in the ce of linear programming that they considered, it
appears to hold in practice.

4. Global convergence. In this section we prove that all accumulation points of
the algorithm of 2 are critical. The result depends crucially on the following lemma,
which bounds the distance between xk(a; 0) and xk(a; 5k(a)) in terms of

LEMMA 4.1. Suppose that (A) holds and that (B) holds at z* xk(a, 0). Then
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Proof. Setting t xk -agk, we obtain

lit (; 0)11 > lit (; ())11 ()
k()2 > 2[ k(; o)]T[xk(; 0) X(; k())] + Ilxk(; 0) Xk(; k())ll.

Now, since t-xk(a;O) N(xk(a;O) X) and xk(a; 5k(a)) X, the first term on
the right-hand side above is nonnegative and can be omitted from the inequality. The
result follows. [:]

Under appropriate nondegeneracy assumptions, application of the implicit func-
tion theorem to a subset of the equalities in (13) (or (20)) would suggest that, locally,
a stronger bound of O(Tk(a)) O(hk(c)2) might be obtained. In fact, some of the
local convergence analysis in 5 relies on just this observation. In general, however,
given a point xk and a search direction gk, there are usually values of a such that the
solution of (13) (or (21)) for t xk -agk is degenerate. Our result in Lemma 4.1 is
similar to, but more specific than, the bound that would be obtained by applying the
analysis of Mangasarian and Shiau [8] to (13).

We state without proof the following well-known result, which actually applies
for any closed convex X C Rn.

LEMMA 4.2. For any x E X and z Rn,
(a) IIP(x + (z) xll/c is a nonincreasing function of > O,
(b) IIP(x + z) xll/ < Ilzll.
Before proving the main result (Theorem 4.5), we show that the conditions (9),

(10) ensure that the projection is computed exactly when x is critical (Lemma 4.3)
and, in a technical result, show that the algorithm produces descent at a noncritical
point (Lemma 4.4).

LEMMA 4.3. Suppose that (A) holds and that (B) holds at z* xk. When xk is

critical, then 5k(a) 0 for all e [0, 1] and xk(c; 5k(a)) Xk for all e [0, 1].
Proof. Clearly the result is true for a 0. For the remainder of the proof, we

assume that a (0, 1].
All vectors in the subspace Tk are orthogonal to N(xk; X). Hence by (2) and (5),

dk k 0 and dk+ --Vf(xk). Also, by (2),

xk(a, O) P(xk aVf(xk)) xk,

and so

Ilx(; 6()) ( / )11 < IIx(; 0) 11 / I1(; 6()) (; 0)11 < ().

Substituting this expression in (9), we have

() <
C2

and hence

(22) 5(a)[1 la/2-25(a)] < O.

From (10) and the fact that /C1 < 1,

1 T]OlT/2--25k(O 1 TIC1’-2 > 1 cr-2 >_ 0,

since a [0, 1] and T > 2. Since 5k(a) _> 0, the inequality (22) can hold only if
5k(c) 0. Thus, the first statement is proved. Proof of the second statement follows
immediately. [:]
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LEMMA 4.4. Suppose Zk is defined by (3), where ek is any positive number.
Suppose that (A) holds and that (B) holds for all z* xk(a, O) .for a e [0, 1]. Then,
given any e (0, 1), there exists an () e (0, ek/llgkll) such that

(23)
vy()r[ (.; (-))1

[ 1>_ e adTDdk +-II(;e())- ( / d)ll

Hence, provided xk is not critical, there is an &() e (0,1 such that f(xk) >
f(xk(a, 6k(a))) for all a e (0, &].

Proof.

(24)
V/(x)[* x(.; 6(-))]

Vf(x*)*[ x(.; 0)] + vf()*[(.; 0) x(.; ,(.))].

and for a e (0, ek/llgkll) it can be proved by using an argument similar to that in [5,
Prop. 1 (b)]"

1
Vf(xk)T[xk- Xk(a, O)] >_ adkTDkdk +- I1’(, 0)- (x / d’)ll

By the smoothness assumptions on f, there is a constant B such that

IlVf()ll B for all x

Since all xk F, we have, using Lemma 4.1, that

(25) IVf(xk)T[xk(a;O) xk(a;Sk(a))][ < BSk(a).

Now

and so from (24)-(26)

(27)
1

Vf(xk)T[xk- xk(a; 6k(a))] >_ adkTDkdk - --Ilxk(a; Sk(a)) (xk + ak)ll 2--e()llx(,; e()) (x + d)ll Se(,).

Now

(28)
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The following simple argument shows that xk + ak e X for a e (0, k/llgkll):

i Zk = aT[xk + ok] < bi kllaill + gkai <
i e Zk ar[zk T k] axk

Hence, by Lemma 4.2(b), (28) becomes

(29) lxk(a; 5k()) (xk + kl[j 5() + jjdk+ll Sk() + S.

Hence, (27) becomes

vI()[x (.; (-))]
(30)

> adkTDkdk +--IlXk(a;Sk(a))- (Xk + ad)ll- 6(a)- 3BSk(a).

We now consider two ces. First, suppose that

llx(; ())- (x + )11 IIdll
Then from (9) it follows that

I1(; 5()) ( + )112() /2 2
Using his, ogether wih (10) and he fac ha C < 1, we have from (30) ha

vf()[ x(; ())1
1dkTDkdk + _]]xk(;Sk())_ (xk + k)]]2

(al)
1

1[dkrDdk + 1 2"- aB(’-)/ lk(; k()) ( + )11.
The inequality (2a) will be satisfied provided

(a2) 1 2"- aB(’-/ .
Setting (’-/, we find ha the quadratic 2 + (aB) + (e- 1) h one
positive root. Hence we can find an 1 > 0 such hat the required inequality will be
satisfied for all (0, 1].

or the second ce, sume that

1(;())- ( + )11 IIdll
Then from (9),

and so from (30),

(33)

Vf(x)[x x(.; (-))]
1> odkTDkdk "4---Ilxk(oz;k(OZ))- (Xk + k)l12

2_nCl-IIdll2 3Bn./2lldll.
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From (7) it follows that

and so, using rC1 < 1, we have

Ildkll 2 < ldkTDkdk

vI()[x (.; (-))]

[ 2 a-2 3BTaO--2)/2] dkTDkdk

1+-I1(-; (-)) ( + d)ll.
For (23), it is sufficient that

1-
2 -2 3Ba(-2)/2 > .

An argument similar to that above shows that a positive value 2 can be found so
that this inequality is satisfied for a (0, 2]. Hence, the first part of the result
follows by setting

() mi(1, ./(211gll),,).

The second prt o the result, i.e., that () > (*(.,(.))) o sumcienty
small a, is obtained by modifying the argument of Gafni and Bertse [5, Prop. l(b)].
By the mean value theorem, we can find a point k(a) on the line joining xk to
x*(, 6.(.))such that

f(x) f(x(.; (-))) Vf((.))*[* *(.; 6.(-))].

Hence, om (), or. e (0, ),

() [f() (*(., 6(-)))]

[ 1 ]ara + VII(;())- ( + )11

+_[7i( ()) 7i()]r[ (;())].

Again, writing

and using

(36)

we have

x* z(; 6()) x z*(; o) + z*(.; o) *(.; 6(.))

(2

_
IIg IIJ / lid+_
(A / )llVf()ll

_
(A / 1)B2,
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When dk O, it follows from (35) that

lim
f(Xk)- f(Xk(a;6k(a))) > ’dkTDkdk > O.

a--O O

On the other hand, when dk 0,

(37)

A straightforward application of Lemma 4.2(a) shows that

111(; 0) x >- I1 (1, 0) xk II"
Also, from Lemma 4.2(b), we have for a e (0, 6) that

IIx(c; o) x 11d+ B.

Using these inequalities, together with (10), we have from (37) that

f(xk) f(xk(a; 6k(a))) >_ llx(1; o) xll 2B
6() / O()

>_ llx/(1; 0) x/ll 2 2BCla/2-1 + O(a).

Taking the limit, we have

lim
f(xk) :(xk(a; 6k(a))) > llx(1; o) xll--0

In either case, there is an & < with the desired property. [:]

For the main result of this section, we need to be more specific about the choice
of ek. We now assume that

(38) ek min(e, k(Xk)),

where there is a constant/ such that 6k E [1,/], and (x) is a continuous function
of x that is zero only when x is critical.

THEOREM 4.5. Suppose that ek satisfies condition (38), that (A) holds, and that
(B) holds for xk(a, 0), for all e [0, 1] and all k sufficiently large. Then every
accumulation point xk generated by the algorithm is critical.

Proof. The proof is quite similar to the proof of Proposition 2 of Gafni and
Bertsekas [5]. Some modifications are necessary because of the inexactness in xk(a)
and because of the need for the quantity in Lemma 4.4. We include most of the
details here, and refer the reader to [5] for the remainder.

Suppose for contradiction that there is a noncritical point x* and a subsequence
K: such that limke: xk x*. If ak denotes the step length used in the step from xk

to xk+l, (11) implies that

(39) lim akdkTDkdk O,
kK:
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lim 1---}lxk(ak; 5k(ak)) (Xk + akdk)ll 2 O.(40)
k k

Taking a subsequence, if necessary, assume that

lim ak a*

for some a* [0, 1].
Two cases arise. First assume that a* > 0. Then from (39), d ke_,: 0, so d ke_: 0

and d + ae-GK" Vf(xk). Also from (40),

(41)

and so from (9),

lim [[x’(ak; 6k(ak)) (Xk + akdk)[[ O,

lim 6k(o) O.
kE

Using this limit together with (41), we get

x*(a*, O) P(x* a*Vf(x*)) x*,

which implies that x* is critical.
For the second case, take a* 0. Then for k E K: sufficiently large, the test (11)

will fail at least once; thus, using the notation

k
Ck fir

we have that

(he) y(x) ((;;(;)))

< a a-dkTDkdk + -=_ IIx(;())- (* + d*)ll
k

Since, by (38), ek is bounded away from zero and since it follows from (36) that [lgkl[
is bounded above, we have

(43) lim inf ek/lgkl > O.
kK

Hence, setting (a + 1)/2, Lemma 4.4 can be applied to find an 5 > 0 such that
(23) holds for a (0, 5]. Moreover, closer examination of the proof of Lemma 4.4
shows that, because of (43), the value of can be chosen independently of xk for k
sufficiently large. Now, since limkea 0, we have for k sufficiently large that

vI()[ x(;; (;))]
(44)

:+1{ 1 }> gr+:.(;())_ (. + :)=

Using the mean value theorem and combining (42) and (44), we have

1 drDd + =1(;()) ( +)11

(4) W()r[ (;e())]- I() + I((;()))
[VI() VI(()lr[ (;e())]
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for some Ck on the line joining xk to xk(o-, 5k(O-)). Note that

which is bounded because of (36). Hence the right-hand side of (45) is o(c-), and
dividing both sides of (45) by a-, we have that

(46) lim dkTDkdk O,
kE/C

(47)

From (46) limkEC dk O, so limkec k 0. Since, in addition, k E Tk, we have that
x + c-a E X for k sufficiently large. Lemma 4.2(a) can be applied to show that

(48)

Meanwhile, Lemma 4.2(b) implies that

(49) 1_ 0)_ + -< IId +ll < B.
ck

Taking the sequence in (47) and using Lemma 4.1, (10), (48), and (49), we have

(50)

Since the second term in this expression approaches zero, it follows from (50) that in
the limit,

P(x* Vf(x*)) x*,

and so x* is critical, again giving a contradiction.

5. Local convergence. For the exact algorithm, the local convergence analysis
is quite simple because when convergence occurs to a local minimum that satisfies
the "standard" assumptions, the iterates eventually all lie on the manifold defined
by the constraints that are active at the solution. This does not occur in our case,
in which the iterates remain in the interior of X. We thus need to ensure that the
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distance of the iterates to the active manifold is decreasing sufficiently quickly so as
not to interfere with the (rapid) convergence in the tangent direction. Fortunately,
some inherent properties of the path following projection algorithm prove to be useful
here.

In this section we prove R-quadratic convergence of an algorithm in which Dk is
a reduced Hessian. Much of the analysis is devoted to showing that step lengths of
ck 1 are used for all sufficiently large k. We start by defining a scheme for choosing
ek, and we then state an active set identification result. Eventual unit step length is
established in a sequence of lemmas and in Theorem 5.6. We conclude with the main
rate-of-convergence result in Theorem 5.7.

In addition to the assumptions made in the preceding sections, we use the follow-
ing:

(D) x* is a strict local minimum that is nondegenerate; that is,

-Vf(x*) e ri N(x*;X),

where ri N(x*; X) is the interior of N(x*; X) relative to the affine hull of N(x*; X).
(E) ek is defined as

ek min(e, eke(x)),

where e > 0 is a positive constant,

e(x) IIx- P(x-
and ek E [1,] for some /} < oo. (ek is a "random" quantity and need not be a
function of xk.)

If assumption (B) also holds at x*, then assumption (D) implies that there are
unique scalars y[ > 0 such that

(51) Vf(x*) E yi air

where 4 is as defined in 1. For later reference we introduce the notation

A [ai]et, A Rnr, r <_ n.

Orthonormal matrices Z Rn (n-r) and Y E Rn can be defined such that zTfit 0
and zTY O.

Our relaxed definition of ek is motivated by the fact that calculation of x- P(x-
7f(x)) involves a projection onto X and hence will be carried out inexactly by the
algorithm of 3. The following scheme can be used.

ALGORITHM TO CALCULATE

Step 1" Given some constant ( E (0, 1), apply the algorithm of 2 to find P(xk

Vf(xk)), terminating when the duality gap e,/2 satisfies the inequality

where &k is the latest estimate of the solution.

Step 2: Set e min(e, 211 -xll).
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With the notation k, p(xk Vf(xk)), Lemma 4.1 and the conditions on ep
can be used to show that

P I1* 11’ < 1
i1 -< I1

Hence,

p
<1+ <2-.

IIS 11

where k E
2 (’ (

and so the requirements of assumption (D) are satisfied.
From this definition of ek, the following active set identification result can be

proved.
LEMMA 5.1. Suppose that assumptions (A), (D), and (E) hold and that (B) holds

.for xk(a, 0), .for [0, 1] and all k sufficiently large. Assuming that x* is a limit
point of the sequence {xk}, we have limk-,o xk x* and Zk .4 for all k sufficiently
large.

Proof. The result follows from Lemma B.1 of Gafni and Bertsekas [5]; trivial
modifications are required because of our relaxed definition of ek. The assumption
(B) in [5] corresponds to our assumption (C) (see [1, Whm. 2.8]). B

We next show that the step lengths do not vanish as k oc.
LEMMA 5.2. Under the assumptions of Lemma 5.1, there is & > 0 such that

a>_&

for all k sufficiently large.
Proof. From Lemma 5.1 we have that for k sufficiently large, Zk ,4. Since

dk PTk(--Vf(xk)) O, it follows that Ilgkll I[Vf(x*)l <_ B. In Lemma 4.4, we
are free to set ek uniformly equal to a constant > 0, which is chosen so that

i :z T - 21111
for all sufficiently large k. Hence ek/lla is bounded away #om zero. Now, given any
# e (0, 1), we can apply Lemma 4.4 to find an (#) > 0 such that for all a e (0, (#)],

[ 1Vf(xk)T[x xk(a; 5k(a))] # adkTDkdk + -I1(; 5()) ( + d)ll=

If we use L an upper bound on V2f(x) for x in some neighborhood of x*, it follows
exactly in Gafni and Bertse [5] that

f(xk) f(xk (;
( )drDd + I1(; ()) ( + )11.

If we choose

(--)5= sup min (),
a[a,1) LA2 L

it follows from the line-search mechanism (11) that

def &
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and the result follows, since clearly & > 0.
The next result follows easily from Lemma 5.2, [5, Lemma B.2], and the analysis

of Dunn [2].
LEMMA 5.3. Under the assumptions of Lemma 5.1, we have for all k sufficiently

large that

xk(; O) x* + Zv (a) e x* + T

.for all e [k, 1], where vk() e Rn-r. Also,

(52) (xk / (k + dk+))_ xk(; 0)_ flfk() e N(x*;X)

.for all e [k, 1], where f/k(a) E R has ki( > C2 .for i 1,...,r and some
constant C2 > O.

Proof. We prove only the last statement concerning the lower bound on
Since dk -- 0 and dk+ --+ -Vf(xk), we can combine (51) and (52) to obtain

(53) xk (a; 0) (xk + arty*) + Allk (a) --, O,

where y* {Y}ieA. Since x+1 -xk -+ 0 we have from (9) that 5k(ak) --+ O. Hence,

0 < IIx*(.; 0) x*ll < I1(,; ,()) *(.; 0)11 + I1+
< 6,() + I1*+’ z* II - 0.

Now by Lemma 4.2, and since a [ak, 1],

lllx(; 0 xll <_ lllx(; 0) xl[.
c ck

Since ck _> &, it follows from this inequality that xk(c; O) --xk -+ O. Hence from (53),
using the full rank of A, we have that

() y*.

Since y* > 0, the result follows.
COROLLARY 5.4. Under the assumptions of Lemma 5.1, we have .for all k suffi-

ciently large that

zT8k+ 0 where sk+ xk(1;0) (xk + k).
In addition, aTi (x + sk+) bi for 4.

Proof. The statement ZTsk+ 0 follows from the second expression in Lemma
5.3 by setting a 1 and noting that ZTdk/ O. For the second part, note that

xk + s}+ x}(1;0) 0} e x* +T}

from the first expression in Lemma 5.3 and the fact that k Tk. Hence aTi(xk
sk+) aTix bi, as required.

For the remainder of this section we use the following notational conventions:

"k k(Ok)2/2 is the final duality gap for the step from xk to xk+l.
The error in the approximate unit step is separated into two components:

x}(1; (Sk(1)) x}(1; O) e g’; + ek+,

where gk PT (ek) ZZTek and ek+ yyTek.
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tik denotes tik (1).
A technical result is needed before establishing eventual unit steps.
LEMMA 5.5. Suppose that assumption (C) and the assumptions of Lemma 5.1

hold and that the "special case" in the projection algorithm (i.e., xk- akgk E X)
occurs only finitely often. Then, for k sufficiently large, there are positive constants
C3, Ca, and C5 such that

(dk+)Tsk+ )_ C3"/k_llldk+ll,
[18k+ll

_
C4Yk_l

Further, if ak 1, we have that

Proof. Assume k is large enough that the "special case" never occurs after iter-
ation k- 1. Assume further that ak-1 and all subsequent step lengths are bounded
below by &, as in Lemma 5.2. Recall that xk Xk-l(ak_i;Sk_l(ak_l)). Let k-1
and yk- be the final values of the and y variables in the projection algorithm of
3, which was used to compute xk. We start by finding bounds on elements of k-
in terms of k-1; these are needed for the first three inequalities.

As discussed in the proof of Lemma 5.3, 5k(ak) -- 0; that is, the projection
subproblem is solved more and more accurately. Recall that the matrix equation
in (20) holds at every iteration of the projection algorithm. The first part of this
equation yields

(- -)+ Ay- -(54) xk (xk- + k- + d( )) + + qy+ O.

om the second part of the equation and the choice of in the proof of Lemma 5.2,

.- b aTx 211a1 > 0 fo i A.

Since
_

6_(_)/2 + k- k-
i= i Yi ,wehaveforiAthat

Vk-1 k-1 0.() 0 < -1 -1
Since we have sumed ha+ is bounded away from zero for all projection sub-
problems,

() -m+l 0.Now, using k- 1 instead of k in (52) and seing a a_,

(57) zk-X(k-1;O (Zk-x + k-X(k-x + d(k-1)+)) + k-X(k-X) 0.

Comparing (54) wih (57), we have

k-1 --1k-X(ak-1; 0) Zk ABk-x + qBm+l k (ak-x).

Using (55), (56), and he full rank of A, and noing ha [[-zk-X(ak_X;0)[[
6_(a_) 0, we have ha for some consan C2 > 0,- -1(_) c_ fo .
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Hence, for k sufficiently large, with ak-1 >_ &, there is a constant C2L > 0 such that

yk-l >_ C2L foriEj(.

Also, by full rank of A and boundedness of Vf, there is a C2u > 0 such that

By assumption (C), we have for i E ,4 that

b,/k--1 > "Yk-I > "[k-I

Also,

/}/k-1 < ’’k-1 < ’k-1
yk " C2L

From these last two expressions, we can define positive constants CTL and CTu such
that

(58) CTL[k-1

_
12ki -1

_
C7Uk-1 for i E A.

For the first result, note from dk+ -Vf(x*) and ZTdk+ 0 that dk+ tk,
where tk y*. Hence, tk > 0 for k sufficiently large. om Corollary 5.4, (20), and
(58), we have for i E A that

T_kT axk -1 > CTLk-1.a s bi

Hence, noting that ][tk} ]dk+]/]]]], we have

(d+)Ts+ (t)Ts+ tT(Ts+) CTc%-]]t]] C%-]]d+]]

for C3 CTL/]A], giving the first result.
For the second result, we have from Lemma 5.3, Corollary 5.4, and (20) that for

some uk Rr

sk+ uk and Tsk+ k--ll

Hence,

which, by full rank of , boundedness of pi, and (58), gives

II  II < C8’)’k-1

for some constant C8 > 0. Since

<- II ill II,

the result follows by setting C 1111.
For the third inequality, we again use (20) and Lemma g.3 to deduce that for

uk bi aT xk(1; 5k) aT [xk(1; 0) xk(1; tik)]= --aTi ek+.
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Now ek+ vk for some vk, so an argument identical to that of the preceding
paragraph can be used to give the result.

The fourth inequality follows simply from

THEOPEM 5.6. Suppose that assumptions (A), (C), (D), and (E) hold and that
assumption (B) holds in a neighborhood of x*. Suppose that zTv2f(x*)Z is positive

definite and that for k sufficiently large, the tangent component of the step is given by

k z(zTv2f(xk)Z)-IzTdk.

Suppose there is a nonnegative sequence {k} such that limk__. k 0 and that, in
addition to (9) and (10), the sequence {Sk} satisfies

Assume that a < 0.5 in (11). Then (k 1 for all sujficiently large k.
Proof. First, we consider the special case of x* E int X, for which we have

Vf(x*) 0. By Lemma 5.1, the two-metric gradient projection method reduces to
Newton’s method when k is sufficiently large. Consequently, dk -Vf(xk) and k
--(V2f(xk))-IVf(xk). By Lemma 5.3, xk(1;0) xk + k e intX for k sufficiently
large. Correspondingly, exactness of the projection yields " 6 _= 0 for all such k.
Now

I(x) f(x(1; )) I(x) f(x + )
-vI() 1/2()v:I(x)j + o(1111)

kT 2 -ldk dkd (V f(xk)) + o(I 112).

The second term on the right-hand side of (11) is zero, so for k sufficiently large, (11)
is satisfied for Ck 1.

In the remaining case, x* e 0X; thus, by assumption (C), Vf(x*) : 0. Moreover,
the "special case" does not occur in the projection algorithm for sufficiently large k.
(This follows directly from (52), which states in particular that (xk -agk) p(xk

akgk) 0.) Since

Vf(xk) _dk dk+

and

Xk(1; tik)= X
k + k + Sk+ + ek,

we have that
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It can be easily shown that kTv2f(Xk)k dkTk, and so, after some rearrangement,

(60)

f(xk) f(Xk(1;bk)) (1/2dkTk + (Sk+ +ek)T(sk+

+(d+)Ts+ Vf(x)Te--[+ + ][vl() + ][+ +]2

-[+ +]vI() + o(11 (;

Now Lemma 5.5 can be used to deduce the following inequalities:

(dk+)Tsk+ >_ C3/-111dk+11 >_

for some ’3 > 0, since ]]dk+[[ [IVf(x*)[] 0;

[Vf(xk)Tek[ IdkTkl + I(dk+)Tek+l <_ 5kl]dkll + CbB’)’k;

! ek]T 2I][sk+ sk+ ek 2[[+ / [vf()/ /]] _< Cll /

_< Cq,_ + Cq’_ +C;

1[skT 2. ek]Tv2f(xk)k
__
C[Id[l(/k_l / 5k).

By substituting in (60), we obtain

S(xk) -S(xk(1;bk))>_ {1/2dkTk
+ak- 5klldll CBk C2_1 Ci3k-bk
-C14 Cllldkllk-1 Cllldkllk

+-1 [3 (CB/e) C1_1

-C1 C Cl[[d[ C]
+o([ ++ + [[).

As k , the term in square brackets approaches C3 > 0; that is, it is positive
for sufficiently large k. It is ey to see that the final 0([[k + sk+ + ek[] 2) term is
eventually dominated by the term in curly brackets. Hence, since a (0, 5), we have
for k sufficiently large that

l(x

and so k 1 pses the acceptance test (11) and xk(1; 5k) will be accepted the
new iterate.

The conditions (59) should be imposed only in the final stages of the algorithm,
when there is a suspicion that the active manifold h been identified. Otherwise, it
could happen that at some early iterate, xk -gk intX, in which ce the projection
is performed exactly (k 5k 0) and, because of (59), exact projections would be
demanded at all subsequent iterations.
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A result similar to Theorem 5.6 can be stated for the alternative acceptance test
(12), and it can be proved in an almost identical fashion.

We can now prove the final result.
THEOREM 5.7. Suppose that the assumptions of Theorem 5.6 hold and that the

sequence {/k } converges Q-quadratically to zero; that is, there is a constant Clo such
that

(61) 5k <_ Clo/k-1.

Then the rate of local convergence of the algorithm is R-quadratic.
Proof. In the case x* E int X, we actually obtain Q-quadratic convergence, since

the algorithm eventually reduces to Newton’s method. We therefore focus on the case
of x* OX.

By setting k max(lldkll,hk), it is easy to see that (61) implies (59), and so
Theorem 5.6 applies. By the definition of sk+,

xk + k xk (1; 0) --sk+.

Multiplying through by ZT and using the definition of ok, we obtain

(62) ZT(xk xk(1; 0)) (zTv2f(xk)Z)-izTvf(xk) O.

By optimality of x*, zTVf(x*) 0, so by Taylor series expansion, and since ZZT /
yyT I,

zT(Vf(x) + V2f(x)(x x)) O(llx x*ll 2)
(63) =v zTVf(xk) zrv2f(xk)ZZT(xk x*)

zTv2f(xk)yyT(xk x*) + O(]]xk x*]]2).

Multiplying (63) by (zTVf(xk)Z)-1 and adding to (62), we have

(64) IIZT(x Xk(1; 0))11 O(IIyT(xk x*)ll) + O(llxk x*ll).

Recall that xk xk-l(1; 5k-1) and that by Lemma 5.3

(65) gT(xk-l(1; O) x*) 0

for all sufficiently large k. Hence, using the third inequality in Lemma 5.5, we have

IIyT(xk x*)ll IIyT(xk-l(1; k-1) xk-l(1, o))ll
(66) lie(k-I)+_

C20")’k-

From (64)-(66),

(67) IIx* xk+lll IIx* x(1; o)11 +
_< Co7,- + e + o(11 x* I1).

Now 6k

_
C10")’k-1, and so we can choose a constant C21 >_ max(l, C20 + C10) such

that

(68) I1: xk+lll <- C2 max(’)’k_l, I1: 11)
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Given any T < C1, we can choose an integer sufficiently large that

An inductive argument based on (68) then shows that

where

Clearly the sequence {j } is Q-quadratically convergent, so the result follows.
Results similar to Theorems 5.6 and 5.7 could be proved for other choices of

for example, where 0k is a quasi-Newton or inexact Newton method step rather than
the reduced Newton step. These would be of practical importance in applications in
which it is difficult to compute or factor the reduced Hessian.

Finally, we note that it may be efficient to include a second "local" phase in the
basic algorithm of 2. When it appears that the active constraint set has been iden-
tified, the current iterate could be projected onto the appropriate manifold (placing
it on OX). Standard methods for equality-constrained nonlinear programming could
then be applied to identify the minimum on this manifold. However, it is likely that
the basic algorithm would also be quite efficient in this situation because, as the fi-
nal few iterates are close together, a good starting point for the projection would be
readily available.

Acknowledgments. I thank David Stewart for helpful discussions during the
preparation of this paper and the referees and editor for their comments on the first
draft.
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FACETS FOR POLYHEDRA ARISING IN THE DESIGN
OF COMMUNICATION NETWORKS

WITH LOW-CONNECTIVITY CONSTRAINTS*

MARTIN GR(TSCHEL, CLYDE L. MONMAt, AND MECHTHILD STOER

Abstract. This paper addresses the important practical problem of designing survivable fiber
optic communication networks. This problem can be formulated as a minimum-cost network design
problem with certain low-connectivity constraints. Previous work presented structural properties of
optimal solutions and heuristic methods for obtaining "near-optimal" network designs. Some facet-
inducing inequalities for the convex hull of the solutions to this problem are given. A companion
paper describes computational results on real-world telephone network design problems with a cutting
plane method based on this work. These computational results are summarized in the last section of
this paper.

Key words, network design, network survivability, connectivity, polyhedral combinatorics
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1. Introduction. A recent trend in communication networks is the emergence
of fiber optic technology as one of the major components in the "network of the fu-
ture." This transmission medium is cost-effective and reliable, and provides very high
transmission capacity. This combination promises to usher in new telecommunication
services requiring large amounts of bandwidth. At the same time, the unique charac-
teristics of this technology imply the need for new network design approaches. (See
[CFLM] for more details.)

Survivability is an important factor in the design of communication networks.
Network survivability is used here to mean the ability to restore service in the event
of a catastrophic failure of a network component, such as the complete loss of a
transmission link, or the failure of a switching node. Service could be restored by
routing traffic through other existing network links and nodes, assuming that the
design of the network has provided for this additional connectivity. Clearly, a higher
level of redundant connectivity results in a greater network survivability and a greater
overall network cost. This leads to the problem of designing a minimum-cost network
that meets certain required connectivity constraints.

Survivability is a particularly important issue for fiber networks. The high capac-
ity of fiber facilities results in much more sparse network designs with larger amounts
of traffic carried by each link than is the case with traditional bandwidth-limited
technologies. This increases the potential damage to network services due to link or
node failures. It is necessary to trade off the potential for lost revenues and customer
goodwill against the extra costs required to increase the network survivability. Recent
works on methods for designing survivable fiber communication networks by [CMW]
and [MS] conclude that (1) survivability is an important issue for fiber networks,
(2) "two-connected" topologies provide a high level of survivability in a cost-effective
manner, and (3) good heuristic methods exist for quickly generating "near-optimal"

*Received by the editors July 31, 1990; accepted for publication (in revised form) May 31, 1991.

Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Heilbronner Str. 10, 1000 Berlin 31,
Germany.

:Mathematics, Information Sciences and Operations Research, Bell Communications Research,
445 South Street, Morristown, New Jersey 07960.
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networks. In particular, it was determined that a network topology should provide
for at least two diverse paths between certain "special" offices, thus providing for pro-
tection against any single link or single node failure for traffic between these offices.
These special offices represent high revenue-producing offices and other offices that
require a higher level of network survivability.

We now formalize the network design problems that are being considered in this
paper. A set of nodes V is given that represents the locations of the switches (offices)
that must be interconnected into a network in order to provide the desired services.
A collection E of edges is also specified that represents the possible pairs of nodes
between which a direct transmission link can be placed. We let G (V, E) be the
(undirected) graph of possible direct link connections. The graph G may have parallel
edges but contains no loops. (Thus we assume throughout this paper that all graphs
considered are loopless. But they may have parallel edges. Graphs without parallel
edges are called simple.)

Given a graph G (V,E) and W c_ V, the edge set 8(W) {ij E Eli W,
j V\W} is called the cut (induced by W). (We will write 8a(W) to make clear--in
case of possible ambiguities--with respect to which graph the cut induced by W is

considered.)
For W, W V with W NW= q} we define [W’W] := {ij Eli W,j W}.

So 8(W) [W" V\W]. For W c_ V, we denote by G[W] the subgraph of G induced
by W and by E(W) its edge set {ij Eli, j W}. G/W is the graph obtained
from G by contracting the nodes in W to a new node w (retaining parallel edges). We
call the reverse operation of replacing the shrunk node w by the original node set W
the expansion of w in G/W to G. We will denote by G- v the graph obtained by
removing the vertex v and all incident edges from G, and by G-F the graph obtained
by removing the edge set F from G (we write G f instead of G {1}). If G v has
more connected components than G for some node v, we will call v an articulation
node of G. Similarly, if G- e has more connected components than G, we will call
edge e a bridge of G.

Each edge e E has a fixed cost ce of establishing the direct link connection.
The cost of establishing a network N (V, F) consisting of a subset F C_ E of edges is

c(F) := eeF c, i.e., it is the sum of the costs of the individual links contained in F.
The goal is to build a minimum-cost network so that the required survivability con-
ditions, which we describe below, are satisfied. We note that the cost here represents
setting up the topology for the communication network and includes placing conduits
in which to lay the fiber cables, placing the cables into service, and other related costs.
We do not consider costs that depend on how the network is implemented, such as
routing, multiplexing, and repeater costs. Although these costs are also important,
it is usually the case that a topology is first designed and then these other costs are
considered in a second stage of optimization.

For any pair of distinct nodes s, t V, an Is, t]-path P is a sequence of nodes and
edges (vo, el, vl, e2,. , vl-1, el, vl), where each edge ei is incident with the nodes vi-1

and vi (i 1,..., 1), where vo s and vl t, and where no node or edge appears more
than once in P. A collection P, P2," ",Pk of Is, t]-paths is called edge-disjoint if no
edge appears in more than one path, and is called node-disjoint if no node (except
for s and t) appears in more than one path. (Remark: In order to be consistent
with standard graph theory we do not consider two parallel edges as two node-disjoint
paths.)

The survivability conditions require that the network satisfy certain edge-
and node-connectivity requirements. In particular, each node s E V has an associated
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nonnegative integer rs, which represents its connectivity requirement. This means
that for each pair of distinct nodes s, t E V, the network N (V, F) to be designed
has to have at least

r(s, t) "= min{rs, r,}

edge-disjoint (or node-disjoint) Is, t]-paths. These conditions ensure that some com-
munication path between s and t will survive a prespecified level of edge (or node)
failures. The levels of survivability specified depend on the relative importance placed
on maintaining connectivity between different pairs of offices.

The fiber optic network design problems that arise in practice and that we are
addressing in this paper have three types of offices. The so-called "special" offices have
connectivity requirement 2 while "ordinary" offices have connectivity requirement 1.
An office with connectivity requirement 0 is called "optional" since it need not be part
of the network to be designed.

Figure 1.1 shows an example network. Special offices are indicated by squares,
ordinary offices by circles. Optional offices do not occur. The lines (thin, bold, and
dashed) represent the possible direct links from which the minimum-cost survivable
network must be designed. The network obtained by removing the dashed lines, i.e.,
the graph formed by the union of bold and thin lines, represents a feasible network. It
consists of a two-connected part (the bold lines) containing all special nodes, in which
every pair of nodes is linked by at least two node-disjoint paths and a collection of
trees (the thin lines), which link the remaining nodes into the two-connected part.

Thus in the remainder of this paper we consider the case where the connectivity
requirements satisfy

rE(0,1,2} for allsV.

Nodes of connectivity requirement 0 (respectively, 1, 2) will also be called nodes of
type 0 (respectively, type 1 2). Let us define the 2ECON problem (respectively,
2NCON problem) to be the network design problem where between each pair of
distinct nodes s and t at least min(r,rt) edge-disjoint (respectively, node-disjoint)
paths are required.

Given G (V, E), we extend the connectivity requirement function r to functions
operating on sets by setting

r(W) max{re Is e W} for all W c_ V, and

con(W) := max{r(s, t) s e W,t e V\W}
min{r(W), r(V\W)} for all W C_ V, O#w#y.

Let us now introduce, for each edge e E E, a variable xe and consider the vector
space IRE. Every subset F C_ E induces an incidence vector xF (Fe)eEE IE

by setting XF := 1 if e F, and XeF :- 0 otherwise. Vice versa, each 0/1-vector
x IRE induces a subset Fx :- {e E lxe 1} of the edge set E of G. For
any subset of edges F c_ E, we define x(F) -eEF Xe. We can now formulate
the 2NCON network design problem introduced above as the following integer linear
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FIG. 1.1
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program:

(1.1)

min cijxij
ijeE

subject to
(i) x(5(W)) >_ con(W)
(ii) x(5a-z(W)) >_ 1

(iii) 0 _< xij _< 1
(iv) xij integral

for all W c_ V, W V;
for all z E V, and for all W c_ V\{z}, W
Y\{z} with r(W) 2 and r(Y\(W U {z})) 2;
for all ij E;
for all ij E.

It follows from Menger’s theorem that, for every feasible solution x of (1.1), the sub-
graph N (V, Fx) of G defines a network satisfying the two-connected survivability
requirements for the 2NCON problem. Removing (ii), we have an integer linear pro-
gram for the 2ECON network design problem. (Note that in the case r {0, 1}V,
inequalities (i), (iii), and (iv) of (1.1) characterize the Steiner tree problem.) An in-
equality of type (i) is called a cut inequality, one of type (ii) is called a node-cut
inequality, and one of type (iii) is called a trivial inequality.

The main objective of this paper is to study the 2ECON and 2NCON network
design problems from a polyhedral point of view to see which inequalities are suitable
choices for a cutting plane approach, i.e., we want to find a tighter LP-relaxation than
the one obtained by dropping the integrality constraints (iv) of (1.1) for the 2ECON
and 2NCON network design problems. To do this we define the following polytopes.
Let G- (V, E) be a graph and let r e {0, 1, 2}y be given with rv 2 for at least two
nodes. Then

2NCON(G; r)
2ECON(G; r)

conv{x e IRE Ix satisfies (i), (ii), (iii), (iv) of (1.1)},
conv{x e IRE Ix satisfies (i), (iii), (iv) of (1.1)}

are the polytopes associated with the 2NCON and 2ECON network design problems.
(Above, "conv" denotes the convex hull operator.) We say that F C_ E is feasible for
one of these polytopes if XF is.

Related problems have been investigated previously. A general integer linear
programming approach to network design problems with connectivity requirements
is presented in [GM] along with a preliminary study of these problems from a poly-
hedral point of view. We shall make several references to this work in what follows.
[CFN] study the dominant of the 2ECON(G; r) polytope in the special case where
r {2}y. [MMP] study the 2ECON(G; r) and 2NCON(G; r) polytopes in the special
case where r {2}V, and G is a complete graph with the edge weights satisfying the
triangle inequality. They show that in this case the optimization problems are the
same over both polytopes and then give a certain type of characterization of the
optimal solutions.

Let us now introduce some connectivity functions and some notation concerning
"essential" edges and dimension of polyhedra. Let G (V, E) and r E {0, 1,2}y be
given; we say that e E is essential with respect to 2ECON(G; r) if 2ECON(G-
e; r) ; similarly we say e is essential with respect to 2NCON(G; r) if 2NCON
(G e; r) q}. In other words, e is essential if its deletion results in a graph such that
one of the survivability requirements cannot be satisfied. We denote the set of edges
of E that are essential with respect to 2ECON(G; r) by 2EES(G; r), and the set of
edges that are essential with respect to 2NCON(G; r) by 2NES(G; r). Clearly, for
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all subsets F c_ E\2EES(G; r), 2EES(G; r) is contained in 2EES(G- F; r) (similarly
with 2NES(G;r)). Let dim(S) denote the dimension of a set S _c IRn, i.e., the
maximum number of affinely independent elements in S minus 1. One of the results
proved in [GM] says that the polyhedron 2ECON(G; r) is full-dimensional if and only
if 2EES(G; r) is empty, and also that 2NCON(G; r) is full-dimensional if and only if
2NES(G; r) is empty.

Let G (V, E) be a graph and W c_ V with IWI _> 2, and let G= (V, E) be the
simple graph underlying G. We set

,(G, W) :- minimum cardinality of a subset F of E, such that two nodes of W
are disconnected in G- F;

a(G, W) := minimum cardinality of a set S U F, where S c_ V and F C_ E, such
that two nodes of W are disconnected in G (S U F).

If IWl < 2, then A(G, W) and a(G, W) are defined as oc. If G with node set Va
is a subgraph of some graph H with node set VH and W c_ VH we will also write

,k(G, W) instead of )(G, WCVa). We will use these functions frequently in two special
situations. To shorten notation in these cases, we introduce the following definitions:

a (a) := a(a, :=

where ld := {v E V Ir. >_ i}, i o, 1, 2. So A0(a)is nothing but the edge-connectivity
of G, and n0(G) is the node-connectivity of G.

Throughout this paper we make the following assumptions:

(1.2)

Let G- (V, E) and r e be given.
(i) r {0, 1, 2}y and at least two different nodes s, t satisfy

rs rt 2;
(ii) if we consider the 2ECON problem we assume G to be

two-node connected and ,2(G) >_ 3;
(iii) if we consider the 2NCON problem we assume G to be

two-node connected and a2 (G) _> 3.

We will say that (a, r) satisfies (1.2) and mean that the graph a (V, E) and the
vector r of connectivity types satisfy conditions (i), (ii), and (iii). If (i) does not
hold, then the 2ECON and the 2NCON problem reduces to the Steiner tree problem
for which more specialized investigations can be (and have been) made. We want to
exclude this case from the present investigation. It also does not occur in the practical
problems we have in mind. One consequence of (ii) and (iii) of (1.2) is that the 2ECON
or 2NCON problem contains no essential edges; hence the associated polyhedron is
full-dimensional. We further justify assumptions (ii) and (iii) in 2.

In 2 and 4 we present some decomposition and lifting results that simplify the
later discussions. In 3 we investigate which of the basic inequalities given in (1.1)
define facets for 2ECON, respectively, 2NCON. In 5-8 we present several classes
of facet-inducing inequalities for 2ECON and 2NCON. These include partition, node-
partition, two-cover, and comb inequalities.

We will not discuss the separation problems associated with the classes of inequal-
ities introduced in this paper. Let us just mention here that the cut and node-cut
inequalities can be checked in polynomial time, but for all other classes of inequal-
ities to be presented in this paper the separation problem is NP-hard (as is shown
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in [GMS]). Based on the polyhedral investigations presented in this paper we have
designed cutting plane algorithms for the 2ECON and the 2NCON problems. A short
summary of our computational results is given in 9. The details can be found in
[GMS] and [S].

2. Decomposition. The problem of finding a cost-minimal network for the
2ECON problem can be decomposed into at least two independent problems if the
underlying graph G contains an articulation node v disconnecting two nodes of type
at least 1. The subproblems are solved on the two-node-connected components of G
with the same cost function and the same connectivity types r; only the connectivity
type of the articulation node v may have to be adjusted. The 2ECON problem may
also be decomposed into independent subproblems if G contains two edges e, f, such
that in G-{e, f} two nodes of type 2 are disconnected. Another simple decomposition
is possible for the 2NCON problem if the graph G contains two nodes u, v so that in
G- (u, v} two nodes of type 2 are disconnected. These and other more complicated
decompositions are described in more detail in [GMS].

Observe that using the above decompositions, any 2ECON or 2NCON problem
with essential edges may be decomposed into problems without essential edges. This
is the reason why we restrict ourselves to graphs G and connectivity types r for which
our general assumptions (ii) and (iii) of (1.2) hold. This implies also that 2ECON(G; r)
and 2NCON(G; r) are full-dimensional [GM].

There is another (technical) reason why we restrict ourselves to full-dimensional
polyhedra here. If polyhedra are not full-dimensional, proofs often become more
involved technically and statements about nonredundancy of certain systems become
quite ugly due to the necessity to exclude equivalent inequalities. This is also true in
our case. It is not difficult to derive the results for the lower-dimensional cases from
the results presented later. But the statements of these theorems are often rather
complicated and we want to avoid unnecessary technicalities.

3. Basic facets. In this section we investigate under which conditions
the cut inequalities (1.1)(i), the node-cut inequalities (1.1)(ii), and the trivial in-
equalities (1.1)(iii) define facets for 2ECON(G; r), respectively, 2NCON(G; r).

An inequality aTx

_
a is valid with respect to a polyhedron P if P C_ (x

aTx

_
c}; the set Fa :-- (x e p laTx } is called the face of P defined by

aTx <_ . If dim(Pc) dim(P) 1 and Fa q}, then Fa is a facet of P and aTx <_ (
is called facet-defining or facet-inducing.

The following theorem follows from Theorem 3.3 in [GM] and characterizes which
of the trivial inequalities (1.1) (iii) define facets.

THEOREM 3.1. Let (G, r) satisfy (1.2).
(a) xc _< 1 defines a facet of 2ECON(G; r) and of 2NCON(G; r) for all e E E.
(b) xc >_ 0 defines a facet of2ECON(G; r) (respectively, 2NCON(G; r)) for e E,

if and only if for every edge f e the polytope 2ECON(G- (e,f};r) (respectively,
2NCON(G (e, f}; r)) is nonempty.

The next theorem characterizes the cut inequalities (1.1)(i) that define facets.
THEOREM 3.2. Let (G, r) satisfy (1.2) and let W c_ V with W V.
(a) Suppose con(W)- 2. Then x(5(W)) >_ 2 defines a facet of 2ECON(G;r) if

and only if
(al) G[W] and G[V\W] are connected;
(a2) AI(G[W])_> 2 and )(G[V\W]) >_ 2;
(a3) e is a bridge of G[W]. Then f is a bridge of G[V\W], U, V’ are the node

sets of the two components of G[W] e, and U, U’ are the node sets of the two
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components of G[V\W] f; and if r(U) r(U) 2 (implying r(U’) r(U’) 0),
[u >_ 1.

(b) Suppose con(W) 1. Then x((W)) >_ 1 defines a facet of 2ECON(G; r) if
and only if

(bl) G[W] and GIg\W] are connected;
(52) AI(G[W])> 2 and A(G[V\W]) > 2;
(b3) A2(G[W])_> 3 and )2(G[V\W]) >_ 3.
(c) Suppose con(W) O. Then x(5(W)) >_ 0 does not define a facet of 2ECON

(G; r) or of 2NCON(G; r).
(d) Suppose con(W)-- 2. Then x(5(W)) >_ 2 defines a facet of 2NCON(G;r) if

and only if
(dl) the conditions (a), (a2), and (a3) of (a) are satisfied;
(d2) a2(G[W])_> 2 and a2(G[V\W]) >_ 2;
(d3) u is an articulation node of G[W] and fi is an articulation node of G[V\W],

and ifU and V are node sets of components ofG[W]-u and G[V\W]-, respectively,
such that r(U) r((J) 2, then I[U" ]1 > 1, and (because of (d2))all other
components of G[W] u and G[V\W] do not contain nodes of type 2;

(da) neither .for S W nor for S V\W does the following situation occur:
There are an edge e E E(S) and nodes wl, w2 S (not necessarily distinct) and
a node w3 e V\S so that there exists a component ($1, E) of (G[S] e) wl, a
component ($2, E2)of(G[S]-e)-w2, and a component ($3, E3)ofG[V\S]-w3 with
r(S1) -r(S2)- r(S3) 2, S 3 $2 -, such that in G- e there is no edge between
Si and Sj for all j, i, j (1, 2, 3} (see Fig. 3.1 .for an illustration; dashed lines
denote nonexisting edges);

(d5) for S- W and S-- V\W the following has to hold: if V\S has exactly two
neighbors in S, then one of these two nodes is the only node of type 2 in S.

(e) Suppose con(W) r(W) 1. Then x(5(W)) > 1 defines a facet of 2NCON
(G; r) if and only if

(el) the conditions (bl), (b2), and (b3) of (b) are satisfied;
(e2) a2(G[V\W] e) >_ 2 .for all e e E(V\W).

w v\w

FG. 3.1

Proof. We give a proof of (d). (The proofs of (a) in the general case, (b), and (e)
use the same ideas and are thus omitted. (c) is trivial.)
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We first show that if one of the conditions (dl)-(dh) is not satisfied, then the
cut inequality x(5(W)) >_ 2 does not define a facet. Necessity of (dl) is seen easily
(see, e.g., Corollary 6.7 of [GM]). Suppose (d2) is violated. Let u be an articulation
node of G[W], and let ($1, E), ($2, E2) be two components of G[S]- u with r(S1)
r(S2) 2. Then x(5(W)) _> 2 can be written as the sum of the node-cut inequalities
x(5G-u(S1)) _> 1 and x(5G-u(S2)) _> 1 plus possibly some nonnegativity constraints.
Therefore, x(5(W)) >_ 2 does not define a facet. If (d3) is violated there are nodes
u, fi and node sets U, with the indicated properties and [U D] q}. In this
case the cut inequality can be written as the sum of two other node-cut inequalities
x(5v_,(U)) _> 1 and x(5G_a(V)) _> 1. Hence x(5(W)) _> 2 does not define a facet.

Now suppose we have the situation excluded by (da) for S W. In this case, it
is not possible to construct a feasible solution with x(5(W)) 2 and x 0, because
any feasible set not using e would either have node w3 as an articulation node or
use three edges of 5(W). Therefore, all feasible sets C with IV N 5(W)I 2 have to
use e, so the face defined by x(5(W)) >_ 2 is contained in the face defined by x <_ 1.
Since 2NCON(G; r) is full-dimensional, these faces cannot be the same. Therefore,
x(5(W)) >_ 2 does not define a facet.

Suppose (d5) is violated. Let the two neighbor nodes of V\S in S be called u
and v. If, in contradiction to (dh), there is at least one node of type 2 in S\{u, v}
or ru rv 2, then x(5(W)) _> 2 can be written as the sum of the two node-cut
inequalities x(5G_u(S\{u})) _> 1 and x(5G_v(S\{v}))>_ 1.

Now let the conditions of (d) be satisfied for some inequality aTx := x(5(W)) >_ 2.
Let bTx

_
be a facet-defining inequality such that the face Fa induced by aTx

_
2

in 2NCON(G; r) is contained in the facet Fb induced by bTx

_ . Our aim is to show
that b is a positive multiple of a, which implies that Fa is identical with the facet Fb.

Let us first state some conditions under which for a given e, f E 5(W), the
incidence vector of Ce,f := E(W) U E(V\W) U {e, f} is feasible for 2NCON(G; r) and
hence in Fa C_ Fb. Assume that both W and V\W contain more than one node of
type 2. (In the other case, the proof has to be modified a little.) (1) If e, f are to
induce a feasible C,f they may not have a common endpoint (unless this is the only
node of type 2 in W or V\W, which we excluded). (2) If we denote the two endpoints
of e and f in W with u and v, respectively, then for any node s of type 2 in W there
must exist an Is, u]-path and an Is, v]-path that are node-disjoint; the same for V\W.

We can rewrite these conditions in the following way: Let U denote a two-node-
connected component of G[W] containing some node of type 2 of G[W]. Note that by
condition (d2), U must then contain all nodes of type 2 in W. Now remove from U the
set of all articulation nodes of G[W]. Let a node set U (in G[V\W]) be defined in the
same way as V in G[W]. Condition (2) says that e and f may not be incident to the
same component of G[W]- V and G[V\W]- U. All in all, e and f must constitute
a matching of size 2 in the graph G derived from G by shrinking all components
of G[W]- V and G[V\W]- V and deleting all edges except those in 5(W). The
maximum matching possible in this graph has size at least 3, otherwise there are two
nodes covering all edges in G’, which translates to condition (1.2)(iii), or (d3) or (dh)
of Theorem 3.2 being violated.

Now we are ready to show that b has the same value for all e E 5(W). Assume
that both W and V\W contain more than one node of type 2. G has a matching
with three edges, say, e, f, and g. Since the incidence vectors of C,I, CLg, and Cg,e
lie in Fb, we have b bi bg . For any fixed edge t e 5(W)\{e, f,g} either
{t, e}, {t, f}, or {t, g} constitute a matching in G’, say, {t, e}. Therefore, the incidence
vectors of both Ct, and CI, are in Fb, and we have bt bf . This way we can



FACETS FOR POLYHEDRA RELATED TO LOW-CONNECTED NETWORKS 483

prove b /for all t E 5(W).
To prove be 0 for all e E E(W) we need to construct a set C c_ E with XC Fa

and e C for some fixed e E(W). Since xcu{e} is also in Fa we know be 0.
Assuming again that both W and V\W have at least two nodes of type 2, we try for
a given e vlv2 e E(W) to find f, g 5(W) constituting a matching of G’, so that
C :-- Cl,g\(e} is feasible for 2NCON(G; r). If a2(G[W]- e) _> 2, we can find such f,
g e 5(W) inducing a feasible C,g\(e} in G by similar arguments as above. Since the
incidence vectors of Ci,a\(e} and CI,g are in Fb, we have be 0.

Now suppose a2(G[W]- e) 1. Consider the tree structure of the two-node-
connected components and the articulation points of G[W]- e. Since a2(G[W]) >_ 2
and a2(G[W]- e) 1, the endnodes vl and v2 of e lie in two different two-node-
connected components. Furthermore, there is a Ivy, v2]-path in G[W]- e that touches
all two-node-connected components containing nodes of type 2 and all articulation
nodes of type 2. Let w be an articulation node of G[W] -e so that the component
of (G[W] e) w containing one endnode v of e also contains some node of type 2
(possibly vl), and so that the node set S of this component is as small as possible
with respect to this property. Similarly, find an articulation node w2 and a component
of (G[W] e) w2 with node set $2 containing v2 and some node of type 2, so that
IS21 is as small as possible. S and 5’2 are disjoint. Since G satisfies (1.2) there has
to be some edge f 5(W) leaving S1 and an edge g 5(W) leaving $2. Since V\W
has two nodes of type 2, condition (dd) ensures that f and g may be chosen without
common endpoint, such that in G[V\W] there is no articulation point separating the
two endpoints of f and g from some node of type 2. Because S and $2 are connected
in G[W]- e by a path touching all two-node-connected components of G[W]-e
containing nodes of type 2, the set C :-- CLg\(e} defined above is feasible. Therefore,
be 0. So we have proved that b a. Since Fb cannot define a facet if b _< 0, we
have /> 0. So x((W)) _> 2 and bTx

_
define the same facet Fa Fb. [:]

The following theorem characterizes which of the node-cut inequalities (1.1)(ii)
define facets for 2NCON(G; r).

THEOREM 3.3. Let (G,r) satisfy (1.2) and let a node z V, and a set W c
Y\(z} with W Y\(z} and r(W) 2, r(Y\(W t2 (z})) 2 be given. Denote
by , 1, 2, the set of nodes in Y of type at least i, and let W V\(W

The node-cut inequality x(5G-z(W)) >_ 1 defines a facet of 2NCON(G;r) if and
only if

(a) G[W] is connected;
(b))(G[W (_J (z}], Vl [.J {z})

_
2;

(c) >
(d) u e W is an articulation node of G[WU{z}] separating two nodes of V2tJ(z},

and S c_ W is the node set of a component of G[W t2 (z}] u with r(S) 2; then
[W\S ITV] and r(W\(S (2 (u})) <_ 1;

(e) the following situation does not occur: there are an edge e e E(W) and two
e w

has a component with node set Si where Si c_ W and r(Si) 2; furthermore,
and e [5’1 $2] (see Fig. 3.2 for an illustration; dashed lines denote nonexisting

(f) conditions (a), ..., (e) also hold when W is replaced by W.
Proof. The proof is analogous to the proof of Theorem 3.2.

4. Lifting theorems. We now present conditions under which valid inequalities
(respectively, facets) for the 2ECON and 2NCON polytopes on a graph ( can be lifted
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FIG. 3.2

to valid inequalities (respectively, facets)^for higher-dimensional 2ECON and 2NCON
polytopes on a graph G that contains G as a subgraph. These results simplify the
proofs to be presented in the next sections.

Some of the results can be treated for the 2ECON and 2NCON polytopes simul-
taneously. Thus we introduce a slightly more general network design model that com-
bines edge- and node-connectivity features. Let G (V, E) be a graph, r E {0, 1, 2}y
be the vector of connectivity types, and Z be some subset of V. (In this section we do
not necessarily assume that (G; r) satisfies (1.2).) We define the 2CON(Z) problem
to be the network design problem where between each pair of distinct nodes s and t
at least min(rs, r) edge-disjoint paths are required that have no node of Z\{s, t} in
common. Note that for Z q} only edge-disjoint paths are required, so in this case

2CON(Z) is the 2ECON problem. For Z V this is the 2NCON problem. This
general model is introduced only for technical reasons. Throughout the rest of this
paper we will be interested only in the cases Z q} and Z V.

The 2CON(Z) problem can be formulated as an integer linear program in the
following way:

(4.1)

min Z cijxij

subject to
O) x((W)) > con(W)
(ii) x(6c-z(W)) >_ 1

(iii) 0 _< xj <_ 1
(iv) xij integral

for all W c_ V, q} :/: W :fl V;
for all z Z, and for all W

_
V\{z}, # W =V\{z} with r(W)= 2 and r(V\(W U {z}))= 2;

for all ij E E;
for all ij E.

The polytope 2CON(G; Z; r) is then defined as the convex hull of all x IRE

that satisfy (i),...,(iv) of (4.1). As mentioned above, 2CON(G; q; r) 2ECON(G; r)
and 2CON(G; V; r) 2NCON(G; r).

The polytope 2CON(G; Z; r) is not necessarily full-dimensional. In the later sec-
tions we only apply the results of this section in the case dim(2CON(G; Z; r)) ]E[.
So we can avoid treating all the technicalities arising in the low-dimensional case, and
we thus assume throughout this section that 2CON(G; Z; r) has dimension [E[.
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In Lemma 4.2 we derive valid inequalities for the 2CON(G; Z; r) polytope from
valid inequalities for the 2CON(GIN; Z; r) polytope.

LEMMA 4.2. Consider the 2CON(G; Z; r) polytope and let W c_ V\Z. Let the
node w in G/W that represents node set W inherit its connectivity type from W
by rw :- con(W). /f 5Tx b is a valid inequality for 2CON(G/W;Z;r) where
W C_ V\Z, then aTx >_ b is valid .for 2CON(G; Z; r), where

he--he for e e E(G/W) and ae O for e e E(W).

We say that aTx

_
b is obtained from 5Tx

_
b by expanding w to W.

Proof. We first remark that the lemma is true for any of the inequalities (i), (ii),
or (iii) of (4.1). The reason is that the expansion of any inequality of type (i), (ii),
or (iii) is again of the same type. (Note that since Z V) W q}, a shrunk node w can
never be chosen as a node z in a node-cut inequality (ii).)

Since 2CON(GIN; Z; r) is the convex hull of the integral solutions of (i), (ii), and
(iii) of (4.1) every valid inequality for 2CON(G/W; Z; r) can be obtained by taking
nonnegative combinations of the inequalities (i), (ii), and (iii), rounding the left- and
right-hand sides up and recursively repeating this procedure. (This so-called cutting
plane proof is described in [Chv]; see also [Sch, Cor. 23.25].) It is easy to see that
such a validity proof of 5Tx

_
b from the inequalities (i), (ii), and (iii) of (4.1) for

2CON(GIN; Z; r) yields a validity proof of aTx

_
b by applying the same nonnegative

combinations and rounding operations to the associated expanded inequalities, since
combining and rounding expanded inequalities produces expanded inequalities, v1

The following lemma gives a technical condition for an "expanded" inequality
derived by Lemma 4.2 to define a facet of 2CON(G; Z; r).

LEMMA 4.3. Consider the 2CON(Z) problem given by (G,r) satisfying (1.2)(i)
and let W be a subset of V\Z with G[W] connected. Let the node w in G/W
(representing the node set W) inherit its connectivity type from W by rw :- con(W).
(Note that (G/W, r) does not necessarily satisfy (1.2)(i).)

Let the inequality 5Tx >_ a > 0 be valid .for 2CON(GIN; Z; r) and let aTx

_
be the inequality (valid for 2CON(G; Z;r)) obtained from 5Tx >_ a > 0 by expanding
node w Z to W C_ V(G).

Denote by Fa the face of the p2lytope P "= 2CON(G; Z; r) induced by aTx

_
o

and by Fa the face of the polytope P := 2CON(GIN; Z; r) induced by 5Tx >_ a.

Fa is a facet of P if and only if the following conditions hold:
(a) For any e e E(W) there exists a set C c_ E(G/W) with X e Fa so that the

incidence vector of t2 E(W)\{e} lies in Fa.
(b) There exist s := IE(G/W)I sets Ci e E(G/W), i 1,..., s, with Xc* e Fa

so that
(bl) XCUE(w) E Fa, and
(b2) the XC* are ajfinely independent.
Proof. Suppose that (a) and (b) are satisfied. We want to show that Fa is a

facet. (Note that (b) implies that Fa is a facet.) Let bTx

_
define a facet Fb of P

that contains Fa. For any e E E(W), condition (a) provides a set C with e C
and XC Fb. Therefore, xcu{e} Fb and be 0 also. Condition (b) implies that
vector b has to satisfy bTxCtE(W) for 1,..., s. Since we have just proved bT

to be (0,/T) with/ IRE(a/W), this means [TxC for i 1,’’’, s. The affine

independence of the dim(/5) vectors xc* implies that DTx >_ defines a facet of/5,
necessarily the same as Fa. Therefore, (T, fl) is a positive multiple of (&T, a), and
(bT, ) is a positive multiple of (aT, a). So Fa defines a facet.
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On the other hand, if we know that aTx

_
o defines a facet of P, then for each

e E E(W) there must exist a set C with e
P" xe 1. If we shrink node set W to node w in the graph defined by C we arrive
at a set C := C\E(W) whose incidence vector satisfies 5Tx
because con(w) con(W), w may be an articulation node in C, but this does not
matter because w Z. The set C U E(W)\(e} is feasible for P because it contains
the feasible set C and because G[W] is connected. Therefore, (a) is satisfied.

If Fa is a facet of P, there exist IEI affinely independent vertices XC in Fa, where
Ci c_ E is feasible for P, for i- 1,..., IEI. We set xi := Xc for i 1,..., IEI. There
must be a subset of IE(G/W)I affinely independent vectors among &l,"’, &IEI, where
&i is derived from xi for i 1,..., lEvi by deleting the components e E(W). The
&, for i 1,..-, IEI, are feasible for P because the deletion of the E(W)-components
of a vector x in (0, 1}E is equivalent to the contraction of W in the subgraph (V, Fx)
of G defined by x. So the affinely independent subset of (& i 1,..., IEI} satisfies
(bl) and (b2).

The conditions of Lemma 4.3 can be used to derive some conditions on G[W] that
are of a more graph-theoretical nature and sufficient for an "expanded" inequality to
define a facet of 2ECON(G; r).

LEMMA 4.4. Consider the 2ECON problem given by (G,r) satisfying (1.2)(i).
Let W C_ Y with W V, and let w (of type con(W)) be the node of G/W
representing W. Consider an inequality 5Tx >_ b that is facet-defining .for the poly-
tope 2ECON(G/W; r), and consider the inequality aTx >_ b (valid .for 2ECON(G; r))
derived from 5Tx >_ b by expanding node w to W.

g G[W] n  x{2, +  hen >_ b a oI
2ECON(G; r).

Proof. Let F and Fa be defined as in Lemma 4.3. We will check conditions
(a) and (b) of Lemma 4.3. The connectivity conditions on G[W] imply that for
any e E(W) and 7 c_ E(G/W) that is feasible for 2ECON(G/W; r), the sets
C[J E(W)\{e} and UE(W) are feasible for 2ECON(G; r). Since Fa is a facet, there
are enough affinely independent X to satisfy condition (b) of Lemma 4.3. [:]

Usually much weaker conditions on the edge-connectivity of G[W] are already
sufficient for an expanded inequality aTx

_
b to define a facet of 2ECON(G; r). But

this leads to further technicalities concerning assumptions on the structure of the
graph and properties of &Tx >_ b; see, for instance, Theorem 3.2(a) and (b).

The next lemma gives a sufficient condition for an expanded inequality to define
a facet of 2NCON(G; r). (Note that any inequality valid for 2CON(G; Z; r) is also
valid for 2NCON(G; r).)

LEMMA 4.5. Consider the 2NCON problem given by (G, r) satisfying (1.2)(i). Let
Z C_ V and W c_ V\Z with 0 W Y and r(W) 1, and let w (of type 1) be the
node of G/W representing W. Consider an inequality 5Tx >_ b that is valid .for the
polytope 2CON(G/W; Z; r) and facet-defining for 2NCON(G/W; r).

If G[W] is two-edge-connected, then the inequality aTx

_
b derived from 5Tx >_ b

by expanding node w to W defines a facet of 2NCON(G; r).
Proof. First, aTx

_
b is valid for 2CON(G; Z;r) by Lemma 4.2 and hence for

2NCON(G; r). To prove that aTx

_
b also defines a facet of 2NCON(G; r), we apply

Lemma 4.3 with P 2CON(G/W; V; r) and P :=2CON(G; V; r). Conditions (a)
and (b) are still sufficient for aTx

_
b to define a facet of P, because of the fact that

w Z is not used in the sufficiency part of Lemma 4.3. So we have to check (a)
and (b) of Lemma 4.3, which is easy.

Our final lifting result presents conditions under which a valid inequality for
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2CON(G; Z; r) on a complete graph G (V, E) can be extended to the graph with a
new node w of type at least 1 added, along with all of the edges incident between w
and V; we denote such a graph by G / w.

LEMMA 4.6. Consider the 2CON(Z) problem given by a graph and node types r
satisfying (1.2)(i), where (V,E) is a complete graph with two parallel edges uv

for each u, v U with u v. Let aTx

_
be a valid inequality for 2CON((; Z; r)

with & >_ O. Let W c_ \Z be a node set with r(W) 2 and ( some nonnegative value
so that either &e ( .for all e e (W) or IWI 1.

We define an inequality aTx

_
b on the graph G := +w with rw := 1 by setting

b’=/,
ae &e for all e ,,

auw ( .for all u W,
auw flu "= max{c, max{h,., v e W}} for all u W.

If auw + aw >_ ( + any .for all distinct nodes u, v W, then aTx >_ b is valid for
2CON(G;Z;r).

Note that in Lemma 4.6 the restriction to complete graphs is no restriction at all,
because any inequality valid for 2CON(G; Z; r), where G is a complete graph, is also
valid if G is replaced by some subgraph (V, F). In the lemma we need completeness
of ( to compute the /u correctly. Also, we can restrict ourselves without loss of
generality to 5 >_ 0 because it is easy to see that any inequality 5Tx >_ that is
facet-defining for 2CON(; Z; r) (except -xe >_ -1) has nonnegative coefficients.

Proof. We will assume that rw 1, because validity of an inequality in this case
implies its validity if r 2. Assume further that aTx >_ b is not valid, i.e., that there
exists an edge set C that is feasible for 2CON(G; Z; r) and does not satisfy aTxC >_ b.

(1) If there is an edge uw E C with u E W, we contract node set {u, w} to node u.
The resulting subgraph of ( with edge set C\{uw} is feasible for 2CON(G; Z; r). Note
that &vu <_ av for all v V. Therefore, &TxC/{u,} <_ aTxC --ao < b- c-/. But
then 5Tx >_ [ is not valid for 2CON((; Z; r), a contradiction.

If C uses no edge of [W" {w}] q C, we will show how to replace C by some set
containing an edge in [W" {w}], such that aTxC’ <_ aTxC < b. So we can apply the
argumentation above to derive a contradiction to the validity of 5Tx >_

(2) Suppose all edges of 5(w)N C were bridges of (V, C). Since w is connected
to W in C, there must be a bridge uw of (V, C), which separates w from some node
v W. The set C’ :- (C\{uw})t {vw} is feasible for 2CON(G; Z; r) and contains
an edge of [W" {w}]. Moreover, aTxC’ aTxC --auw + avw <_ aTxC < b.

Now suppose there are edges of 5(w) fq C that are not bridges of (V, C). Define U
as the set of nodes that are incident to nonbridges of C (the so-called two-connected
part of C). U must contain all nodes of type 2. By assumption, w belongs to U.

(3) Assume that w is not an articulation node of (V, C) disconnecting two nodes of
type 2. The case that w is an articulation node is treated separately. Since r(W) 2,
there exists a node s W of type 2, and since s and w are in U, there exist two
edge-disjoint Is, w]-paths in C that do not coincide in any node z Z. Let u, v E U
be the nodes adjacent to w on these two paths. If u v, we eliminate one of the two
wv-edges. This can be done without destroying feasibility of C because w is not an
articulation node separating two nodes of type 2 and because rw 1. Also, aTxC
does not increase with this operation, since a _> 0. Now we are either in the case that
5(w) C contains only bridges of (V, C) (proceed with part (2) of the proof), or we
construct two other Is, w]-paths that lead to different nodes u v.
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Now we show that C’ (C\(uw, vw})(_J {ws, uv} is also feasible. Clearly C’ is
connected, so we only have to check for bridges and articulation nodes. Suppose
that e is a bridge of (V, C’) separating two nodes of type 2. In C’\(e}, node s is
connected to u and v by at least one of the two edge-disjoint paths and edge uv. If
e ws, all four nodes w, s, u, v lie in the same component (S,F) of (V, C’\(e}).
Since C’ N 5(S) C C i(S), edge e is also a bridge in (V, C) separating two nodes
of type 2. So e must be ws. But (V, C) w is a subgraph of (V, C’) w, and w is
not an articulation node of (V, C). Now suppose that z E Z is an articulation node
that separates two nodes of type 2 in (V, C’) but not in (V, C). z s need not be
considered, because s Z. The remaining cases lead to a contradiction similar to
the case in which e is a bridge. So C is feasible for 2CON((; Z; r). C also satisfies

aTxC’ < b because aTxc’ aTxc (auw d- avw auv) -+- aws <_ aTxC oz d- oz.

(4) The last remaining case in our transformation of C is the case in which
w is an articulation node of (V, C) separating two nodes of type 2. Let u, v E U
be nodes adjacent to w lying on different sides of (V, C)- w. Replace C by C
(C\(uw, vw})CJ (uv}. C’ is feasible, aTxC’ <_ aTxC, and (V, C’)- w contains one
component less than (V, C) -w. Ultimately, we reach a set C where w does not
separate any nodes of type 2, and we can apply one of the earlier cases. Thus, we
have proved that if aTx )_ b is not valid for 2CON(G; Z; r), then also 5Tx >_ b is not
valid for 2CON((; Z; r).

The next theorem gives sufficient conditions for aTx >_ b to define a facet.
THEOREM 4.7. Consider the situation in Lemma 4.6, where we have an inequality

5Tx

_
valid for 2CON(Kn; Z; r), and where (Kn, r) satisfies (1.2)(i). Let W, w with

r 1,^oz >_ O, be defined as in Lemma 4.6. Let aTx >_ b be the inequality derived from
&Tx >_ b by the formula in Lemma 4.6. Furthermore, let G (V, E) be a subgraph of
Kn+l with n + 1 nodes, and define as G- w.

Then, for any Z D_ Z, the inequality aTx

_
b defines a facet of 2CON(G; Z; r)

if the following conditions hold:
(a) 5Tx >_ defines a facet of 2CON(; Z; r);
(b) for all u q W with uw E and auw > oz there exists a node v W with

auw auv and uv, vw E;
(c) there exist two distinct nodes u, v with auv avw auw oz, and uv, vw,

uw E;
(d) all nodes u with uw E and auw oz have type at least 1.

Proof. First, note that aTx >_ b is valid for 2CON(G; Z; r) because it is valid
for 2CON(G; Z; r) by Lemma 4.6. We prove the theorem by exhibiting IEI affinely
independent vectors in Fa :-- (x
2CON((, Z’; r) &Tx }.

Let f vw be an edge af oz and rv k 1. This edge exists by condition (d).
Then any set C_/ feasible for Fa can be enlarged to a set C c_ E feasible for Fa by
adding f. This way we can create I/1 affinely independent vectors in Fa. Now we want
to exhibit Ii(w)l- 1 sets Ck with xck Fa. The Ck are characterized by the fact that
Ck contains an edge ek 6(w)\{f} that is not contained in any of the previous Ci,
i 1,..., k- 1. This fact implies that each xck will be affinely independent from
all xc, i 1,---,k- 1, and the I/1 vectors already found in Fa. The Ck are
constructed as follows. Order the edges in i(w)\{f} as el, e2, etc., by increasing
he-values, so that the edges e with ae oz come first. Now, for an edge ek e 5(w)\{f}
with a(ek) oz and ek VkW, let ( C_ / be a set with incidence vector in Fa and set
C C U {ek}. For an edge e uw e i(w)\{f} with au > oz, let uv be the edge
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with av auw, existing by condition (b). Let c_/ be a set with X5 E Fa, which
uses uv. The incidence vector of the set Ck :--- ((\{uv})U {uw, wv} is then in Fa.
Therefore, we can create the proposed [5(w)[- 1 sets Ck.

We still have to exhibit one more vector in Fa that is independent from all the
others. By condition (c) there is a triangle uv, vw, uw E with ae a for all triangle
edges. As before, there is a set with X5 Fa and uv . The incidence vector of
C :--- (C\{uv})U {uw, wv} is affinely independent of all the others already found in
Fa, because these all satisfy x([{w} S]) 1 for S {u uw e E, aw a}. So we
have found IE[ affinely independent vectors in Fa. [:]

5. Partition inequalities for 2ECON and 2NCON. In this section we in-
troduce a class of inequalities that is motivated by the partition inequalities for the
connected subgraph polytope (see [GM]), and that generalizes cut inequalities.

DEFINITION 5.1. Let G (V,E) be a graph and r (0, 1,2}y. We call a
collection W1,..., Wp of subsets of V a proper partition of V if

W#O,i-1,...,p,
WiNWj-O, l <_i <j <_p,
p=W V,

r(Wi) >_ 1, i- 1,...,p.
The partition inequality induced by a proper partition W1,..., Wp is given by

ip
>

i=
p-1

if r(Wi) 2 for at least two node sets Wi,
otherwise.

See Fig. 5.1 for an illustration of a partition inequality with four node sets W,. , W4.
Here and in all following illustrations, node sets W with r(W) 2 are depicted by big
squares, and node sets W with r(W) 1 are depicted by big circles. Nodes of types
2 and 1 are depicted by small squares and circles, respectively.

FIG. 5.1

The following observation follows immediately from the definition.
Remark 5.3. Any partition inequality (5.2) induced by a proper partition is valid

for 2ECON(G; r) and 2NCON(G; r).
Note that a partition inequality induced by a proper partition with p 2 is

nothing but a cut inequality x(5(W)) >_ con(W). The next observation indicates that
we cannot expect to obtain a useful characterization of those partition inequalities
that define facets.
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Remark 5.4. Checking whether a partition inequality supports 2ECON(G; r) or
2NCON(G; r) is NP-complete.

Proof. The problem is obviously in NP. Let G (V, E) be a graph and rv 2 for
all v E V. Then the sets (w}, w E V, form a proper partition of V and the induced
partition inequality reads x(E) >_ IVI. Thus there is a point in 2ECON(G;r) or
2NCON(G; r) that satisfies x(E) >_ IYl with equality if and only if G is Hamiltonian.
This implies the remark. D

We will now derive a sufficient condition for a partition inequality to define a
facet.

THEOREM 5.5. Let G (V, E) be a graph, r (0, 1,2}V, and let W1,..., Wp,
p >_ 3, be a proper partition (see (5.1)). Let (,J) be the graph G/W1/.../Wp
where the Wi are shrunk to nodes wi of connectivity type (wi) :- con(Wi) .for i
1,..., p. Let VI be the set of nodes of type at least 1 in and V2 the set of nodes of
type 2 in . The partition inequality (5.2) defines a facet of 2ECON(G; r) if

3 2;
(b) in G every node o.f type 2 is adjacent to some node of type 1;
(c)
(d) G[V2] is Hamiltonian;
(e) c[w,] +
Proof. The partition inequality (5.2) can be written as x(/) >_ t for the graph (,

where t IIl or IVI- 1, according to whether ( contains nodes of type 2 or not.
If ( contains only nodes of type 1 and ( is two-node-connected (see condition (a)),
the partition inequality x(/) _> I1- 1 defines a facet of the polytope of connected
subgraphs of (. This was shown in [gM]. By our lifting Lemma 4.4 and Theorem
5.5(e), we can expand all nodes wi of G successively to node sets Wi, and thus obtain
a facet of the 2ECQN(G; r) polytope.

Suppose that G contains nodes of type 2. First we show that conditions (a)-(d)
are sufficient for x(/) >_ I’1 to define a facet F of 2NCON((; ). We do this by
constructing I/1 affinely independent vectors in F.

Take some Hamiltonian cycle C of ([V2]. Let G’ (V’,E’) denote the graph
(/V2. Any tree T spanning the nodes of the shrunk graph G may be added to C,
thus creating a set whose incidence vector is in F. There are at least lEVI such
trees with affinely independent incidence vectors. This is true because the inequality
x(E’) _> IY’l- 1 defines a facet of the polytope of connected subgraphs of G’ (see [GM])
if G is two-node-connected. Note that G is two-node-connected because G is two-
node-connected by condition (a), and because ([V\V2] is connected. Hence we can
find lEVI affinely independent vectors of the form XCUT in F.

Now take some cycle edge e C. With the help of conditions (b) and (c) we can
construct a cycle not using e and spanning all nodes of type 2 in G by using the path
C\(e} and a path in G. This new cycle may be augmented by some trees to a feasible
set with incidence vector in F. This vector is affinely independent of all other vectors
constructed so far because these all satisfied x 1. By applying this argument for
each cycle edge successively we can construct IE’I + ICI affinely independent vectors
in F.

For any other edge e uv (V2)\C we want to construct a cycle spanning
all nodes of type 2, and using e but no other edge of/(V2)\C. This can be done
easily by starting with u, going to v, running in some direction along the cycle C to
the neighbor of u, taking a path in E to the neighbor of v on C that is not already
visited, and running along the other half of C to the starting point u. This cycle can
be augmented to a set with incidence vector in F. This vector is affinely independent
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of all the others exhibited so far because all of those satisfied x 0. So we have

IE’I / I(V2)I- I/1 affinely independent vectors in F. This proves that x(/) _> I1
defines a facet of 2NCON(G; ), and hence of 2ECON((; ).

Our partition inequality (5.2) in G can be obtained from x(/) _> I1 by expanding
successively the nodes wi to node sets Wi according to the definition in Lemma 4.2.
Because of Theorem 5.5(e) we can apply Lemma 4.4, and thus the partition inequal-
ity (5.2) defines a facet of 2ECON(G; r). [:l

Remark 5.6. The partition inequality (5.2) defines a facet of 2NCON(G; r) if G
is complete and no node set W with r(W) 2 contains exactly two nodes.

Proof. The proof is the same as for Theorem 5.5 except that in the end we use
Lemma 4.3 instead of Lemma 4.4.

In view of Theorem 3.2 (d), which gives quite complicated necessary and sufficient
conditions for a cut inequality x(g(W)) >_ 2 to define a facet of 2NCON(G; r), we did
not further investigate necessary and sufficient conditions for a partition inequality
(with p > 2) to define a facet of 2NCON(G; r).

The next theorem shows which of the sufficient conditions of Theorem 5.5 are
actually necessary for a partition inequality to define a facet of 2ECON(G; r).

THEOREM 5.7. Let (G,r) and a proper partition W1,. Wp with p >_ 3 be given,
and let and be defined as in Theorem 5.5. The partition inequality (5.2) defines a

facet of 2ECON(G; r) only if
(a) conditions (a) and (b) of Theorem 5.5 are satisfied;
(b) contains nodes of type 2; then contains a cycle C containing all nodes

of type 2;
(c) G[Wi] is connected for 1,...,p;
(d) A1 (G[Wi]) _> 2 for i- 1,...,p.
Proof. The necessity of condition (a) of Theorem 5.5 is easily seen. Suppose that

condition (b) of Theorem 5.5 is violated and that IWI- 1 for all 1,..., p. This
implies that ( G and that there is a node v E V2 that is adjacent only to other
nodes of type 2 in G. Then any set C that is feasible for 2ECON(G; r) with ICI IYl
has to use exactly two edges of 5(v). Otherwise C would have at least two cycles,
and this would imply ICI _> IVI / 1. So the face induced by the partition inequality
x(E) >_ IYl is contained in the face induced by x(5(v)) >_ 2. But since the partition
was supposed to consist of at least three sets, the partition inequality does not define
the same face as the cut inequality. If IWI >_ 2 for some and if Theorem 5.5(b) is

violated, one can argue similarly.
The necessity of conditions (b) and (c) of Theorem 5.7 is easily seen. As for (d),

suppose that some G[W] contains a bridge e so that G[W]- e has two components
with node sets U and W, with r(U) >_ 1 and r(W) >_ 1. In this case our partition
inequality can be written as the sum of xe _< 1 and another partition inequality can
be defined by the same partition as above, except that Wi is replaced by U and
W. [:]

From an algorithmic point of view, Remark 5.4 seems to be bad news. Even worse,
the separation problem for partition inequalities is NP-complete (see [GMS]). But in
practice, using heuristic separation routines, the class of partition inequalities proved
to be very useful in the cutting plane algorithm presented in [GMS]. Usually, partitions
with a small number of node sets were used there, and for small p it is quite likely
that--in our real-world examples--a partition inequality supports 2NCON(G; r).

Moreover, checking the conditions of Theorem 5.7 is easy, and this helps to convert
one partition inequality into another partition inequality that induces a face of higher
dimension than the first one. Indeed, finding cutting planes that induce faces of
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dimension as high as possible is of importance in cutting plane algorithms. We noticed
this clearly in our computational experiments (see [GMS]).

6. Node-partition inequalities. We now generalize node-cut inequalities to
"node-partition inequalities" in the same way as we generalized cut inequalities to
partition inequalities in the previous section. These new inequalities will only be valid
for 2NCON(G; r), but, in general, not for 2ECON(G; r).

Let G (V, E) be a graph and r E (0, 1, 2}y. Let z E V and let W1,..., Wp be a
proper partition (see (5.1)) of V\(z} such that at least two node sets Wi contain nodes
of type 2. The following node-partition inequality induced by z and W1,..., Wp
is given by

I (Zx(hG-z(Wi)) + Zx(hG(Wi))+x([(z} "UieI1Wi])) > p-1,(6.1)
iI2

where Ik :-- (i e (1,... ,p} lr(Wi) k}, k 1,2.
In Fig. 6.1 a node partition inequality is depicted with three sets Wi with r(Wi)

2 and two sets Wi with r(W) 1. Edges with coefficient 0 are depicted by dashed
lines; edges with coefficient 1 are depicted by solid lines.

FIG. 6.1

THEOREM 6.2. The node partition inequality (6.1) is valid for 2NCON(G; r).
Proof. Consider first a node partition inequality induced by a node z and the

partition consisting of all node sets (v), v Y\(z}. Suppose also that rv 2 for
all v e V\{z}. This node partition inequality, x(E(Y\{z})) _> ]Yl- 2, is valid,
because after deletion of a node z the rest of the network should still connect all
nodes v V\{z}. Nodes of type 1 can be added successively to V\{z} by applying
Lemma 4.6 with Z {z}, W V\{z}, and c 1. With Lemma 4.2 all nodes
v V\{z} can be expanded to node sets. In this way, every node partition inequality
is proved to be valid. [:]

The following theorem gives a sufficient condition for the node partition inequal-
ity (6.1) to define a facet of 2NCON(G; r).

THEOREM 6.3. Consider a node partition inequality (6.1) induced by W1,..., Wp.
Let denote the graph (G- z)/W1/.../Wp, where the W are shrunk to nodes w,
i 1,...,p. Let I1 and I2 be defined as in (6.1). The node partition inequality
aTx >_ p- 1 defines a facet of 2NCON(G; r) if
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(a) ( is two-node-connected;
(b) G[Wi U {z}] e is two-node-connected .for all edges e e G[Wi {z}] and for

all i E I2;
(c) G[Wi] is two-edge-connected for all i 11.
Proof. Let conditions (a), (b), and (c) be satisfied. We will show how to con-

struct IEI affinely independent vectors in the face defined by the node partition in-
equality (6.1).

Let E be the set of all edges^whose coefficients in aTx

_
p- 1 are 0. By

condition (a), the graph ( (V,E) contains [/[ spanning trees whose incidence
vectors are affinely independent (see Theorem 4.10 in [GM]). Any such tree T of
can be augmented by E to a feasible set C c_ E for 2NCON(G; r). Feasibility can be
shown as follows. For any two nodes u, v G[Wi (A {z}] (where i 12) there exist,
by condition (b), two node-disjoint paths in (V, C). For u Wi and v Wj (where
i, j E 12 and i j), we construct the following two node-disjoint paths. In (V, C) z,
there exists a path from some node u Wi to some node v Wj. Let u and v have
the property that u is the last node of Wi and v is the first node of Wi encountered
on this path. Since G[Wi ( {z}] is two-node-connected, it contains a Is, u]-path and
a Is, z]-path, which do not have a node except u in common. (If u u, we only
need one path, namely, the Is, z]-path.) Similarly, G[Wj (A {z}] contains a Iv, v]-path
and a [v, z]-path, which are node-disjoint. From these paths we can construct two
node-disjoint [u, v]-paths in (V, C). So for all pairs u, v of nodes we can construct
the required number of paths in (V, C), which proves feasibility of C. Feasibility is
preserved even when some single e E is deleted from C. [:]

The connectivity conditions given in (b) imply that if r(W) 2 for one of the
node sets in the partition, then Wi must contain at least three nodes. This is not at
all necessary. In fact, there exist facet-defining node-partition inequalities where all
node sets in the partition contain exactly one node. Because we need it later on, we
state this result as a lemma.

LEMMA 6.4. Consider a 2NCON problem given by (G, r) and let z be some node
of G. We suppose that G (V, E) is a graph with at least four nodes and rv 2 for
all v e Y\{z}. The node-partition inequality (6.1) induced by the partition of Y\{z}
into node sets {w} for w V\{z} defines a facet of 2NCON(G; r) if z is adjacent to
every node in G.

Proof. This can be proved by considering trees of G- z augmented by certain
edges of i(z). Note that by (1.2)(iii) the graph G is supposed to be three-node-
connected, so there exists a sufficient number of trees of G- z. [:]

Some necessary conditions for node-partition inequalities to define facets of
2NCON(G; r) can be derived from Theorem 3.3 for node-cut inequalities.

THEOREM 6.5. The node-partition inequality (6.1) defines a facet of 2NCON
(G; r) only if

(a) G[W] is connected for all i e I;
(b) AI(G[Wi tA {z}])

_
2 for all i 12;

(c) A1 (G[Wi])
_

2 for all i 11;
(d) A2(G[Wi]) _> 2 for i-- 1,...,p.
Proof. The proof is obvious.
The connectivity conditions given in Theorem 6.5 can be easily checked and are

of some practical use in cutting plane algorithms to derive faces of higher dimension.

7. Lifted two-cover inequalities. The motivation for introducing and study-
ing the next class of inequalities derives from the fact that the two-matching in-
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equalities play an important role in solving the traveling salesman problem; see [GP]
and [PG].

The roots, however, are Edmonds’s results for b-matching polyhedra (see
since a certain (complemented) b-matching problem provides an interesting relaxation
of the ECON problem.

Let G (V, E) be a graph and r E {0, 1, 2}V. Every incidence vector of a feasible
solution F c_ E to the 2ECON problem satisfies the "star inequalities" x(5(v)) >_ rv
for all v E V. And therefore the incidence vector of the complement F :-- E\F of a
feasible solution F to the 2ECON problem satisfies

(7.1) y(5(v))

_
by IS(v)[- rv for all v e V,

0 _< ye _< 1 for all e E.

The convex hull of the integral solutions of (7.1) is the 1-capacitated b-matching
polytope of G, where b (bv),ey y. Let us set, for W C_ V, b(W) -,ew bv.
Edmonds [E] has shown that a complete linear description of the 1-capacitated b-
matching polytope of G is given by the following system

<_
y(E(H)) + y() < 2

O<_ye <_ 1

for all v V,
for all H c_ V and all T c_ 5(H) such
that b(U)+ ITI is odd,
for all e E E.

Since F 1 X’, we can derive from (7.2) that every incidence vector of a feasible
solution to the 2ECON problem satisfies

x(E(H)) + x(5(H)\T) > -,eH rv --ITI + 1

2

for all H C_ V and all T C_ 5(H) such that .eH_r. --ITI is odd. In the transformation
from (7.2) to (7.3) we have also set T := 5(H\T).

Since r {0, 1, 2}V, we call inequalities (7.3) two-cover inequalities. Note that
it follows from Edmonds’s result that the two-cover inequalities (7.3) plus the trivial
constraints 0 _< xe _< 1, for all e E, give a complete description of the two-cover
polytope, which is the convex hull of all incidence vectors of edge sets F c_ E such
that each node v V has at least r incident edges.

From the two-cover inequalities we derive a larger class of inequalities as follows.
Let G (V, E) be a graph and r {0, 1, 2}V. Let H V be a node set, called the
handle, and T c_ 5(H) an edge set. For each e E T we denote by Te the set of the
two endnodes of e. The sets T, e T, are called teeth. For simplicity we also call
the edges e T teeth in this section. If an edge e T is parallel to some edge f T,
we count T and Tf as two sets, even if Te Tf. Let H1,..., Hp, p _> 3 be a partition
of H into nonempty disjoint node sets such that

r(Hi) _> 1 for i- 1,...,p;
r(Hi) 2 if Hi is intersected by some tooth, 1,...,p;
no more than two teeth may intersect any Hi, 1,-..,p;
ITI _> 3 and odd.

We call

(7.4) x(E(H)) E x(E(Hi)) / x(5(H)) x(T) >_ p
i--1



FACETS FOR POLYHEDRA RELATED TO LOW-CONNECTED NETWORKS 495

FG. 7.1

the lifted two-cover inequality.
In Fig. 7.1 a handle with four node sets H1,..., Ha and three teeth (drawn with

dashed lines) is depicted, inducing a lifted two-cover inequality with right-hand side 3.

For the case in which rv 2 for all v E V, Mahjoub [M] has found the same
class of inequalities (and calls them "odd wheel inequalities" using a quite different
notation).

Note that a lifted two-cover inequality coincides with a two-cover inequality (7.3),
if IHI 1 and r(H) 2 for 1,...,p. Note also that with each additional H with
IH]- 1 and r(H) 1 the right-hand side of a lifted two-cover inequality increases
by 1, whereas the right-hand side of a two-cover inequality increases only by 1/2 (on
the average). This implies that two-cover inequalities do not support 2ECON(G; r)
if H contains nodes of type 1. Nevertheless, if the right-hand side of a two-cover
inequality is increased appropriately, these inequalities define facets of 2ECON(G; r)
in many cases. This odd behavior may be explained by the fact that in an edge-
minimal solution to the two-cover problem the nodes of type 1 may lie on matching
edges, whereas in an edge-minimal solution to the 2ECON problem they are connected
by a tree (or they lie on some cycle).

Also, the class of lifted two-cover inequalities is not very useful for the 2NCON
problem, because they do not define facets in the case in which G is a complete graph
and some Hi with incident tooth contains more than one node. In 8 we will introduce
a class of inequalities for 2NCON(G; r) that contain the lifted two-cover inequalities
with IHI-- 1 as a subclass, and define facets for complete G and IHI >_ 1. But these
will be valid only for 2NCON(G; r).

As in the previous sections, we will derive validity and facet results of lifted two-
cover inequalities from validity and facet results of a special class of lifted two-cover
inequalities, namely those with Hil 1.

THEOREM 7.5. A lifted two-cover inequality (7.4) is valid for 2ECON(G; r) (and
hence for 2NCON(G; r)).

Proof. First, assume that IHil 1 and that all nodes in the handle are of type 2.
In this case, we have a two-cover inequality that is valid for the polytope of two-covers,
hence for 2ECON(G; r). It is also easy to prove validity in this case by summing up
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the inequalities:
x(5(v))>_ 2 for allveH,

-xe_>-i for alleET,
xe_> 0 for alleEb(H)\T,

dividing the result by 2 and rounding the right-hand side up.
Our next step is induction over the number of nodes of type 1 in the handle (but

still IHil 1). This can be done with the help of Lemma 4.6 by setting W := H,
( 1, and w as the new node of type 1. The result is a new valid inequality of the
form (7.4).

Finally, using Lemma 4.2, we expand the nodes in the handle successively to node
sets Hi with coefficients 0 inside Hi, to derive all inequalities of the form (7.4).

Note that when lifting a node w with incident wv T to node set W, only one
edge of [W (v}] gets coefficient 0; all others have coefficient 1 in the lifted two-
cover inequality. (If all edges in [W" (v}] had coefficient 0, the obtained inequality
would not be valid for 2ECON(G;r), but it would be valid for 2NCON(G;r); see
Theorem 8.2.)

Lifted two-cover inequalities are also valid if we allow an even number of teeth.
But they cannot define facets in this case, as can be seen easily.

The following theorem gives a necessary and sufficient condition for a special
subclass of lifted two-cover inequalities to define facets of 2ECON(G; r).

THEOREM 7.6. (a) A lifted two-cover inequality (7.4) with IHil 1 for
1,...,p, IHI ITI(- p), and IV\HI 1, defines a facet of 2ECON(G; r) if and only
if G[H] is hypomatchable (i.e., .for each node v e H there is a matching of G[H] that
is incident to all nodes in H except v).

(b) Let G[H] be a complete graph. Then any lifted two-cover inequality (7.4)
with IHil- 1 .for i-- 1,...,p, Igl >_ ITI >_ 3, and IV\HI 1, defines a facet of
2ECON(G; r).

Proof. Let F be the face induced by the lifted two-cover inequality in question.
(a) Let F be contained in a facet Fb induced by some inequality bTx

_ . We
want to prove that b is a scalar multiple of the left-hand side of the lifted two-cover
inequality.

Pick some v H. Any perfect matching M of G[H\(v}] can be enlarged to a
set C whose incidence vector is in the face F by adding some edge e 5(v)\T along
with all tooth edges. The resulting set Ct2 (e}t2T is two-edge-connected and
contains IHI- [2TJ I21 edges. By varying e E ti(v)\T, we achieve be v for
all e 5(v)\T and some constant cv. Since G[H] is connected, cv is the same for all
nodes v e H. (G[H] is connected if G[H] is hypomatchable.)

Now we prove that be 0 for e T. Let u be the node in H incident to e and
let v be some node in H adjacent to u. The incidence vector of a perfect matching of
G[H\(v}] plus edge uv plus T\(e} lies in Fb. Since adding edge e does not change the
right-hand side, we know be 0. Therefore, our lifted two-cover inequality defines a
facet.

Suppose now that E(H) is not hypomatchable. With the help of Tutte’s theorem
we will find a separation of E(H)( (5(H)\T) into edge sets El, E2,..., E8 so that

x(Ei) >_ ki is valid for 2ECON(G;r) and the sum of the ki is at least IHI- 2J.
This is done as follows: since for some node v e H the graph G[H\(v}] has no perfect
matching, by Tutte’s theorem there exists a node set S c_ H\(v} so that the number
of odd components co(G[H\(v}]- S) of G[H\(v}]- S is strictly larger than ISI. Since
H\(v} is an even node set (IHI- ITI is odd), either the number of odd components
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of G[H\{v}]- S is odd and ISI is odd, or both numbers are even. In any case, we
know that Co(G[U\(v}]- S) -ISI _> 2. So Co(G[U]- (S U (v})), which is the same
as co(G[H\(v}] S), is still larger than IS t2 (v}l. For the sake of simplicity, we will
rename S :-- S t.J (v}. Let Hi be the node set of the ith (odd or even) component of
G- S. Let Ti denote the subset of teeth incident to Hi and let Ei denote the edge set
E(Hi) t2 ((Hi)\Ti). The Ti constitute a partition of T\(S), and the Ei constitute a
partition of the edge set (E(U) E(S)) (5(H)\T).

x(Ei)>ki := ,Hi,-[-]
is a valid lifted two-cover inequality (this is valid also for an even number of teeth!). If
we take the sum of these inequalities plus the nonnegativity constraints for e E(S),
we achieve x(E(g)) / x(5(H)\T) >_ k, where k is the sum of the ki. In the right-hand
side, the IHil sum up to IHI-ISI, and the [1]/2] sum up to 1/2
so the ki sum up to

+ - (co(G[H S)- ISl) >_ IHI-

Therefore, our lifted two-cover inequality can be written as the sum of at least two
other valid inequalities; hence it does not define a facet.

(b) Assume first that H contains only nodes of type 2 (with or without incident
teeth). If nodes of type 2 without incident teeth are allowed in the handle, the restric-
tion of a feasible set C whose incidence vector is in F to the edge set E(H) U 6(H)\T
is something more complicated than a matching with additional edge. It is rather a
collection of node-disjoint paths between pairs of nodes with incident teeth plus one
additional path connecting the last node with incident tooth to V\H or to some other
path. More exactly, if we set v := 2 minus the number of incident teeth for v 6 H
and z "= 0 for the node z H, then C\T meets each node v 6 V with exactly
v edges, except for one node that is met by . + 1 edges. C\T is a near-perfect
f-cover of E(H)U ((H)\T) (so to speak). To see this, add the v, divide by two,
and compare this with the right-hand side of the lifted two-cover inequality. (But not
every near-perfect f-cover of E\T plus T defines a feasible set, as there might be some
node-disjoint cycles.)

Since the structure of the feasible sets with incidence vector in F is somewhat
unwieldy, we switch to complete graphs. Let Fb be a facet containing F, induced by
some valid inequality bTx

_ . First we show be av for all e 6 5(v)\T and all
v 6 H. The connectedness of G[H] will imply that the av are the same for all v 6 V.
If v H has an incident tooth, construct node-disjoint paths in G[H] connecting pairs
of nodes with incident teeth and meeting all nodes of H except v. To this set add any
edge e 5(v)\T and T. Since we have freedom in choosing e, we can prove be
for all nodes v e H with incident teeth. If v H has no incident tooth, construct
node-disjoint paths in E(H) between pairs of nodes with incident teeth plus one path
(node-disjoint from all others) between v and the last leftover node with an incident
tooth. These paths should meet all nodes in H. Call this collection of paths C. As
before, we can add any edge of 5(v) (except the path edge C CI 5(v)), plus all teeth,
and get a set with incidence vector in Fa. This proves be a. for all e 6 5(v)\C.
But we can construct another set C’ the same way as before, only this time it uses
a different edge of 5(v). So we have be 9Iv for all e 5(v)\C and some value
Since 5(v)\T contains at least three edges, all edges in 5(v)\T have the same he-value
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% a,. Proving be 0 for the teeth e E T is easy, so we have that b is identical to
the lifted two-cover inequality; therefore it defines a facet.

If H contains nodes of type 1, we use Theorem 4.7 for induction on the number
of nodes of type 1 in H in the same way as we used Lemma 4.6 for proving validity of
the lifted two-cover inequality. [:]

Usually the feasible sets of 2ECON(G; r) whose incidence vectors satisfy the lifted
two-cover inequality with equality are not feasible for 2NCON(G; r) if V\H consists
of only one node, because this node may be an articulation node. But if V\H has
sufficiently high connectivity, (7.4) may define a facet of 2NCON(G; r).

Remark 7.7. A lifted two-cover inequality (7.4) with IHil 1 for 1,...,p,

IHI ITI(- p), defines a facet of 2NCON(G; r) if G[H] is hypomatchable, G[V\H] is
three-edge-connected, no two teeth are incident to the same node (in V\H), and no
parallel edges exist.

Proof. The proof is analogous to the proof of Theorem 7.6.
But usually, as the following remark shows, lifted two-cover inequalities do not

define facets for 2NCON(G; r) as soon as IHil > 2 for some Hi with an incident tooth.
Remark 7.8. A lifted two-cover inequality does not define a facet of 2NCON(G; r)

if there is a node set Hi and a node v V\H so that [(v}" Hi] contains a tooth and
a nontooth.

(This is the case especially if G is complete and some Hi with incident tooth
contains at least two nodes.)

Proof. It can be shown that a feasible set C c_ E with 2NCON(G; r) that sat-
isfies such a lifted two-cover inequality with equality never uses the nontooth in

[{v} Hi].
But for the 2ECON problem we can use our lifting lemmas of 4 to derive suffi-

cient conditions for a lifted two-cover inequality with general Hi to define a facet of
2ECON(G; r).

THEOREM 7.9. Given a lifted two-cover inequality (7.4), we will denote by the
graph G/H1/... /Hp.

(a) /f ([H] is hypomatchable (in the case p ITI) or complete (in the case
p > ITI), if the G[Hi] .for 1,..., p are (r(Hi) + 1)-edge-connected, and if G[V\H]
is max{2, r(Y\H) + 1}-edge-connected, a lifted two-cover inequality defines a facet of
2ECON(G; r).

(b) If the lifted two-cover inequality is facet-inducing, then ([g] and G[Hi] are

connected.for i 1,..., p, and A1 (G[Hi]) > 1 for 1,..., p. In fact, one can always
find HI,..., Hp with A(G[Hi]) > 2 for i 1,...,p that induce the lifted two-cover
inequality in question.

Proof. (a) Theorem 7.6 proves the lifted two-cover inequality to be facet-defining
for 2ECON(G; r). With Lemma 4.4 we can lift this result to 2ECON(G; r).

(b)^It is easy to see that the G[Hi] must be connected for all i 1,..., p.
If G[H] is not connected, we can split the handle H into two handles H’ and H"

to derive two lifted two-cover inequalities whose sum gives the old one. So the old one
cannot define a facet.

It remains to show that we can find H,..., Hp with A (G[Hi]) _> 2 for i 1,..., p
that induce our lifted two-cover inequality.

If Hi has no incident tooth and A1 (G[H]) 1, then our lifted two-cover inequality
can be written as the sum of another lifted two-cover inequality where Hi is split into
at least two other sets plus one constraint xe _< 1. The same argument is possible if
Hi has an incident tooth and A2(G[Hi]) 1. So in these cases our lifted two-cover
inequality cannot define a facet.
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It remains to check the case in which Hi has an incident tooth e and 1 (G[Hi])
1. In this case G[Hi] has a bridge f so that G[Hi]- f decomposes into two components
U and W with r(U) 1 and r(W) >_ 1. The interesting case is the one where the
tooth e is incident to U, because there we cannot simply split Hi into U and W
to derive a stronger lifted two-cover inequality. But we can replace Hi by Hi\U,
H by H\U, and the tooth e by the bridge f to derive another lifted two-cover inequality
of the same form as the old one. By repeating this procedure of reducing Hi, we can
assume that 1(G[Hi]) _> 2 for all i-- 1,...,p.

8. Comb inequalities. The following constraints were motivated, on the one
hand, by the comb inequalities for the traveling salesman problem (see [GP]), and on
the other hand, they were motivated by the fact that the lifted two-cover inequalities
do not generally define facets for the 2NCON problem (see Remark 7.8). We wanted
to find a facet containing the face induced by a lited two-cover inequality in the case
in which G is a complete graph and the Hi contain more than one node.

The class of inequalities we came up with in this case are valid for 2NCON(G; r),
but not generally for 2ECON(G;r). We will call this class comb inequalities for
2NCON(G; r). These inequalities allow a further generalization using the concept
of clique trees. But we will not discuss this here.

Let H, T,. , T be subsets of V and let zi Ti\H, 1,..., t, be not necessarily
distinct nodes (H is called the handle, the sets T,..., Tt are the teeth, and the
z,..., zt the special nodes) that satisfy the following conditions:

t >_ 3 and odd;
two teeth have at most one node in common;
if Ti CTj , then T T {zi}-- {z};

--each tooth Ti intersects the handle H in exactly one node; we denote this node
by ti for i- 1,...,t;

rt 2 for i 1,..., t;
r >_ 1 for all v

We denote by V2 the set of nodes of type 2 in G. The special comb inequality is
given by

(8.1)
x(E(H)) + x(6(H)) + i= x(E(Ti))
+i: x([Ti\(g U {zi}) V\Ti]) ([{ti}-i= x

-i= x([(zi} Ti Y2]) >_ IHI + -i= (ITil- 2)

The (general) comb inequality is derived from the special comb inequality (8.1) by
expanding all nodes w H that are not in (z,..., zt } to node sets W (see Lemma 4.2).
Figure 8.1 gives an illustration of a comb inequality with a handle H consisting of four
node sets and three teeth Ti, 1,..., 3, which has right-hand side 6. Edges with
coefficient 0 are drawn with dashed lines, edges with coefficient 1 with solid lines, and
edges with coefficient 2 with bold lines.

We note that the comb inequality becomes a lifted two-cover inequality with sets
Hi :-- (ti} if ITil- 2 and IE(Ti)I- 1.

We will prove validity and facet results only for special comb inequalities. With
the help of Lemmas 4.2-4.5 one can easily derive validity and facet results for general
comb inequalities.

THEOREM 8.2. A comb inequality (8.1) is valid for 2CON(G;Z;r) with Z
(z, z2,...,z}, and hence it is valid for 2NCON(G; r).
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FIG. 8.1

Proof. Assume that all nodes in (H U (Ui=lTi))\{Zl,... ,Zt} are nodes of type 2.
Then the left-hand side of the comb inequality (8.1) can be written as 1/2 times the
sum of the following inequalities with subsequent rounding:

(1) for all v e H\(U=ITi)" the cut inequality x((v)) >_ 2;
(2) for all teeth Ti: the node-partition inequality (6.1) induced by z and the

partition {V\T, {v} for all v e T\{z}}; the right-hand side is ITil- 1;
(3) for all teeth T with r(T\{t,z}) 2: the node-partition inequality (6.1)

induced by zi and the partition {Y\(T{\{t}), {v} for all v e T\{z,ti}}; the right-
hand side is ITI- 2;

(4) for all teeth T with r(T\{t,zi}) 1" the partition inequality (5.2) induced
by the partition {(V\T{)U {t{,z}, {v} for v e T\{ti, z{}}; its right-hand side is

ITl- 2;
(5) some nonnegativity constraints.
The sum of () times the right-hand sides of these inequalities is"

IH\ (U= T)I + E= (IT, I-
-IHI- t + 3= ITI s

2

IHI + 3=1(ITI- 2)- .
Rounding this up gives the right-hand side of (8.1) exactly.

If the handle contains nodes of type 1, we apply Lemma 4.6 inductively with
W H and :- 1. If a tooth T contains nodes of type 1, we apply Lemma 4.6
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with W :-- Ti and ( :- 1; this is done in the same way as in the validity proof for
node-partition inequalities. [:]

Note that the comb inequality (8.1) is also valid if the number of teeth t is even.
But in this case it does not define a facet, as it can be written as the sum of a comb
inequality and node-partition inequality (or a nonnegativity constraint).

Note also that if U U (U=ITi) V and zl z2 zt and ITI 2 for
all i, the special comb inequality with right-hand side IHI- [-] may degenerate into
a node-partition inequality with higher right-hand side, namely, IHI- 1. In this case
the special comb inequality cannot define a facet.

THEOREM 8.3. The special comb inequality (8.1) defines a facet of 2NCON(G;r)
if rv 2 .for all nodes v E V, if the zi are all distinct, and if G is the complete graph
minus all edges with coefficient 2 in (8.1).

Proof. The restriction to nodes of type 2 has only technical reasons, mainly be-
cause of Lemma 6.4. The restriction to edges with coefficients 0 and 1 is also introduced
only for technical reasons. Once we have proved an inequality to define a facet only
on a subset of edges of the complete graph, it is easy to prove it to be facet-defining
on the complete graph.

Let F be the face induced by the comb inequality in question, and let F be
contained in the face Fb induced by some valid inequality bTx

_ . First we prove
be ci for all edges in E(Ti)t2 [(ti} HI with coefficient 1 and some (i. We do
this (without loss of generality) for tooth T1. Suppose that ITll _> 3. (For "small"
teeth that consist of only one edge, the following proof has to be modified somewhat.)
Construct a collection P of node-disjoint paths in G[H] between pairs of nodes
say, between t2 and t3, t4 and tb, etc. Those paths should meet every node in H
except t. To this collection of paths P, we may add certain trees in the teeth Ti that
are constructed as follows:

(1) For T1 we take any feasible edge set whose incidence vector lies in the face of
2NCON(G/(V\T); r) induced by a certain node-partition inequality on T, namely,
the one with node z z and node sets (v} for all nodes v in T and (w} for the
shrunk node standing for V\T (cf. (2) used in the validity proof in Theorem 8.2).
These sets are trees on T\(z} plus certain edges of ti(zl) plus some edge leading
from T to V\TI. Note also that the face of 2NCON(G/(V\T);r) induced by the
node-partition inequality is a facet by Lemma 6.4.

(2) For Ti with 1, we take any feasible edge set whose incidence vector lies in
the face of 2NCON(G/((V\Ti) (ti}); r) induced by (3) or (4) of the validity proof
in Theorem 8.2. These objects are mainly trees on Ti\(zi, ti} plus certain edges in

[(z} Ti]. If ITil-- 2, we just take the edge of tooth Ti.
Finally, we add all edges zizj to this construction.
We claim that this combination of paths in G[H] and trees of Ti is feasible.

This can be easily checked. Secondly, we claim that its incidence vector lies in the
face induced by the comb inequality; this is true because all inequalities used in the
validity proof of the comb inequality are satisfied with equality except one.

Since we have some freedom in the choice of the "tree" in T, and we know that
the node-partition inequality used for the construction of these "trees" defines a facet
of 2NCON(G/(V\Ti);r), we know that be c for all nonzero edges in this node-
partition inequality, and be 0 for all zero edges e. This can be done for all teeth Ti
in the same way as shown for tooth T.

Now we prove that all edges inside the handle have the same be-value. This value
must be the same as , 2, etc. Thus, we know that all edges with coefficient 1 in
the comb inequality have the same be-value and all edges e with coefficient 0 in the
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comb inequality have be --0.
To prove be (v for all e E (G[H](V) and v E H, we just vary our construction

of paths in the beginning. This is done in exactly the same way as in the proof of
Theorem 7.6(b). To give an example: If v H\T, then we construct paths between
tl and v, t2 and t3, etc. that are all node-disjoint. These paths should meet all nodes
in G[H]. In addition to this collection P of paths we construct trees in Ti according to
point (2) above. Now we can add any edge e e i(v)N E(H) not already in some path
to achieve a feasible solution whose incidence vector lies in the face Fa. So be bf
for all e, f e ((v)\P) E(H). To prove be bf for all e, f e (v) E(H), we just
choose a collection of paths using another edge of 5(v).

It is easy to prove that the be-value for the e of zero coefficient in the comb
inequality is also 0.

So inequality bTx

_
/ is identical to the comb inequality (8.1) except for scalar

multiplication. Therefore, it defines a facet of 2NCON(G; r). D
The question naturally arises whether there are also "comb" inequalities valid for

2ECON(G; r). We know of such a class, but the validity proof is somewhat ugly. In
such a "comb" inequality we have two types of teeth: "simple" teeth consisting of only
one edge with coefficient 0, and "large" teeth T with coefficients 0 on edges in T\H,
and coefficients 1 on the edges leading from T\H to T H and to the "outside."
The edges in the handle have coefficients 2. This seems to be more symmetric, and
therefore, in a way, nicer than the comb inequalities (8.1).

Also, some other odds and ends of inequalities that do not fit into any of the pre-
sented classes are known to us. Some of these are published in Stoer’s dis-
sertation IS].

9. Computational results. The theory presented here for the 2ECON and
2NCON polytopes was developed in order to solve problems of the type and size that
arise in the design of survivable telephone networks in fiber optic technology. The
idea was to design and implement a cutting plane algorithm that uses the inequalities
introduced above.

As mentioned before, it unfortunately turned out that--except for the cut and
node-cut inequalities--the separation problem for all other classes of inequalities pre-
sented here is NP-hard. This means that we can use these classes of inequalities only
heuristically. We had to make an experimental investigation of the relative benefit of
running various heuristics that determine, for a given point y, an inequality of some
class of valid inequalities that is violated by y.

The final outcome of our computational study was a cutting plane code that uses
exact separation routines for cut and node-cut inequalities and separation heuristics
for partition, node-partition, and lifted two-cover inequalities. For the type and size
of practical problems used as our test cases, the other classes of inequalities were of
no significant help. We expect, however, that for larger problem sizes and graphs
of higher density further inequalities will be needed to achieve satisfactory computa-
tional performance. But that will make a more thorough design and investigation of
separation heuristics for the other classes of inequalities necessary.

The design and implementation of a practically efficient cutting plane algorithm
is a rather tricky and time-consuming task. Its success is based on the proper combi-
nation of many details. Some of these are described in [GMS] and IS]. We are unable to
outline these here. Our final code showed the following computational characteristics
on our test problems.
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We obtained the data of seven real networks (nodes, possible direct links, costs
of establishing links) from network designers at Bell Communications Research. The
sizes ranged from 36 nodes and 65 edges to 116 nodes and 173 edges. For all networks,
2NCON and 2ECON solutions had to be found, but in only one case did these solutions
differ. So we had eight test problems available. According to the network designers,
these data represent the range of typical practical applications in this area.

We ran our cutting plane algorithm (using a research version of Bixby’s LP-
code (see [eix]) and Jiinger’s Branch and Cut framework (unpublished)) on a SUN
3/60, a 3 MIPS machine. Five of the eight problems were solved to optimality in
the cutting plane phase in less than 10 seconds. In the remaining three cases the
cutting plane phase finished after at most 31 seconds with an integrality gap of less
than 1 percent. In the subsequent branch and cut phases no more than 20 nodes were
generated in the branching tree and at most an additional 11/2 minutes were needed
to find an optimal solution and prove optimality. Further cases, run subsequently,
showed similar computational performance. (See [GMS] for more details.)

Considering these computational results, we feel confident in saying that all sur-
vivable network design problems of the type and size arising at Bellcore can be solved
to optimality with our code in at most a few minutes on a 3 MIPS machine. Thus the
theoretical investigation presented here has helped (and helps further) to solve typical
instances of a combinatorial optimization problem of significant practical importance.
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CONVERGENCE OF BROYDEN’S METHOD IN BANACH SPACES*

D. M. HWANGt AND C. T. KELLEYt

Abstract. This paper proves new convergence theorems for convergence of Broyden’s method
when applied to nonlinear equations in Banach spaces. The convergence is in the norm of the
Banach space itself, rather than in the norm of some Hilbert space that contains the Banach space.
It is shown that the norms in which q-superlinear convergence takes place are determined by the
smoothing properties of the error in the Frchet derivative approximation and not by the inner
product in which Broyden’s method is implemented. Among the consequences of the results in this
paper are a proof of sup-norm local q-superlinear convergence when Broyden’s method is applied to
integral equations with continuous kernels, global q-superlinear convergence of the Broyden iterates
for singular and nonsingular linear compact fixed point problems in Banach space, a new method
for integral equations having derivatives with sparse kernels, and q-superlinear convergence for a
new method for integral equations when part of the Frchet derivative can be explicitly computed.
Partitioned variants of the methods and the "bad" Broyden method are also discussed.

Key words. Broyden’s method, q-superlinear convergence, quasi-Newton update, Banach space
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1. Introduction. This paper considers the solution of equations in Banach space
by Broyden’s method. We write our equations as

(1.1) F(u) =0,

where F is a Lipschitz continuously differentiable map between Banach spaces X
and Y. We will consider both linear and nonlinear equations. Broyden’s method
is a variation of Newton’s method in which an approximation, B, to the Frchet
derivative, F(u*), is maintained along with an approximation u to a solution u*.
This method has been used with success for discretizations of infinite-dimensional
problems in integral equations [23], [20]; fluid mechanics [10]; and optimal control
[26]. In this paper we take the position that analysis of the convergence properties
of the method should not be done for the discrete finite-dimensional problems alone
because the results of such a finite-dimensional analysis can hide features that may
depend on how the level of discretization is refined and may lead to conclusions that
are valid only in finite dimension. The papers [11], [31], and [24] present examples of
these kinds of problems. Direct analysis of the infinite-dimensional problem can also
lead to effective preconditioning strategies that produce good convergence properties
even for finite-dimensional approximations.

The purpose of this paper is to extend convergence results for Broyden’s method in
finite-dimensional spaces and Hilbert spaces to the Banach space setting and thereby
sharpen convergence results. In particular, our results show how the inner product
used in the implementation of Broyden’s method and the topology in which con-
vergence takes place are related. The significant consequences of this Banach space
analysis for problems considered previously in [23], [20], [26], and [27] are to make
the convergence estimates more precise, for example, to provide uniform convergence
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results where at best L2 results had been available. Our technique of analysis is an
extension of that in [27] and allows for a direct discussion of linear equations and
least squares problems that extends results in [4], [12], [28], and [13]. Our analysis
also extends to partitioned variations of Broyden’s method and to the so-called "bad"
Broyden method.

In this introductory section we describe our setting and establish notation. In 2
we state and prove a basic lemma and use it to derive global and local convergence
results for singular and nonsingular linear problems. The lemma is an extension and
reformulation of a weak q-superlinear convergence result from [18]. The convergence
results in 2 extend those of [4], [12], [13], and [28] for the finite-dimensional case. In
the Hilbert space setting, unpublished results [15] give q-superlinear convergence for
nonsingular linear systems with a more complex proof that uses the singular value
decomposition in a way similar to the result for nonlinear problems given in [16]. Our
proof is more direct and uses extensions of the techniques of [28] and [27]. Our proof
also extends to allow for a partitioned structure in the sense of [17]. We use this idea
to introduce a new q-superlinearly convergent algorithm for linear integral equations
whose kernels have a sparse structure. We show how the ideas extend to the "bad"
Broyden update.

In 3 we extend local q-superlinear convergence results for nonlinear problems
from [3], [16], [18], and [27] for the finite-dimensional and Hilbert space settings to
the Banach space case. It may happen that different parts of the nonlinear function
have different continuity properties. Our nonlinear method can handle this situation
and we apply it to a class of integral equations for which Broyden’s method is not
directly applicable. The partitioned and "bad" Broyden variants of the algorithm are
discussed as well.

In 4 we report on several numerical experiments. The goal of these experiments
is to illustrate how Broyden’s method produces iterates that converge q-superlinearly
in a variety of Banach space norms. We report results for more than one grid size to
show that the tables reflect infinite-dimensional properties of the iteration.

We assume that the Banach space X has a continuous inner product (., .). We let
H denote the completion of X in the norm induced by the inner product and denote
this norm by I1" IIH. We will multiply the inner product by a constant, if necessary,
to ensure that

(1.2) [[U[[H _< [[U[Ix

for all u E X. For Banach spaces U and V we let/:(U, V) denote the space of bounded
linear operators from U to Y and/:(U) L:(U, U). Similarly COJ/I(U, V) denotes the
space of compact operators from U to Y and COA/I(U) COJ/I(U, U). Both/:(U, V)
and C(.9A/I(U, V) are Banach spaces with the operator norm.

Unless we explicitly state otherwise we make the following standard assump-
tions [9].

ASSUMPTION 1.1. A solution, u* X, of (1.1) exists. F exists and is Lipschitz
continuous in a neighborhood .IV" of u*. F’(u*) has a bounded inverse, F’(u*) -1 e

We now describe Broyden’s method in terms of the transition from a current pair
of approximations, (uc, Be), to (u*,F’(u*)), to the next, (u+,B+), in the sequence of
iterates.

All quasi-Newton methods follow the following general pattern. Given (Uc, B)
X x/:(X, Y) with B nonsingular, compute:
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1. the current function value, F(uc) E Y,
2. the Broyden step, s -B[1F(uc) X,
3. the new approximation to u*, u+ u / s X, and
4. the update for B, B+ (X, Y).

The quasi-Newton method is determined by the formula used to compute B+ as a
function of u, u+, and Be.

For Oc (0, 2) the Broyden update is

(1.3) B+ B, + O

In (1.3),

(y- Bcs) (R) s

y F(u+)- F(uc)

and (R) denotes the outer product, a rank-one operator in (H, Y), defined for g, h H,
and f E Y by

(f (R) g)h (g, h)f.

The usual Broyden update sets 0 1, but our results on linear problems will use
other values of .

At this point we recall the relation between (X, Y) and (H, Y) by means of a
lemma.

LEMMA 1.1. E(H, Y) C (Z, Y). If A (X, Y) satisfies

for some M > 0 and all u X, then A can be extended to be a map in (H, Y) and

I]AIl:(x,Y) IIAII(H,Y) M.

Proof. The proof of the first assertion follows from the density of X in H and
I[H <-- I1" IIX. To prove the second, note that for u e Z and u 0 we have

(1.4) IIAullY < IlAullY <
Ilullx -IlUlIH

Taking suprema over u X in (1.4) completes the proof.
The relation between (X, Y) and (H, Y) is important because our results will

all require that

Eo Bo- F’(u*) e (H, Y).

In view of Lemma 1.1, (1.5) is equivalent to the existence of M _> 0 such that

IlEoxllY MIIxlIH
for all x X.

The formulation of the Broyden update in terms of inner and outer products as
well as technical details of the analysis of the convergence properties of the methods
naturally lead to a Hilbert space or Euclidean finite-dimensional space setting. Such
a setting can lead one to overlook significant properties of the iterates. As an example
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of the advantage of a Banach space analysis, let r _> 0, k E Cr ([0, 1] x [0, 1]), g E X
Cr ([0, 1]), and take (., .) to be the L2 inner product. The results of 2 will imply that
if 1 is not an eigenvalue of the integral operator K defined by

(Ku)(x) k(x, )u() d,

then the Broyden iterates converge to a solution of u-Ku g from any initial iterate
pair of the form (u0, I), with u0 Cr arbitrary. Moreover, the convergence is global
and locally q-superlinear in the norm of C*. This is a stronger result than global and
local q-superlinear convergence in the L2 norm.

We will describe the behavior of the iterates in terms of the errors in the solution,
e u- u*, and the approximate Frchet derivative, E B- F(u*). We specify
conditions that imply that the Broyden iterates converge locally q-superlinearly to
the solution of (1.1). This means that

(1.6) lim Ilen+lllX

Our proofs will use the fact that q-linear convergence of the sequence {un} and the
Dennis-Mor6 condition,

(1.7) lim IIEnsnllY O,

imply local q-superlinear convergence [7].
As a final note in this introductory section, we point out that the Broyden iterates

for F(u) 0 are the same as those for BlF(u) 0 and we could, therefore, assume
that X Y. Hence, for the theorems about problems with nonsingular Fr6chet
derivatives, the assumptions about the boundedness or compactness of E0 as a map
from H to Y can be replaced by similar assumptions on boundedness or compactness
of BIEo as a map from H to X. We choose to state our results directly in terms
of E0. For the differential equations problems in the examples we will express the
convergence criteria in terms of BIEo so that we can use the most familiar form of
the equation.

2. Linear problems. We begin this section with a lemma of a type that is often
used in q-superlinear convergence proofs for quasi-Newton methods. It is a weak form
of the Frobenius norm estimates found in [3] and was first used in [18] to obtain weak
q-superlinear convergence, proved again in a modified form in [29], and used in [27].
We state and prove the result in a slightly different form designed for use in this
paper. Its statement as a separate lemma, its application to linear problems via the
parameter 0 as in [28], and its applicability to the analysis of partitioned updates, are
the novel features of our version.

LEMMA 2.1. Let H be a Hilbert space with inner product (., .), let 0 < < 1, and
let

Let {e},__0 C H be such that

{o.}.%o c (0,2-
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and let {",}",--o be a set of vectors in H such that II  IIH is either 1 or 0 for all n.
Let o E H be given. If {n}=l is given by

(2.1) )n+l Cn On I]n )n ?n "[’-

then

(2.2) nlirn(/n, ",) 0.

Proof. The proof is trivial if en 0 for all n and we give a proof for that case
first. The sequence {",} is bounded in H-norm by [[0[IH and satisfies

Therefore, for any M > 0,

n--O

We let M o to obtain

which implies (2.2).
To prove the result for e", 0 we use the inequality

52
(2.3) V/a2 b2 < a

2a’

which is valid for a > 0 and [b[ <_ a. This inequality is used often in the analysis of
quasi-Newton methods [8]. From (2.3) we conclude that if Ca 0, then

Hence if )n 0

(2.4) On(2 On)(n, Jn)2

211nllH
Hence

(2.5) (,, ",)2 _< 211, 11H
0n(2 0n

(II, IIH --II + IIH + II , IIH),

which holds even if Cn 0.
From (2.4) and (2.1) we conclude that
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where

i-o

Hence

M

n--0

This completes the proof.
As a first application of Lemma 2.1 we present results for the linear problem

(2.6) F(u) Au b O,

where A E/2(X, Y) and b E Y. In this special case, of course, the standard assump-
tions are simply that A is nonsingular. We seek a solution u* e X by an iterative
method that converges in the topology of X.

We let u0 X; as we mentioned in 1 we will require

E0 B0 A G/:(H, Y).

We begin this section with consideration of nonsingular A. As a simple corollary of
those results on nonsingular linear problems we will obtain Hilbert space extensions
of results in [13] for singular systems that show convergence of the Broyden iterates
to least squares solutions.

It is clear that bounded deterioration in the sense of [3] holds. We state this as a
lemma and we give the simple proof in order to introduce some notation.

LEMMA 2.2. Let c [0,2], Uc X, and Bc (X,Y) be given. Assume that
Bc is nonsingular and that Ec .(H, Y). Then E+ .(H, Y) and

Proof. First note that linearity of F implies that y As. From the Broyden
update (1.3), we see that if (uc, B) is defined, then the error in the new approximate
Frchet derivative E+ is related to E by

"4-Oc (Au+-Auc-Bcs)(R)s

(Ecs)(R)s(2.8) E O Ilsll

Ec(I OP),

where Ps is the H-orthogonal projector

(2.9)
s(R)s
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This completes the proof as

liE+ ll(H,g) < llEll:(z,Y)III OcPs II :<H)
and [lI- OcPs]l(H) 1 by orthogonality of P8 and the fact that 0 <_ 0c <_ 2. [3

We remark that 8c can always be selected to make B+ nonsingular. In [28] one
suggestion was

1, _>
1 sign(%)a

otherwise,
1 %

where

B-1y,s) (BglAs, s)

and a E (0, 1) is fixed. However, the results in [28] assume only that the sequence

{On} satisfies the hypotheses of Lemma 2.1 for some t} E (0, 1) and that Oc is always
chosen so that B+ is nonsingular.

We can verify the Dennis-Mor4 condition [7] and q-superlinear convergence under
additional assumptions. We begin by applying ideas from [18], [28], and [27] and using
Lemma 2.1 to prove a weak q-superlinear convergence result. We let Y* be the Banach
space dual of Y and let (u) denote the action of Y* on u Y.

LEMMA 2.3. Assume that {On} satisfies the hypotheses of Lemma 2.1 for some

e (0, 1). If Eo e (H, Y) and {On} is such that the operators {Bn} are nonsingular,
then

Ens ) =0(2.10) lirn II , IIH

for all Y*.
Proof. Let E Y* be given. Note first that if E e :(H, Y) and E* e (Y*, H)

is the adjoint of E in 2(H, Y), then for all u Y, v e H, and e Y*,

(v, E*) (Ev).

Since

E+1 (I

we may invoke Lemma 2.1 with

?n S=/IlsnlIH, Cn Et, and en 0

to conclude that

(2.11)

nlirn llsnllH



512 D.M. HWANG AND C. T. KELLEY

This completes the proof.
In the main result of this section note that the proof of norm q-superlinear con-

vergence follows the lines of that in [28] in that convergence itself is a consequence of
the strong Dennis-Mor condition. The strong Dennis-Mor condition, as in [27], is
implied by the weak condition and a compactness assumption on E0.

An important concept in the proof of the next theorem, as in [27], is that of
collective compactness [1]. We say that a sequence of linear operators {E} c (U, V)
between Banach spaces U and V is collectively compact if

is a precompact set in V. Here

v(0 p) {u e V lllu 011v _<

THEOREM 2.4. Assume that (On} satisfies the hypotheses of Lemma 2.1 .for
some E (0, 1). If Eo CO(H, Y) and {On} is such that the operators {Sn} are
nonsingular, then (1.7) holds and {u,} converges to u* globally and q-superlinearly in
the norm of X.

Proof. Let sn Un+l u, and let P, Psn. Since

n-1

E E0 II ( e,e,),
i--0

the family {E) is a collectively compact family of maps in (H,Y) since III-
ePllc(-) 1,

n-1

U EBH(0"I) UE H(I- OiPi)BH(0"I)c EOBH(0"I),
n n i=O

and EOBH(O 1) is precompact in Y by assumption. Hence the sequence {,}
{E,s/llsllH} is precompact in Y. Therefore there is a Y-norm convergent subse-
quence Cn -- *.By Lemma 2.3, (*) 0 for all Y* and therefore * 0. As {, } was
an arbitrary convergent subsequence of {}, we can conclude that Cn -- 0 in the
Y-norm. This completes the proof of (1.7) as

lim IIEallY < lim IIEnllY
oo Ilanllx --,oo II8nll" nlirn IlffllY 0,

by (1.2). As in [2S], from (1.7) we can conclude convergence, which must be q-super-
linear since (1.7) holds. U

A standard local convergence result is an easy corollary of Lemma 2.2 and The-
orem 2.4.

COROLLARY 2.5. For all 5 (0, 1) there is 5 such that if IIEolI(H,y) < , then
the Broyden iterates (with On 1 for all n) converge q-linearly to u* with q-factor
a <_ . If, in addition, Eo CO./4(H, Y), then the convergence is q-superlinear.

We conclude this section with remarks on the so-called bad Broyden method,
linear least squares problems, and a partitioned form of Broyden’s method.



BROYDEN’S METHOD IN BANACH SPACES 513

2.1. The bad Broyden method. In this section we assume that X Y. As
mentioned above, by replacing F by B-1F one can see that this assumption can be
made with no loss of generality. We do not make this assumption throughout the
paper because the replacement of F by B-1F often leads to an unfamiliar form of
the equation to be solved. Here, however, we will require an inner product structure
on Y.

The bad Broyden method, so named because of its inferior performance in practice
[8], is, for 0- 1, the least change secant update [9] to B-1 that preserves the inverse
secant equation B-ly- s. The update is given by

(2.12) B B[ + 0c (s B:ly) (R) y

H

Let/ B- A-1; then

where

py=Y(R)Y
H

The following theorem has a proof exactly like that of Theorem 2.4.
THEOREM 2.6. Let the standard assumptions hold with X Y, and assume that

Eo E COd(H,X). Then if the sequence {0n} satisfies the hypotheses of Lemma 2.1

for some e (0, 1) and is such that the operators Bn generated by (2.12) are nonsin-
gular we have

lim
]]Eny,]]x

O.

Global and local q-superlinear convergence follow from Theorem 2.6 if the oper-
ators B are uniformly bounded.

COROLLARY 2.7. Let the assumptions of Theorem 2.6 hold and assume that the
sequence {llBn]lc(x)} is bounded. Then the bad Broyden iterates converge globally and
q-superlinearly to u* A-lb in the norm of X.

Proof. Let Ms max{llBnll(x)} and let E, B- A. Note that y An+
Auc. Since

we have

Moreover,

and so

#"nY, (B A-1)Asn BI(A- Bn)s, -BIEsn,

which completes the proof.

<_
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2.2. Linear least squares problems. In finite dimension [13], a scheme based
on Broyden’s method was applied to systems of linear equations with singular co-
efficient matrices. The iterates converged to a least squares solution in 2N steps,
where N was the number of unknowns. In this subsection we show that in the case
of Broyden’s method the iterates in [13] for Au b are the same as those given by
Broyden’s method itself when applied to the normal equation A*Au A*b. Here A*
is the adjoint of A in the Hilbert space sense. We conclude from this observation that
Theorem 2.4 is applicable and obtain an extension of the results in [13] to a Hilbert
space setting. In our infinite-dimensional setting, of course, finite termination of the
iteration is replaced by q-superlinear convergence.

We assume that X Y H in this section. The proofs would be little changed
if we assumed that X and Y were possibly different Hilbert spaces. Let R(.) denote
range and N(.) denote null space of an operator. We assume that A has closed range
R(A). The iteration considered in [13] began with data u0 E H and Go E (g) such
that R(Go) R(A*), N(Go) N(A*). The operator G is intended to approximate
the pseudo-inverse of A, (A*A)-IA*, where (A’A)-1 is the inverse of the restriction
of A*A to N(A) +/-, the orthogonal compliment of N(A) in H. The iteration from
(uc, Go) to (u+, G+)is

(2.13) s -G(Au b), u+ u + s, G+ G + (s Gcy) (R) v,

where, for Broyden’s method,

In the case of nonsingular A, (2.13) is simply the update on G B-1 induced by
(1.3). Note that in this iteration the component of u0 in N(A) is never updated
because s R(A*) N(A) +/-, hence convergence is a question of convergence in the
space N(A) +/-. With initial data uo N(A) +/-, one would hope to converge to the
minimum norm least squares solution.

One iteration that does converge to the minimum norm least squares solution is
Broyden’s method applied to the normal equation in N(A) +/-. The iterates (updating
G B-1 (A’A)-1 and (A*A)-IA*b) are given by

(2.14) g=-(A*A-A*b), +=+g, (+=(+(-()(R).

Here )- A*A(+ -) A*A and

We now have the following lemma.
LEMMA 2.8. Let A have null space N(A) and closed range R(A). Assume that

Go oA* has range N(A)+/- R(A*), that o no, and the sequence {0n} is
selected so that either of the sequences of maps {Gn} or {n} are nonsingular maps
in (N(A)+/-). Then the sequences given by (2.13) and (2.14) are identical.

Proof. From comparison of the two iterations above it is clear that if u
N(A) +/- and G (A*, then

-OcA*(Au- b)= -G(Au- b)- s e N(A)+/-
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and therefore u+ +. Therefore

A*A A*As A’y,

(s, Gcy) (, OcA*y) (, ),
and

Hence A v and therefore

Gs=(A*)*=As.

(s Gy) (R) v ( (A*y) (R) A (( (cA*y) (R) )A*.

Hence G+ (+A*. This completes the proof.
In view of Lemma 2.8 we may apply Theorem 2.4 for linear equations to least

squares problems. We state this as Theorem 2.9.
THEOREM 2.9. Assume that the assumptions of Lemma 2.8 hold and that Go

(A*A)-IA QoA* with Qo e COA4(N(A)+/-). Assume that Uo UoN + UoR, with
u N(A) and Uo N(A)+/-. Then the iterates given by (2.13) converge globally and
q-superlinearly to (A*A)-IA*b + UoN.

2.3. Partitioned Broyden’s method. Consider, for example, a linear system
of integral equations,

u(x) k(x, )u()d- f(x) 0,

where c RN is compact and an RM-valued solution u* E C(;RM) is sought.
Suppose k is an M M matrix-valued function with a sparse structure

(2.15) k(x, )iy 0, if j

Here Ii c {1,..., M} is the set of indices of nonzero elements of row of k(x, ).
We assume that/:i is independent of x and . If we apply Broyden’s method to this
problem with B0 I, then

Bn-IWKn,

where Kn is an integral operator with kernel

tn(X, e C(n

The Broyden update formula, with H L2, becomes

;n+l(X, ) tn(X,)--
(y BnS)(X)8()T,

which does not reflect the sparsity of k. An update that does reflect that sparse
structure could be based on the Schubert algorithm [30] applied to the matrix entries
of . That update would take the form

t%(X, )ij -- (y--Bcs)i(x)sj()
j

(2.16) + (x, )ii -jz f, (t) dr’

0,
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We introduce some notation that will allow us to use the theory developed
above to show that the iterates determined by (2.16) converge globally and locally
q-superlinearly in X C(; RM). We require the following assumption.

ASSUMPTION 2.1. There are C/:(H, Y), (IIi}iM__l C/:(Y), and (ri) C (X) N
(H) such that

2(2.17) ri ri,

II(u (R) v)r e

(.,u. v) (u.)

for all K ,

for all u, v H, and

for all u, v H.

and as in (2.9),

(2.19)

where

p=( P, ifis0,
O, if ris O,

vj(x), j e
(v)()

0,

for v H.
If we consider methods with updates given by (2.18) with derivative errors in 8,

then for 1,..-, M we have by (2.17) that

HiE+ HiEc cH(Ecs (R) is)(llsll2H)+ HE(I OP),

for u E Y and

We consider updates of the form

(2.18) nB+ IIB + on ((y Bcs) (R) is) (llisl[)+.
In (2.18) we use the superscript "+" for the standard pseudoinverse notation

, if o - 0,
O+

0, if c =0.

In the case of the integral equation above the update (2.16), g could be the space of
integral operators with kernels in C(f x f;RMxM) with sparsity pattern given by
(2.115). The operators IIi and ri are given by

ui(x), if i j,
(n)(x)

0, otherwise,
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We can now apply Lemma 2.1 for each i 1,..., M to obtain Lemma 2.10.
LEMMA 2.10. Let Assumption 2.1 hold and assume that 0,} satisfies the hy-

potheses of Lemma 2.1 for some e (0, 1). Then if Eo e and {0n} is such that the
operators {Bn} are nonsingular, then

(2.20) lim (niEnsn)IIris,ll+H 0

for all E Y* and 1,...,M.
Proof. Apply Lemma 2.1 for each 1,..., M to

)n (HiEn)*, Tin ,=II,=II+H, and en 0

to conclude the result. [:]

The collective compactness argument used in Theorem 2.4 allows us to verify the
strong Dennis-Mor6 condition from (2.20). We state this as Theorem 2.11.

THEOREM 2.11. Assume that Assumption 2.1 holds, that {0,} satisfies the hy-
potheses of Lemma 2.1 for some E (0, 1), that Eo e COM(H, Y)NE, and that {On}
is such that the operators {Sn} are nonsingular; then (1.7) holds and {u} converges
to u* globally and q-superlinearly in the norm of X.

Proof. As in the proof of Theorem 2.4, (2.19) implies that the maps

n--1

n,E n,Eo II e P))
j=O

form a collectively compact family for each 1,..., M. Hence

in the norm of Y. Hence there is {Sn} C [0, oc) with/i, -- 0 such that

for all i- 1,..-, M. By Assumption 2.1

ilEnsnllY
i--1

M

i=1

MSnllSnllH MnllS,llx.

This completes the proof.

3. Nonlinear problems. Unlike the results in 2 the results here are local con-
vergence results. We consider nonlinear equations of the form (1.1) satisfying the
standard assumptions. In order to prove results about Broyden’s method, however,
we must extend the standard assumptions and specify some properties of F relative
to the norm of the Hilbert space H. To this end, we make the following assumptions,
which we refer to as the extended standard assumptions.

ASSUMPTION 3.1. The standard assumptions hold and F can be split as

(3.1) F(u) Fc(u) + FA(U).
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In (3.1), Fc is defined and Lipschitz continuously differentiable in X, with Lipschitz
constant denoted by 9/. FA is also defined and Lipschitz continuously differentiable in
X, and

(3.2) F(u) e (H, Y)

for each u Af F is a Lipschitz continuous map from Af to (H, Y) with Lipschitz
constant

Note that Fc may have no continuity or differentiability properties with respect
to the H norm. F will be computed or approximated by means independent of the
Broyden updates. We will approximate only F by Broyden’s method and take into
account in the analysis the accuracy in F. Our formalism will be like that in [9], but
the details will differ because one of our goals is to isolate the part of F that is not
continuous in the H norm. In [9] the issue was to separate the parts of F that can be
computed from those that are to be approximated by a quasi-Newton method. Here,
therefore, we split the function, whereas in [9] the derivative was split.

As an example of a problem with such a splitting consider the integral equation
from [21]:

F(u)(x) h(u(x)) k(x,, u()) d O.

On the space, X el0, 1] with g n2[0, 1]. Here Fc(u)(x) h(u(x)) is, in general,
not a Frchet differentiable map on L2 and one could take advantage of the fact that
in C[0, 1], Fc is Frchet differentiable and F(u)v(x) h’(u(x))v(x), which could
be easily computed explicitly or by differences. In the case of approximation by a

quadrature rule, for example, F could be represented as a diagonal matrix. The
integral part F would then be updated by Broyden’s method. We return to this
equation later.

For nonlinear problems we set 1 and let the update formula for A F(u*)
be

(y# As) (R) s
(3.3) A+ A + Iis[l

In (3.3) y# is intended to reflect information obtained from the most recent iterate.
In the finite-dimensional analysis in [9], y# could be any vector satisfying

(3.4) Ily#

where yD, the "default choice," is

where C+ is the "computed part" of F, which in our context is a sufficiently accurate
approximation to F. The choice of yD# makes the secant equation B+s (A+ +
C+)s y hold. In the Banach space setting considered here, however, we must
sacrifice the secant equation and use

Fc(u+) + Fc(u )

As we will see from the analysis to follow, any choice that differs from the choice
in (3.5) by O(llellXllSllH) will suffice as well. Since IlyD# --ys#ll O(lle[Ixl[S[[x) and
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Ilsllx cannot be bounded in terms of IlsllH, the choice y# yD# will not work unless
X-H.

The proof of local q-superlinear convergence follows the outline of the proof of the
Dennis-Mor6 condition in 2 after we prove q-linear convergence. This task is very
similar to the finite-dimensional case and requires only use of Lemma 1.1. We must
introduce some notation. We let

B=C+A,

where A . F(u*) is updated by (3.3) and C .. F(u*) is computed by other means.
We let

Note that

where

(3.7)

Hence

EC--C-F(u*) and EA--A-F(u*).

Ay# Acs FA(U+) FA(Uc) F(u*)s EAs --EAs / A s,

(3.8) E EA(I- Ps) + AA ps.

As in the finite-dimensional case (e.g., see [8]) we use the extended standard assump-
tions to conclude that

(3.9) IlZX II (H,Y) _< 2 (lle+llx + II  llx).

The estimate (3.9) i8 basic to the remainder of this section. With (3.9) in hand
we obtain the following theorem on q-linear convergence. The proof i8 exactly the
same as in finite dimensions and we omit it.

THEOREM 3.1. Let the extended standard assumptions hold. Let a E (0, 1) and
let > O. Then there is > 0 such that if

(3.10) IIECll:(z,y) < i for all n, Ileollz < , and IIEoAII:(H,y) < 5,

then the Broyden iterates converge q-linearly to u* in X with q-factor at most a and

(3.11) IIE II (H,Y) <

The weak q-superlinear convergence result follows immediately from Lemma 2.1.
LEMMA 3.2. Assume that the extended standard assumptions hold and that (3.10)

holds with 5 small enough for the conclusions of Theorem 3.1 to hold with some a

(0, 1) and > O. Then

Es ) -0lime ][Sn[[H

for all Y*.
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Proof. As in 2, set Pn Pa.. Note that

(E+)* P (E .-(I- nj, , /Pn(An) .
We apply Lemma 2.1 with

8n--(EA)*, rn [Is,IIH,
and en Pn(AnA)*.

The hypothesis of Lemma 2.1 that

holds by (3.9) and Theorem 3.1. This completes the proof as the invocation of
Lemma 2.1 completed the proof of Lemma 2.3 in 2.

The main result in this section is that compactness of E0A forces the strong Dennis-
Mor condition to hold. The proof is similar to that for the Hilbert space case in [27].
This will in turn imply that the q-superlinear convergence of the sequence (un} is
controlled by the sequence of operator errors {EnC}.

THEOPEM 3.3. Let the assumptions of Lemma 3.2 hold. If EoA COAA(H, Y),
then the family {EnA} is collectively compact and

IIEAIIY --0.(3.12) lirn IIllx

Proof. For all n _> 0,

n n n
AE+I E2 l-I(I-P)+ EAkPk H (I-Pt).

k-0 k--0 l--k+1

Since EoA E COAd(H, Y) by assumption and

II n

II(+/-- e)
k=0

=1,

it suffices to show that the set

U E A#PkBH(0"I)= E AAkPkBH(0"I)
n=0 k=0 k=0

is precompact in Y.
Recall that AAnPn is a rank-one operator whose range is the span of the vector

ASn

and that

IIAAprII:(H,Y) < H’(lle,+lllx + Ile,llx)< 7H(1 +or)
2

where a is the q-factor of q-linear convergence in the statement of Theorem 3.1.



BROYDEN’S METHOD IN BANACH SPACES 521

Therefore the operators k=0 An Ak Pk are a sequence of finite-rank operators that
Ak Pk is a compactAk Pk Therefore k=0 Aconverge in the operator norm to -k=0 A

operator and -k= Ao Ak PkBH(O" 1) is a compact set. Having the collective compact-
ness of (EnA }, (3.12) holds by an argument exactly the same as that used in the linear
case.

The next result of this section is a combination of Theorem 3.3 and the standard
results on equivalence of the Dennis-Mor conditions to q-superlinear convergence.

THEOREM 3.4. Let the hypotheses of Theorem 3.3 hold. Then u, - u* q-super-
linearly in the norm of X if and only if

(3.13) lim

Examples of situations in which (3.13) holds include exact computation of F(un)
and computation by differences where the step size in the difference computation tends
to zero.

The analysis of the bad Broyden method follows lines similar to those of the
standard method such as in the linear case discussed in 2. We replace the extended
standard assumptions by Assumption 3.2.

ASSUMPTION 3.2. The standard assumptions hold. X Y. F(u) is defined and
Lipschitz continuously differentiable in X, with Lipschitz constant denoted by ", F(u)
can be extended to (H, H) for each u E Af, and F is a Lipschitz continuous map

from Af to (H, H) with Lipschitz constant /H. Moreover, there is MH such that

(3.14)

.for all w X.
The update is

IIF’( )wlIH M /II II/-/

(s-B[ly)(R)y
B B[ + [[y[I 2g

We have the following theorem.
THEOREM 3.5. Let Assumption 3.2 hold. Let a (0, 1). Then there is > 0

such that if

IIEoll (H,X) <_ 5 and [leollx < 5,

the bad Broyden iterates converge q-linearly to u* in the norm of X with q-factor at
most a. If, in addition, B1- F’(u*) -1 COjP[(H,X), the bad Broyden iterates
converge q-superlinearly to u* in the norm of X.

Proof. We give those details in the proof that differ from those in the analysis of
the standard Broyden method. As in the linear case, we let , B- F’(u*)-. It
is clear that

(s-B:y)(R)yk+ E + Ilyll

Now

s B[y -Ecy F’(u*)-l(F’(u*)s y)
-Ecy + F’(u*)-lAs,
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where, recalling (3.7),

Hence

Ac= F’(uc+ts)-F’(u*)dt.

+ (- p) + (F’(*)-X) (R) u
H

The proof will follow the lines of that for Theorems 3.1 and 3.3 if we can estimate the
sequence of rank-one operators {Tn}, where

Tn (F’(u*)-lAns) (R) Y.
H

The operators T play the role played by AAP in the proof of Theorem 3.3.
Since

F(+) F() F’(u + ts)sdt F’(u*)s + (F’(u + ts) F’(u*))sdt,

the sumptions imply that

Therefore, there is CT such that

This estimate plays the role of (3.9) in the proof of q-linear convergence and then can
be used to show that [IT < + to conclude that the convergence is superlinear if
5 is sufficiently small and if E0 e CO(H, X).

The analysis of the partitioned form of Broyden’s method is similar to the linear
ce well.

THEOREM 3.6. Let the extended standard assumptions and Assumption 2.1 hold.
Thn th > 0 such that qE , [IEll<H,Y) , IIEll<x,Y) o all n,
nd lie011 < 5, the iterates 9iven by the update

converge q-linearly to u*. Ifi moreover, Eo CO(H, Y) and (3.13) holds, then the
convergence is q-superlinear.

We close this section with an application to nonlinear integral equations of the
form

(3.15) h(u(z)) fa k(x, , u()) d O.

In (3.15) is a closed and bounded subset of RM for some M. We sume that h
Cr(Rg; RE), k CrL+(RN; RN), and k3, the derivative of k with respect to
its third argument, is in CL+(RN;RNN). In [21] a pointwise qui-Newton
method w proposed for systems of this form. In that approach approximations for
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the matrix-valued functions h’ (u*)(x) and k3(x, , u* ()) were maintained separately.
As is typical with pointwise methods (see, for example, [25] and [22]), local q-linear
convergence could be proved. One can also show q-superlinear convergence in the
sense that

for 2 _< r < s _< oo. If one is willing to compute h analytically and approximate
the derivative of the integral operator by Broyden’s method, then the results of this
section are applicable with Z Y Cr(Ft; RN), H L2(ft; RN), Fc(u) h(u), and

FA(u)(x) k(x,(, u()) d.

F4 (u*) E CO.M(H, Y) by the assumption that k3 is uniformly bounded. The quasi-
Newton update given by (3.3) will give local q-superlinear convergence in Cr. If one
approximates h by a forward fixed difference with difference step a the convergence
will be q-linear with a q-factor that is O(a). Note also that any sparsity properties
of the kernel k3 could be preserved by a partitioning approach as described in 2 and
that q-superlinear convergence would still take place by Theorem 3.6.

4. Numerical examples. All of the computations reported in this section were
done on the Cray Y-MP at the North Carolina Supercomputing Center under Cray
UNICOS v5.1 and the CFT77 v4.0 compiler.

4.1. Linear problems. This section is divided into sections on linear and non-
linear problems. In this first subsection on linear problems we begin with an integral
equation arising in potential theory,

(4.1) u(x) A-1 k(x + )u(() d f(x),

where

1 7
2

() + : o(:.)

The parameters A and 7 are given. This equation is an integral equation form of
Laplace’s equation on an ellipse [19]. It was used as a test problem in the context of
fast two grid algorithms in [2].

In the computations reported here we use

.2, 7 .8, and f(x) sin(57rx)/,.

Note that k(x) C for I/I < 1 and hence the integral operator K with kernel
k(x + ) is a compact operator from L2 to Cr for any r _> 0. Hence we may apply
Theorem 2.4 with X Y C and H L2. We could also apply the theorem with
X--L2.

In the computations reported in Tables 4.1-4.4, we approximated integrals with
the 21 and 401 point composite Simpson’s rules. The discrete L2 inner product and
norm were computed using the quadrature rule. We report results for both X L2

and X C to compare the q-superlinear rates and for both grids to illustrate how
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TABLE 4.1
Linear integral equation, N 21, L2 norm.

0 0.3536E+01 0.3536E+01
1 0.1101E+01 0.3113 0.1355E+01 0.3832
2 0.1314E+01 1.1943 0.1438E/02 10.6153
3 0.6848E+01 5.2101 0.1876E+02 1.3043
4 0.4552E+00 0.0665 0.8001E/00 0.0426
5 0.1309E/00 0.2875 0.2736E+00 0.3420
6 0.1654E-01 0.1264 0.3518E-01 0.1286
7 0.1501E-02 0.0908 0.3461E-02 0.0984
8 0.1800E-04 0.0120 0.4153E-04 0.0120
9 0.1604E-06 0.0089 0.3691E-06 0.0089
10 0.1480E-08 0.0092 0.3420E-08 0.0093
11 0.6529E-11 0.0044

TABLE 4.2
Linear integral equation, N 21, C norm.

0 0.7571E+02
1 0.1249E+02 0.1650
2 0.3228E+01 0.2585
3 0.1932E+02 5.9839
4 0.2658E+01 0.1376
5 0.9012E+00 0.3391
6 0.1278E+00 0.1418
7 0.1176E-01 0.0920
8 0.1425E-03 0.0121
9 0.1285E-05 0.0090
10 0.1193E-07 0.0093
11 0.5343E-10 0.0045

0.7571E
0.1538E
0.3874E-
0.4424E-
0.3586E-
0.1497E-
0.2168E-

-02
-02 0.2031
-02 2.5193
-02 1.1419
-01 0.0811
-01 0.4176
-00 0.1448

0.0997
0.0121
O.OO9O
0.0093

0.2162E-01
0.2621E-03
0.2355E-05
0.2193E-07

the performance does not depend on the level of approximation, but is governed by
the properties of the continuous problem.

Initial data was Bo I and uo 0 in all cases. We tabulate the iteration counter
i, and

[]F(ui)]Jx,RF

The discrete C norm was computed as

IlF(u,)llx
IlF(u - )llx

I[ullcl 8up
J.<jAN

lUj+ uj
sup

I<_j<_N-1 IXj+l Xjl

where N is the number of quadrature points and {Xj}/__I are the nodes of the quadra-
ture rule. The iteration was terminated when IIF(ui)llx < 10-1.
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TABLE 4.3
Linear integral equation, N 401, L2 norm.

i IIFII RE I1 11
0 0.3536E+01 0.3536E+01
1 0.1098E+01 0.3105 0.1351E+01 0.3820
2 0.13lIE+01 1.1942 0.1441E/02 10.6663
3 0.6853E+01 5.2274 0.1877E+02 1.3030
4 0.4537E+00 0.0662 0.7969E+00 0.0425
5 0.1306E+00 0.2879 0.2735E+00 0.3432
6 0.1637E-01 0.1253 0.3472E-01 0.1269
7 0.1524E-02 0.0931 0.3520E-02 0.1014
8 0.1506E-04 0.0099 0.3460E-04 0.0098
9 0.1842E-06 0.0122 0.4250E-06 0.0123
10 0.1179E-08 0.0064 0.2723E-08 0.0064
11 0.5414E-11 0.0046

TABLE 4.4
Linear integral equation, N 401, C norm.

0 0.8352E+02 0.8352E+02
1 0.1270E+02 0.1520 0.1562E+02 0.1871
2 0.3248E+01 0.2558 0.3898E+02 2.4954
3 0.1949E+02 5.9999 0.4438E+02 1.1385
4 0.2667E+01 0.1369 0.3585E+01 0.0808
5 0.9117E+00 0.3418 0.1502E+01 0.4189
6 0.1285E+00 0.1410 0.2161E+00 0.1439
7 0.1210E-01 0.0941 0.2216E-01 0.1026
8 0.1215E-03 0.0100 0.2211E-03 0.0100
9 0.1498E-05 0.0123 0.2736E-05 0.0124
10 0.9674E-08 0.0065 0.1766E-07 0.0065
11 0.6651E-10 0.0069

Our next example is the two point boundary value problem

F(u)-u"+u’+u-l=O in[0,1], u(0)=u(1)-0.
For the examples in boundary value problems we will express the compactness cri-
terion for q-superlinear convergence as BIEo E C(9]tA(H,X). As mentioned in the
introduction, this is an equivalent formulation, as the Broyden iterates for F(u) 0
and those for BIF(u) 0 are identical. In the process of forming the iterates we
will have to understand that derivatives are in the distributional sense. We let

Bo d2/dx2

with homogeneous Dirichlet boundary conditions. Since E0 d/dx + I is a first-order
operator, BIEo CCOA/I(L2[0, 1],C[0,1]) and the theory in 2 is applicable with
X C[0, 1] and H L2[0, 1]. In Tables 4.5 and 4.6 we tabulate the history of the
iteration for two different mesh sizes, h 1/32 and h 1/2048, corresponding to
N 31 and 2047 unknowns. Discretization was by central differences and the initial
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TABLE 4.5
Two point boundary value problem, h- 1/32, L norm.

IIFII RE I111 R
0 0.9068E+02 0.9068E/02
1 0.1420E/02 0.1566 0.1608E/02 0.1774
2 0.2403E+01 0.1692 0.2337E+01 0.1453
3 0.2863E+00 0.1191 0.3190E+00 0.1365
4 0.1001E-01 0.0350 0.1058E-01 0.0332
5 0.4675E-03 0.0467 0.5075E-03 0.0480
6 0.3904E-04 0.0835

TABLE 4.6
Two point boundary value problem, h 1/2048, L norm.

0 0.9073E+02 0.9073E+02
1 0.1423E+02 0.1568 0.1611E+02 0.1776
2 0.2418E+01 0.1699 0.2349E+01 0.1458
3 0.2888E+00 0.1194 0.3219E+00 0.1370
4 0.1016E-01 0.0352 0.1071E-01 0.0333
5 0.4769E-03 0.0469 0.5192E-03 0.0485
6 0.4032E-04 0.0845 0.4093E-04 0.0788
7 0.2801E-05 0.0695 0.3060E-05 0.0748
8 0.7255E-07 0.0259 0.7685E-07 0.0251
9 0.2274E-08 0.0313

iterate was u0 0. The iteration was terminated when IIBIFIIx < h2/10. Note the
uniformity in the convergence rates on the two grids. The finite-dimensional theory
guarantees convergence in 2N steps but convergence to truncation error requires far
fewer steps for discretizations of many infinite-dimensional problems.

To close this subsection we consider the partial differential equation

F(u) V2u + duz + u- 1 0,

on [0, 1] x [0, 1] with homogeneous Dirichlet boundary conditions. Letting Bo
(V2) -1 and H L2 means that X must be chosen such that the map BIEo E
COjA(H, X). For d 0 the choice X L and H L2 is appropriate. For d # 0,
this is not an option [14]. For H L2 the map BIEo COAd(H,X) for many
choices of X including X Lp, for any p [1, cx3) and for X H for any a [0, 1).
For X L we must use a stronger inner product than L2 to obtain the compactness
of E0, and H H for any a > 0 would suffice. In both cases we are required to
interpret solution as in the weak sense or to consider the preconditioned equation
obtained by replacing F by BIF, for which the Broyden iterates will be the same.

The situation for d # 0, requiring an H inner product for a > 1 is only slightly
different from that for d 0, needing an H L2 inner product, and it is interesting
to see how the convergence rates compare. To that end we present two sets of tables:
one, Tables 4.7 and 4.8, for d 0, and the other, Tables 4.9 and 4.10, for d 10.
In order to facilitate comparison we use the L norm and L inner product in both
sets. We report results from two discretizations for h 1/16 and h 1/512. The
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TABLE 4.7
Elliptic boundary value problem, d--O, h- 1/16, L norm.

i IIFII RE I1 11
0 0.7345E-01 0.7345E-01
1 0.4061E-02 0.0553 0.4276E-02 0.0582
2 0.5844E-05 0.0014

TABLE 4.8
Elliptic boundary value problem, d- O, h- 1/512, L norm.

IIFII RE I1 11 Rs
0 0.7367E-01 0.7367E-01
1 0.4062E-02 0.0551 0.4277E-02
2 0.5801E-05 0.0014 0.5875E-05
3 0.6112E-07 0.0105

0.0581
0.0014

iterations were terminated when IIBKIFIIx < h2/10. In the computations, u0 0 was
the initial iterate and central differences were used to approximate derivatives. The
action of (V2) -1 on a vector was computed with the Poisson solver from FISHPACK

4.2. Nonlinear problems. The Chandrasekhar H-equation [5]

F(u)(x) u(x) 1C(u)(x) u(x) (1 (Lu)(x))-1

where for x E [0, 1],
c xu() d(Lu)(x) - o x +

The equation arises in radiative transfer. The parameter c E (0, 1]; F’(u*) becomes
singular at c-- 1 and for c < 1 but near 1 the problem becomes more difficult. The
solution u* C[0, 1] and

(nw)(x) u* (x)2(nw)(x).lC’(u*)(w)(x) (1 -(nu*)(x))2

It is easy to see that the image of the unit ball in L2[0, 1] under L is a uniformly
bounded equicontinuous family of functions and therefore L COM(L2[O, 1], C[0, 1]).
As u* is continuous, this implies that

K:’(u*) e COM(L2[0, 1], C[0, 1]).
These considerations motivate our application of Theorem 3.4 with H L2[0, 1],
X C[0, 1], FA 1C, and Fc I. As we can expect only local convergence for this
nonlinear problem, we must pay attention to the quality of the initial data, u0 and
A0. This will become apparent from the numerical results.

All computations were done with a 20 point composite Gauss rule with 20 subin-
tervals. In Tables 4.11 and 4.12 we let c 5, uo O, C F(u*) I, and A0 0.
The iteration was terminated when IIF(ui)llx < 10-8. We tabulate the same quan-
tities as in the previous tables. The tables indicate that convergence is q-superlinear
for both X L2[0, 1] and X C[0, 1].
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TABLE 4.9
Elliptic boundary value problem, d-- 10, h-- 1/16, L norm.

IIFII RE Ilsll R
0 0.7345E-01 0.7345E-01
1 0.4005E-01 0.5453 0.4218E-01 0.5743
2 0.6899E-01 1.7225 0.4255E-01 1.0088
3 0.1581E-01 0.2291 0.1387E-01 0.3261
4 0.5077E-02 0.3212 0.4226E-02 0.3046
5 0.3995E-02 0.7867 0.4083E-02 0.9662
6 0.1045E-02 0.2615 0.1036E-02 0.2536
7 0.2136E-03 0.2045

TABLE 4.10
Elliptic boundary value problem, d 10, N 1/512, L norm.

IIFII RE I111 R
0 0.7367E-01 0.7367E-01
1 0.4034E-01 0.5476 0.4248E-01 0.5766
2 0.7019E-01 1.7399 0.4333E-01 1.0200
3 0.1623E-01 0.2312 0.1425E-01 0.3290
4 0.5487E-02 0.3381 0.4475E-02 0.3140
5 0.4422E-02 0.8059 0.4455E-02 0.9954
6 0.1238E-02 0.2800 0.1199E-02 0.2692
7 0.2857E-03 0.2307 0.2061E-03 0.1719
8 0.1293E-03 0.4527 0.1374E-03 0.6668
9 0.4527E-04 0.3501 0.4518E-04 0.3287
10 0.5275E-05 0.1165 0.4292E-05 0.0950
11 0.1819E-05 0.3448 0.1898E-05 0.4422
12 0.6351E-06 0.3492 0.6392E-06 0.3368
13 0.5309E-07 0.0836

TABLE 4.11
c .5, N 400, L2 norm.

0 0.1000E+01 0.1000E+01
1 0.1545E+00 0.1545 0.1807E+00 0.1807
2 0.2921E-02 0.0189 0.3146E-02 0.0174
3 0.1067E-03 0.0365 0.1234E-03 0.0392
4 0.4153E-05 0.0389 0.4990E-05 0.0404
5 0.7770E-08 0.0019
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In Tables 4.13 and 4.14 we used the same data as in the computation above,
except we set c .999. For that value of c the F(u*) is nearly singular. Broyden’s
method will converge at best q-linearly [6], [20] when c- 1. Therefore, one would
expect slower convergence than for c .5. The tables indicate, however, that the
convergence is still q-superlinear for both choices of X.

TABLE 4.12
c- .5, N --400, L norm.

i IIFII RE I1 11 Rs
0 0.1000E+01 0.1000E+01
1 0.2096E/00 0.2096 0.2452E+00
2 0.5732E-02 0.0273 0.6150E-02
3 0.1185E-03 0.0207 0.1414E-03
4 0.4977E-05 0.0420 0.6209E-05
5 0.9533E-08 0.0019

0.2452
0.0251
0.0230
0.0439

TABLE 4.13
C .999, N 400, L2 norm.

IIFII RE I1 11 Rs
0 0.1000E+01 0.1000E+01
1 0.3741E+00 0.3741 0.5739E+00 0.5739
2 0.1312E+00 0.3505 0.2710E+00 0.4722
3 0.4326E-01 0.3299 0.1234E+00 0.4555
4 0.1355E-01 0.3132 0.5731E-01 0.4643
5 0.4602E-02 0.3397 0.3020E-01 0.5270
6 0.1355E-02 0.2945 0.1249E-01 0.4136
7 0.2418E-03 0.1784 0.2648E-02 0.2120
8 0.1312E-04 0.0543 0.1445E-03 0.0546
9 0.4830E-06 0.0368 0.5840E-05 0.0404
10 0.9656E-07 0.1999 0.1430E-05 0.2449
11 0.4757E-08 0.0493

TABLE 4.14
c .999, N 400, L norm.

0 0.1000E+01 0.1000E+01
1 0.5295E+00 0.5295 0.8122E+00 0.8122
2 0.2553E+00 0.4821 0.4905E+00 0.6039
3 0.9782E-01 0.3832 0.2463E+00 0.5021
4 0.3157E-01 0.3228 0.1155E+00 0.4689
5 0.1057E-01 0.3349 0.6048E-01 0.5238
6 0.3171E-02 0.2999 0.2511E-01 0.4151
7 0.5877E-03 0.1854 0.5357E-02 0.2134
8 0.3410E-04 0.0580 0.2957E-03 0.0552
9 0.8726E-06 0.0256 0.1148E-04 0.0388
10 0.1933E-06 0.2216 0.2836E-05 0.2470
11 0.9520E-08 0.0492

i IIFII RF II ll Rs



530 D.M. HWANG AND C. T. KELLEY

TABLE 4.15
Modified Bratu problem, d 0, h 1/16, L norm.

0 0.8490E+00 0.8490E+00
1 0.6914E-01 0.0814 0.7507E-01
2 0.1870E-02 0.0271 0.1972E-02
3 0.1895E-05 0.0010

0.0884
0.0263

TABLE 4.16
Modified Bratu problem, d O, h 1/512, L norm.

IIFII RE I1 11
0 0.8491E+00 0.8491E+00
1 0.6886E-01 0.0811 0.7475E-01
2 0.1855E-02 0.0269 0.1955E-02
3 0.1885E-05 0.0010 0.2003E-05
4 0.1055E-07 0.0056

0.0880
0.0262
0.0010

TABLE 4.17
Modified Bratu problem, d-- 1, h-- 1/16, L norm.

0 0.8498E+00 0.8498E+00
1 0.9978E-01 0.1174 0.1090E+00
2 0.1132E-01 0.1134 0.11lIE-01
3 0.7290E-03 0.0644 0.7771E-03
4 0.2384E-04 0.0327

0.1282
0.1020
0.0699

TABLE 4.18
Modified Bratu problem, d 1, h 1/512, L norm.

IIFII RE I1 11
0 0.8538E+00 0.8538E+00
1 0.1002E+00 0.1173 0.1094E+00 0.1281
2 0.1151E-01 0.1149 0.1134E-01 0.1037
3 0.7568E-03 0.0658 0.8022E-03 0.0707
4 0.2572E-04 0.0340 0.2639E-04 0.0329
5 0.1646E-05 0.0640 0.1723E-05 0.0653
6 0.9397E-07 0.0571
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Finally, we consider a modified Bratu problem

V2u/dux / eu 0

on D (0, 1) x (0, 1) with homogeneous Dirichlet boundary conditions. As was the
case for the linear elliptic boundary value problems discussed above, the functional
analytic setting depends on whether d 0 or d 0. Moreover, it is crucial that
X c L in order that the exponential nonlinearity be defined as a map on X. If
B0 V2 the compactness condition BIEo E COJ(H,X) is satisfied with H L2

and X L or X C(D) ifd 0. Ifd 0 one can still take X L or
X C() but must use H Ha for any > 0. As we did for the linear elliptic
problem, we present results for two cases: d 0 in Tables 4.15 and 4.16 and d 1 in
Tables 4.17 and 4.18. To facilitate comparison we use the discrete L2 inner product
for both tabulations rather than a discrete analog of the Ha inner product in the
d 1 case. We report the iterations for h 1/16 and h 1/512. The initial iterate
was u0 sin(rx)sin(y).
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Abstract. This paper analyzes algorithms from the Broyden class of quasi-Newton methods for
nonlinear unconstrained optimization. This class depends on a parameter Ck, for which the choices

Ck 0 and Ck 1 give the well-known BFGS and DFP methods. This paper examines algorithms
that allow for negative values of the parameter Ck. It shows that severe restrictions have to be
imposed on the selection of Ck to guarantee q-superlinear convergence. It is argued that negative
values of Ck are desirable, and conditions on Ck that guarantee superlinear convergence are given.
However, practical algorithms that preserve the excellent properties of the BFGS method are not
easy to design.

Key words, quasi-Newton method, Broyden class, variable metric method, global convergence,
superlinear convergence
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1. Introduction. An important class of quasi-Newton methods for solving the
unconstrained optimization problem,

(1.1) min f(x)
R,

was proposed by Broyden (1967). It consists of iterations of the form

(1.2) xk+l xk + kdk, k >_ 1,

where

(1.3) dk --BIgk.

Here k is a step length parameter and g denotes the gradient of f at xk. The
Hessian approximation Bk is updated by means of the formula

(1.4) Bk+ Bk- BksksBk
8BkSk

YkY[ + (b T,_B )vkv[+

where Ck is a scalar, Yk gk+l gk, 8k Xk+l Xk, and

Bksk ](1.5) v= Y:k 8"lBksk
The choice of the parameter Ck is important, since it can greatly affect the performance
of the methods. The BFGS method corresponds to Ck 0, and the DFP method
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corresponds to Ck 1. The class of methods with Ck E [0, 1] is frequently called the
restricted Broyden class.

Many theoretical and experimental studies of algorithms belonging to Broyden’s
class have been published; see Dennis and Mor (1974), (1977); Stoer (1975); Pow-
ell (1976), (1986); Schnabel (1978); Werner (1978), (1989); Ritter (1979), (1981);
Stachursky (1981); Griewank and Toint (1982); Byrd, Nocedal, and Yuan (1987); and
the references therein. Attention has been focused on the DFP and BFGS methods
and on the restricted Broyden class. Fletcher (1970) proved that the eigenvalues of the
matrix (V2f)-lBk tend monotonically to 1 when Ck E [0, 1] and when f is quadratic.
Moreover, Fletcher showed that this property does not necessarily hold for methods
outside the restricted class. This result has sometimes been interpreted as indicating
that the restricted Broyden class contains the most useful methods within the Broy-
den family. Most numerical experience to date favors using the BFGS method. In
addition, until recently the strongest convergence results could be proved only for the
restricted Broyden class excluding DFP (see Powell (1976) and Byrd, Nocedal, and
Yuan (1987)).

In this paper we examine a class of update formulas that is larger than the re-
stricted Broyden class in that it allows for negative values of Ck. Some algorithms of
this kind have been studied by Zhang and Tewarson (1988), who establish global con-
vergence on convex problems and present encouraging numerical results. Their work,
however, leaves some important questions unanswered; in particular, it is not clear
whether such strategies are superlinearly convergent. We will see that this is indeed a
delicate issue and that for some apparently reasonable choices of Ck

_
0, q-superlinear

convergence cannot be guaranteed. Nevertheless, we argue that there are good rea-
sons for allowing negative values of Ck, and we therefore investigate conditions that
will ensure global and superlinear convergence.

The motivation for this work, as well as many of the techniques used in our
analysis, derives from the results of Byrd, Nocedal, and Yuan (1987). We will now
review the main ideas of that work, paying particular attention to the effect of negative
values of .

Byrd, Nocedal, and Yuan show that global convergence on a convex function is
obtained for any starting point xl and any symmetric and positive definite starting
matrix B], if Ck [0, 1) is bounded away from 1. They assume that the step length
satisfies the Wolfe conditions

f(Xk / akdk)

_
f(Xk) + kgdk,

g(xk T olkdk)Tdk
_

Tg d,

where 0 < < 1/2 and f < 2 < 1. They also show that the rate of convergence
is q-superlinear. These results can be extended in various ways: Byrd and Nocedal
(1989) and Werner (1978), (1989) show that a larger class of line searches can be used;
Byrd and Xie (1990) weaken the restriction that be bounded away from 1, so as
to prove global convergence for updates, such as the Hoshino update.

Byrd, Nocedal, and Yuan consider the effect of different choices of e [0, 1] and
argue that if Ck is close to 1, the algorithm can be very inefficient because it loses
its ability to correct large eigenvalues in the Hessian approximation. Let us be more
precise. From (1.4) we have

(1.8) I1  11 I1  11tr(Bk+) tr(Bk) / ykTsk + ySk ykTsk
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IIB  kll 2,--skBksk
yBksk

2k T8Yk k

where tr(Bk) denotes the trace of Bk and I1"11 denotes the 12 vector norm. If Ck E [0, 1),
the only term that is guaranteed to be negative is the fourth term on the right-hand
side of (1.8). Thus, if Bk has large eigenvalues we must rely on this term to reduce the
trace of Bk. When Ck -- 1 this term is weakened and convergence can be very slow
if B contains excessively large eigenvalues. Note that if is negative, the fourth
term in the right-hand side of (1.8) remains negative and increases in magnitude and
the third term becomes negative. Thus, when < 0, the algorithm is more able to
correct large eigenvalues.

Negative values of Ck may not be desirable, however, because the Hessian ap-
proximation may become indefinite, singular, or nearly singular. Computing the
determinant (cf. Pearson (1969)) of (1.4) we obtain

TB- ]det(Bk+l) det(Bk) (1 )
ys Yk Y

8kBkSk TYk 8k

ysk
det(Bk)8BkSk [1 + Ck(,k 1)],

where

(1.10) #k
T -I(y B yk)(sTk Bksk)

We see from (1.9) that det(Bk+l) 0 when has the critical value

1
(1.11)

1 #k

It is well known that if the initial Hessian approximation B is symmetric and positive
definite and if at each step syk > 0 and Ck > , then all the matrices Bk remain
symmetric and positive definite (cf. Fletcher (1987)). By applying the Cauchy-
Schwarz inequality to (1.10) we see that

and therefore : _< 0. Moreover, we will show later that if the iterates converge q-
superlinearly and {B-} is bounded, then --, -oo. Therefore, there appears to be
plenty of room for choosing negative values of Ck.

Clearly, Ck should not be too close to to avoid generating nearly singular
Hessian approximations. There is, however, another reason for avoiding small values of
Ck. We see from (1.9) that when sTkBksk, the estimated curvature, is small compared
to the average curvature, y[s, the determinant increases, thus increasing some of
the eigenvalues of Bk. Thus, when Ck _> 0, Broyden’s update formula has a strong
self-correcting property with respect to the determinant. However, from (1.9) we see
that this property is diminished if [1 +( 1)] is small.

We conclude from the previous discussion that, in order to efficiently correct
large eigenvalues, Ck should be as small as possible, but to cope well with small
eigenvalues one should ensure that Ck is not too close to . This suggests that the
best choice, in general, might be Ck = 0, i.e., the BFGS method. However, results
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of Powell (1986) and our numerical experience indicate that BFGS suffers more from
large eigenvalues than from small ones. We illustrate this in Table 1, which shows
the number of iterations needed by the BFGS method to solve Watson’s function
(Mor, Garbow, and Hillstrom (1981)) for various choices of B1. The starting point
is x0 (0, 0, 0, 0, 0), the run was stopped when [[gkl[ --< 10-s, and the initial matrix is

diag (1, 1, 1, A1/2, A),
where A is a variable parameter.

TABLE 1
Number of iterations required by BFGS.

A 10-6 10-4 1 104 106
Number of iterations 23 23 25 40 50

We therefore ask whether, to deal more efficiently with large eigenvalues, one must
allow for negative values of }. Zhang and Tewarson (1988) performed numerical tests
with fixed negative values of Ck, and their results show a moderate but consistent
improvement over the BFGS method. They also prove that, for convex problems,
global and linear convergence can be established for negative values of Ck, provided
that for all k,

(1.12) (1 u) _< Ck _< 0,

where u is an arbitrary constant in (0,1).
However, as will be shown in 2, satisfaction of (1.12) will not always give q-

superlinear convergence, and therefo:e other criteria are needed for choosing negative
values of . By applying the perturbation results of Griewank and Toint (1982),
which use the Frobenius norm, one can show that negative values of Ck exist that
will give superlinear convergence (see Zhang and Tewarson (1988, Thm. 3.3)). These
values, however, are not computable in practice, and it is not clear how close they
must be to zero.

In this paper we use the trace and determinant equations (1.8) and (1.9) to
study whether it is possible to design superlinearly convergent algorithms that use
negative values of }. We first present in 2 some negative results showing that,
for a large class of functions of two variables, q-superlinear convergence can occur
only if lim inf k/(--) _> 0. We also establish some limitations in the case where
Ck is a negative constant. In 3 we establish some positive results giving sufficient
conditions on for superlinear convergence. These results imply, for any problem,
the existence at each iteration of an interval [}, 1 -] of admissible values of } for
which superlinear convergence occurs and such that {k} is negative and bounded
away from zero. The results also imply that convergence is superlinear whenever the
sequence {} satisfies -’k>l/ < oo. Finally, in 4 we present some numerical
experiments with two methods that allow for negative values of }: the optimally
conditioned method proposed by Davidon (1975) and a particular idealized optimal
choice of Ck that performs better than the BFGS method.

2. Loss of superlinear convergence. We now investigate what properties of
the sequence {k} are necessary for superlinear convergence and show that for some
apparently reasonable choices of superlinear convergence may not occur. Since
our point of view in this section is essentially negative, it is appropriate to restrict
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our attention to a special class of problems; thus we consider in detail the case of a
two-dimensional quadratic objective function. The analysis of this section is built on
the work of Powell (1986), and we will quote several results from that paper.

We consider the function

where x[i] is the ith component of x. Since quasi-Newton methods from the Broyden
class are invariant under a linear change of variables, considering (2.1) is equivalent to
considering any strictly convex two-dimensional quadratic. In this section we assume
that Ck <_ 1 and write it in the form

(2.2) Ck (1 k), 0 < } _< 1.

Superlinear convergence of quasi-Newton methods is usually proved by showing that
the search directions approximate the Newton directions, which implies that the step
length of one is eventually accepted for all iterates. Since in this section we will
establish necessary conditions on Ck for superlinear convergence, we assume that
ck 1 is always chosen by the algorithm, so that the iteration is

(2.3) xk+l xk Blxk.
Because of the secant equation,

(2.4) Bk+ (Xk+l xk) xk+l Xk,

we see that Bk has one unit eigenvalue for all k > 1, and we let Ak denote the other
eigenvalue. As suggested by Powell, the analysis can be done using only two scalars,
Ak and Ok, where

T
Xk (Xk Xk-1(2.5) cosO I1  11

Thus Ok is the angle between xk and the eigenvector of Bk corresponding to the unit
eigenvalue. Let Bk QkDkQ, where Dk diag(1, Ak) is the matrix of eigenvalues
and Qk is the orthogonal matrix of eigenvectors. From the definition of Ok we have

(2.6) QXk ( COS Ok )
We write (2.3) as

(2.7) xk+ Xk QkD-Qxk,
and thus

Taking norms,

TxQk k/l Qk k 1 0 Qk k

0( (i A-i) sin Ok )
I1  + 11 1) 2

sin2 Ok.
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Powell (1986) considered only the BFGS and DFP update formulas. However, we
note that his equation (2.3), which states that

(2.9) tan20k+l tan2 Ok A,
holds for any update formula that generates symmetric and positive definite matrices.
From (2.2), (1.9), and (1.11) we have

T8Yk kdet(Bk+l) det(Sk)

Since Bk has one unit eigenvalue for all k > 1, and noting that vk 1 corresponds to
the BFGS method, we have

Ak+l det(Bk+l)
det(Ss)uk

(2.10) "ssvAk+ k.

BFGSHere nssos is the matrix obtained by updating Bk with the BFGS formula, and-k+l
is its non-unit eigenvalue. An expression for BSGS in terms of Ok and Ak is given by’k+l
Powell (1986, eq. (2.2)). Substituting this value in (2.10) gives

tan2 Ok + A(2.11) Ak+l tan2 Ok + Ak
In addition, we can derive a simple expression for the critical value of in this

two-dimensional case. Since by (2.6) and (2.7),

(cosO){{:{{,s -Q A- sinO

it follows after some algebraic manipulations using (1.10), (1.11), and the fact that
Yk sk, that the critical value is given by

(A + tan2 Ok)2

(2.12) --Ak(1 Ak)2 tan2 Ok"
Our first result involves the ratio of Ck and - (note that is always negative). It
shows that if a subsequence of {k/(-)} is bounded below zero, then the superlinear
convergence property is lost (recall that Ck 0 gives BFGS). This of course implies
that the choice

Ck (1 ), V e (0, 1),

which ensures r-linear convergence on convex functions, will not guarantee q-superlinear
convergence.

THEOREM 2.1. Let algorithm (1.2)-(1.4), with ak 1 and Ck <_ 1, be applied to
a strictly convex two-dimensional quadratic objective .function with any initial x and
positive definite B1. Assume that the solution is not obtained in a finite number of
steps. Then, the algorithm converges q-superlinearly only if liminfk--.o k/(--) _>
O.

Proof. Suppose that the iterates converge superlinearly to x. 0. In (2.2) k is
defined so that Ck/ 1 k. Our result follows if we can show that lim sup(1 ) <_
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0, i.e., that lim inf uk _> 1. We will show this by contradiction. Suppose that there is
an infinite subsequence

(2.13)

of {uk } such that

(2.14) uk _< 9 < 1, j 1, 2,

Since the algorithm does not terminate in a finite number of steps, by (2.8) it must
be the case that for all k, Ak 1. We first show that (2.14) implies that Ak < 1 for
all sufficiently large k. We will use Fletcher’s monotonicity result (Fletcher (1970)),
which says that if Ck E [0, 1],

(2.15) Ak_>l == l_<Ak+l_<Ak

and

(2.16) Ak_<l = Ak_<Ak+l_<l.

On the other hand, (2.11) implies that if Ck _< 0, so that uk _< 1, then

(2.17) Ak>_l = Ak+l_<Akuk<_Ak

and

(2.18) Ak<l => Ak+<l.

Now consider the possibility that Ak > 1 for all k. Then, (2.15) when Ck E [0, 1]
and (2.17) when Ck _< 0 imply that {Ak } is monotone decreasing. Furthermore, for all
iterates of the infinite subsequence (2.13) satisfying (2.14) we have that Ck < 0, and
the first inequality of (2.17) implies that Ak+l _< 9Ak. Thus, eventually /m < 1 for
some m, which contradicts the assumption that Ak > 1 for all k. This contradiction
implies that Ak < 1 for some k, in which case it then follows from (2.18) when Ck _< 0
and from (2.16) when Ck e [0, 1] that Ak+l < 1 for 1, 2, Thus, the subsequence
(2.13) can be redefined so that Ak < 1 for all j.

This fact and (2.11) imply that for all j

(2.19) A}+I < u} _< ,.
The superlinear convergence assumption, together with (2.8) and (2.19), implies that

(2.20) sin20ko+ -- 0

and then that

(2.21)
tan2 Ok+l
Ak -{-12

---+ O,

(2.22)
tan2 @k+ 0.
A+
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From (2.2), (2.12), and the fact that Ck _< 1 it follows that

//k+l _< 1 q- +1(I )kj+l)2 tan20k+l
2(Ak#+l q- tan2 kjq-1)2

and therefore

(2.23)
)-2 (1 %k+l)2 tan20k+lk+l

(1 + kj-I tan2 Ok,+l)2

By (2.21) the second term on the right side of (2.23) converges to zero and therefore

limsup(vk+lAk+l) _< limsup)kq_l.

Equation (2.11) may be expressed as

tan2 Ok+l ) / /tan2 Ok+ /1).
By (2.21), (2.22), (2.24), and (2.19) this implies that

limsup Ak+2 _< limsup Ak+l _< /).

From this relation, from the superlinear convergence assumption, and from (2.8) we
have

(2.25) sin20k+2 -- 0.

Finally, from (2.8), (2.9), (2.19), (2.20), and (2.25)

IlXk-2112 (Akq-1 1)2 sin2

IlXk+lll 2 tan2 k+2 tan2 k+l
(’kq-1 1)2 COS2 {}kq-1

tan2 Ok+2
which contradicts the assumption of superlinear convergence.

Note that an immediate consequence of this result is that if Ck is nonpositive
for all k, then /7 --+ 0. This result is for two-dimensional quadratics; however,
since a two-dimensional problem can be embedded in a larger space, it follows that
for many larger problems, superlinear convergence with nonpositive Ck requires that

o.
It is interesting to consider the choice

(2.26) Ck (1 u), 0 < u < 1,

where u is a constant, a bit more closely. Theorem 2.1 shows that this choice cannot
give q-superlinear convergence. In fact, for any value of u E (0, 1), there exist initial
values X and B1 for which the iterates converge exactly linearly to the solution.
Specifically, if we set

(2.27) A1 2- u’ tanO X/l,
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then it follows from (2.9) and (2.11) that

(2.28) Ak A1 and tan {3k tan 1,

for all k > 1. We conclude by (2.8) that, if > 1/2 the sequence {xk} converges to the
solution with a q-linear rate of (1 )V. (This is assuming that step lengths of
one are used, which will happen if 3 in (1.6) is small enough that > 1/2 causes (1.6)
to be satisfied with step length one. If _< 1/2 then a line search procedure would cause
different behavior.) To further understand the behavior of the iteration, we express
it in the form

(Ak+, tan Ok+) S(Ak, tan Ok),

where S: 12 --. 12 is defined by (2.9) and (2.11) with k . Differentiating S and
evaluating the derivative at the fixed point given by (2.27) yields

2:: u’

This matrix h the characteristic polynomial X(,) (u- ] ,)(-1 ,) -(1 u).
Since X(-1) u- 1 < 0 for u e (0, 1), and X() > 0 for sufficiently negative,
it follows that, at the fixed point, S h an eigenvalue less than -1. (The other
eigenvalue is in (0, 1).) Thus, (u/(2- u), flu/(2- u)) is not a stable fixed point,
which indicates that for most starting points the iteration will not converge to it.
Therefore, the linear convergence mentioned should not occur oen. Experiments
with this iteration using various values of u bore this out. When the iteration w
started close to this fixed point, or at almost y other starting point, it tended to
converge to a twcycle where for even-numbered iterates

(2.30) A2k u, tan 2k 0,

and for odd-numbered iterates

2k+l p2 tan2k+ .
For such a sequence, (2.8) and (2.30) imply that if step lenhs of one are used,
convergence is twstep superlinear, that is,

This behavior seems to indicate that, although the algorithm does not converge q-
superlinely when uk is constant, its performance still might be quite good in many
ces.

Another interesting issue is the rate of convergence when Ck is set equal to a
negative constant. As mentioned in 2, if superline convergence occurs, -.
Thus setting Ck to a negative constant does not necessarily violate the condition
k

c/k O, which we have shown is necessary for superlinear convergence. Zhang
and Tewarson (1988) experimented with such a choice with good results. However,
one can show that in the twdimensional quadratic ce, if the constant is less than
-1, then there e initial values for which superline convergence does not occur
even though (1.12) may hold for some value of u e (0, 1).



542 RICHARD H. BYRD, DONG C. LIU, AND JORGE NOCEDAL

To demonstrate this we suppose -C for all k, where C > 0 is a constant,
and consider the resulting map given by (2.9) and (2.11). If C > 1 a fixed point of
this map is given by

(2.31) C/ 1’ tank = Ci"
To see this, note that if and tan are given by (2.31), it follows from (2.12) that

-C2. By (2.2) this implies that 1- 1/C. Then if A and tan@ are given
by (2.31), it follows from (2.9) and (2.11) that Ak+l Ak and tan @k+l tan @k,
SO that we have a fixed point (in fact the same one we considered in the constant

iteration). From (2.8) we see that the sequence {xk} converges linearly with rate
V/2/U(C- 1). This example definitely indicates that superlinear convergence cannot
be proved when is a constant less than -1.

3. Obtaining superlinear convergence. Although the results of the previous
section are mainly negative, we now show that there are strategies for choosing neg-
ative values of that give rise to superlinear convergence. We begin by introducing
some notation and by stating the assumptions we make about the objective function.

The matrix of second derivatives of f is denoted by G, the starting point for
the algorithm is xl, and we define the level set D {x E Rn f(x) <_ f(x)}.
Throughout the paper I]" II denotes the 12 vector norm or its induced matrix norm.

ASSUMPTIONS 3. I.
(1) The objective function f is twice continuously differentiable.
(2) The level set D is convex, and there exist positive constants m and M such

that

(3.1)

for all z E R and all x D. Note that this implies that f has a unique minimizer
x, in D.

(3) The Hessian matrix G is Lipschitz continuous at x,; i.e., there exists a posi-
tive constant L such that

(3.2) JiG(x) G(x,)JJ _< L]lx x, II
for all x in a neighborhood of x,.

Let us first consider the question of global convergence. Powell (1976) showed
that the BFGS method is globally convergent for convex functions, and Zhang and
Tewarson (1988) extended his result to negative values of Ck that satisfy

(3.3) (1-) _< Ck < 0,

where t is a number in (0,1). Zhang and Tewarson also showed that if f is uniformly
convex, the rate of convergence is r-linear. Note that (3.3) does not imply that {} is
bounded below because {} may diverge to -. In fact, if the algorithm converges
superlinearly and B-x is bounded, then {} --. -. (This will be shown in the
proof of Theorem 3.5.)

It is not hard to generalize the result of Zhang and Tewarson slightly so that it
allows for both positive and negative values of . In the following result we do this
under the assumption that is bounded away from 1 (recall that 1 corresponds
to the DFP method). Such a restriction is necessary as global convergence for the
DFP is still an open question.
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THEOREM 3.1. Let xl be a starting point for which f satisfies Assumptions 3.1.
Then, for any positive definite BI, algorithm (1.2)-(1.4) with a line search satisfying
the Wolfe conditions (1.6) and (1.7), and with

(1-u)%_<<1-, >0, ue(O, 1),

generates iterates that converge to x,. Moreover, there is a constant 0 <_ c < 1 such
that

(3.5)

for all k and

(3.6) Ilxk+l x, ll < ,
k=O

Proof. It is a simple extension of the analysis given by Byrd, Nocedal, and Yuan
(1987). That paper, which we refer to as BNY, considers Ck E [0, 1- 5]. However,
from (1.4) it is clear that the trace of Bk+l is a monotone function of Ck, and therefore
all the inequalities in that paper involving the trace still hold. Specifically, equations
(3.2) and (3.7) of BNY hold. For the determinant we see that (3.4), (1.9), and (1.11)
imply

T
Yk Skdet(Bk+) _> det(Sk)sBskU,

which differs from equation (3.9) of BNY only in multiplicative constant u. It is
then straightforward to see that the proofs of Lemma 3.2, Theorem 3.1, and Lemmas
4.1 and 4.2 of BNY still go through under the condition (3.4). Equation (3.5) then
follows from Lemma 4.2 of BNY. Now note that the uniform convexity assumption
(3.1) implies that

m
fk-I-1 f* "[IXk-}’l X*II 2"

Therefore, by using (3.5),

(Z IlXk+l X, 11 < 2Ill f*] 1/2

k=O
m k=OZ c/2 <

Since the results of 2 show that (3.4) will not guarantee superlinear convergence,
we need to look for more restrictive conditions on Ck. Hereafter we will assume that

belongs to the subinterval given by (3.4), and therefore by Theorem 3.1 we can
assume that the iterates converge r-linearly to the solution. To simplify the analysis
that follows, we define the scaled quantities

(3.7) s-k al,/2sk, Y-k GI/2yk,

and

(3.8) /k G2/2BkG2/2,
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where G, G(x,). We also define

(3.9) q

(3.10) cos0}

which are used to characterize superlinear convergence, as the following lemma shows.
LEMMA 3.2. Suppose that the sequence of iterates (x} is generated by (1.2) and

(1.3), using some positive definite sequence (Bk}, and that 1 whenever that
value satisfies the Wolfe conditions. If xk -- x,, then the following two conditions are
equivalent:

(i) The step length (k 1 satisfies the Wolfe conditions (1.6) and (1.7) .for all
large k, and the rate of convergence is superlinear.

(ii)

(3.11) lim cos 0k lim qk- 1.

Proof. From (3.7)-(3.10)

Tk 8k

(3.12)
q

2qk + 1.
cos20

Suppose that (3.11) holds. Then we conclude from (3.12) that

lim
II(B a,)s ll

0.(3.13)
IIs ll

A result of Dennis and Mor (1977) shows that the unit step length is accepted for all
large k, and the Dennis and Mor (1974) characterization result shows that the rate
of convergence is superlinear. Conversely, if ck 1 for all large k, and if the rate of
convergence is superlinear, the Dennis and Mor characterization implies that (3.13)
holds, and thus the right-hand side of (3.12) converges to zero. Since this quantity is
greater than or equal to

q- 2qk + 1,

we see that q --, 1, which in turn implies cos Ok 1. r3

We now analyze the behavior of the scaled Hessian approximations Bk. From
(1.4), (3.7), and (3.8) we have

(3.14) /+i lk- kT.kk
where

(3.15) k= [ lk .k._.k ]lkTk kT.kk
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Computing the trace of (3.14) and using (3.9) and (3.10), we obtain

IIg 2
qk - Ck -7’(3.16) tr(Bk+l) tr(Bk) - kTk COS2 0k

(skBksk)vk Vk.

To obtain the determinant we first observe that k, defined by (1.10), is unchanged
when sk,Yk, and Bk are replaced by gk, fik, and Bk. Then, using (1.9) and (3.9) we
have

(3.17) det(/k+l) det(/k) 1 kT,k[1 ’[- d/)k(#k 1)].
qk kTk

To measure the goodness of the matrix Bk, we will use the matrix function ,
(3.18) (Bk) tr(Bk) -lndet(Bk),

whose properties are discussed in more detail by Byrd and Nocedal (1989); see also
Fletcher (1989). We only note here that

n

(3.19) (B) [Ai(B)- ln(Ai(S))],
i--1

where A(B) are the eigenvalues of B, and thus (B) > 0 if Bk is positive definite.
From (3.16) and (3.17) we have

kT8-k
In

8-kT 8-k COS2 0k
(3.20) + In qk In [1 + d/)k(#k 1)].

By (1.11) and (3.4) we have that

(3.21) 1 --Ck(#k- 1)= 1- _k > ,-and thus the last term in (3.20) is well defined. We now estimate the second and third
terms on the right side of (3.20), assuming that xk is sufficiently near x.. First note
that

[/01Yk G (Xk + T8k dT 8k

[/oc;,s + (c;( + rs) c;,) dr

Let us define

(3.22) ek L max{ll+ x, ll, Ilxk x, ll},

where L is the Lipschitz constant given by (3.2). It follows that

a-21/ (G(x + rs) a,) dra21/

(3.23) Ekk + k,



546 RICHARD H. BYRD, DONG C. LIU, AND JORGE NOCEDAL

where

(3.24) IIEII _< I1:-11.
We now have from (3.23) and (3.24)

(.) 1 + o(),

kTQ + o(e),(3.26) mk #kTs_k

and thus

(3.27) In mk O(ek).

We also have from (3.23), (3.24), and (3.26) that

)mk cOSOkmk

cos O
We are ready to present the first positive result. It gives a fairly complicated

sufficient condition for superlinear convergence, which limits Ck when it is negative.
Later we will see that it implies other simpler and more intuitive conditions.

LEMMA 3.3. Let Xl be a starting point for which f satisfies Assumptions 3.1, and
let B1 be any symmetric and positive definite starting matrix. Assume that in the
algorithm (1.2)-(1.4), (k} satisfies (3.4) and in addition,

COS2-2r Ok(3.29) E In
[1 + Ck(#k 1)][1 Ckllkll211ekll 2 cos2 0k]<l-) <

<o

.for some r > O. Assume also that the line search enforces Wolfe conditions (1.6) and
(1.7) and that in so doing, it always tries the step length ak 1 first. Then xk x,
q-superlinearly, and {llBkll} and {lIB,-l I[} are bounded.

Proof. Since all the conditions of Theorem 3.1 are satisfied, Xk --* x, and (3.6)
holds. From (3.15), (3.25), (3.26), and (3.28) we have that

(3.3o) I1,11 e
1 [ 1 IIr,ll

I111 - m, ,T

[(3.31) IIkll 2 co 0k

In order to analyze (3.20) we define

1 1111211112 cos2 Ok(3.32) t
cos2 0k

(3.33)

qk )"k +cos20k
o()]1 + COsOk J"

1 + cos Ok + cos 0O(e)
COS2 Ok
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where the last equality follows from (3.31). Note that when Ck _< 0, (3.32) implies
that tk _> 1. When Ck > 0 we see from (3.33) and from the upper bound in (3.4) that

$ + (1 6) cos OO(e)
cos O

which was obtained by dropping the third term in the numerator of (3.33). Since
ek ---* O, for sufficiently large k, say k > k0, we have tk > 0. Thus In tk is well defined
for such k, and by using (3.32) we can write the assumption (3.29) as

( 1 )ln [1+(# 1)1./.(l--r)
<

k=ko
<0

The finiteness of this sum implies that there exists a constant Cl such that

(3.34) E ln([l+k(#k-- 1)Irk) +r E lntk
k=ko k=ko
<0 _<0

for all j. Using (3.25)-(3.27) in (3.20) and then using (3.32), we obtain, for k > k0,

(3.35)

(Jk+l) (k)-f" [1 qk + lnqk + qllllll[I:]cos2 O
-In [1 + Ck(,k 1)] + O(ek)
(k) + k lntk ln[1 + Ck(#k 1)] + O(ek),

where

(3.36) / [1- qktk + ln(qktk)].

Note that r/k <_ 0 because, for any number z > 0, the quantity 1 z + In z <_ 0.
We now sum (3.35), using (3.34) and ignoring the two nonpositive terms

-ln[1 + Ck(#k 1)] for > 0

and

-lnt for_<0

to obtain

(3.37)

(/j+1) <(/ko) + r/k + r (--lntk)
k--ko k--ko

<0

In tk -I- O(e) -4-
k=ko k=ko
>0

The first two sums are nonpositive, and the fourth sum is bounded as j --. o by
(3.6) and (3.22). We need to show that the third sum is bounded as j cx3, and to
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do this we estimate how small tk can be when Ck > 0. Consider tk as a function of
cos 0k with cosk E (0, 1]. Differentiating (3.33) and recalling that Ck _< 1 , we see
that for e sufficiently small t is a monotonically decreasing function of cos0, and
thus when cos 0k 1 it takes on its minimum value, tk 1 + O(ek). Therefore, when
>0,

tk < 1 = tk >_ 1 + O(ek) = lnt >_ O(e),

and hence

(3.39) E
k--ko

b>O,t<l

due to the condition ek < oc. This implies that

E ln tk <oc,
k--ko
>0

and by (3.37) we conclude that {(Bj)} is bounded. Therefore, using (3.19), we have
that the largest eigenvalues of Bk and B-1, i.e., [[Bkll and I[B-I[I, are uniformly
bounded.

To prove the superlinear convergence we consider again (3.37), neglecting negative
terms. From (3.39) and the fact that (/}j) > 0 for all j, we have that

(3.40) r E In tk + E In tk < OC.

k--ko k=ko
<o >o, t>l

Since the terms in both sums are nonnegative, they must converge to zero. From the
first sum we have that tk ---+ 1 for <_ 0. From the second sum we have t --. 1
when Ck > 0 and tk _> 1. However, from (3.38), tk --* 1 also when Ck > 0 and tk < 1.
We conclude that the whole sequence {tk } converges to 1. Therefore, using (3.33) we
have

[1 Ck + Ck COS
2 Ok + CkO(ek) COS

2 Ok] --* 0,

and thus by (3.4)

(1 cos2 Ok) + 1 ":- O(ek) -- O.

Since 1 -Ck > 5, the last term inside the square brackets converges to zero, and we
have

(3.41) cosO -- 1.

From the fact that the last three sums of (3.37) are bounded, it also follows that
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which by (3.36) implies that

[1 -qktk + ln(qktk)] O.

Since {tk } converges to 1, we conclude that

(3.42) q --, 1.

Lemma 3.2, (3.41)and (3.42)imply superlinear convergence. [3

Inequality (3.29) is rather complex but in essence gives a condition on how fast
k

c/k must converge to zero. It is the most general relation we have been able to
obtain, but, unfortunately, it involves quantities that depend on G, and are therefore
not available during the course of the computation. Nevertheless, (3.29) allows us to
derive some interesting and simpler conditions.

THEOREM 3.4. Suppose that the conditions of Lemma 3.3 hold except that (3.29)
is replaced by the assumption

(3.43) E
_o

Then xk -- x, q-superlinearly.
Proof. Let 0 < r < 1 in (3.29). Then from (1.11) we have that, for Ck _< 0,

Using the mean value theorem and (3.21), we have

In 1--kj =--ln 1--kk <
1--k/

Therefore, (3.43) implies (3.29) with 0
It is interesting to compare this result with those of 2. Theorem 2.1 indicates

that for a large class of problems, if Ck _< 1, then it is necessary that k/ -- 0
converge to zero for negative Ck to obtain q-superlinear convergence. Theorem 3.4
shows that it is sufficient for q-superlinear convergence that this same sequence be
summable.

It is possible to enforce the condition (3.43) in a practical algorithm. For example,
one can always choose Ck to satisfy, in addition to (3.4),

(k(3.44)
Ck

where o is a constant.
(3.43).

Since Ilgkll O(ek), it is clear that this strategy ensures

However, enforcing (3.44) may result in an algorithm that is very close to BFGS,
and thus it is natural to ask whether it is possible to choose values Ck that are bounded
away from zero but still guarantee superlinear convergence. The following result gives
an affirmative answer to this question.



550 RICHARD H. BYRD, DONG C. LIU, AND JORGE NOCEDAL

THEOREM 3.5. Consider algorithm (1.2)-(1.4), where the line search satisfies
the Wolfe conditions (1.6) and (1.7) and always tries the step length k 1 first. If
Assumptions 3.1 are satisfied.for xl and if BI is symmetric and positive definite, then
.for each k there exists k < 0 such that sup(k} < 0 and such that if

e e (o,

for all k, then the iterates converge to x. q-superlinearly.
Proof. Suppose that Ck is chosen to satisfy (3.4), so that Theorem 3.1 holds and

ek < cx:). Suppose in addition that, for all large k, Ck satisfies

(3.46)

where r E (0, 1/2) and - > 0 are arbitrary constants. By (1.11) this is equivalent to

1 + Ck(#k- 1) _> COS2-2 Ok(1-

Substituting this into the left side of (3.29) and noting that for Ck _< 0

[1 Ck{{k{{2{{k{{ 2 cos2 Ok] (l-r) 1,

we see that the left-hand side in (3.29) is less than or equal to

E ln(1 ")’ek).
<0

Since this sum is finite, (3.29) holds. Therefore, by Lemma 3.3, {xk} converges q-
superlinearly and ([[Sk{I} and ([[S-[[} are bounded. Also, (3.41) and (3.42) hold.

Note that we are assuming that both (3.4) and (3.46) hold. This can be written
in the form (3.45) if we define

(3.47)
1 (1 /ek) cos2-2r Ok (1 )}.max

1 #k

Thus we have proved that superlinear convergence is obtained for this choice of k.
To complete the proof we must show that sup{k } ( 0. To show that the first term
inside the curly brackets is bounded away from zero, we define

(3.48) wk Bkk qkgk.

Note that w[k 0, so

(3.49)

and

(3.50) cos2 Ok

Since (qk} and {cos0k} converge to 1, this relation implies

(3.51) I1  11 O.
II  ll
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We now estimate the term inside the square brackets in (3.46). Since r E (0, 1/2),
cos <_ cos- <_ cos,

and thus, using (3.50), we have for large k

1 (l ")’ek) COS2-2r k -- 1 COS + 72 COS2

](1 co ) + ( 2co

] (1 cos +e cos2 )
1 I1 1 +q1(3.52)

To consider we note that, since (S;} is bounded, (3.23) and (3.24) give

(3.53) kTk-k kTk-k + O(ek]k2).

By (3.48), B k (k Bk wk)/qk. Applying this relation twice and recalling
that wkT-sk O, we obtain

(3.a) Z&-- lqk q
Therefore, by recalling the scale invariance of k, and using (1.10), (3.26), (3.53),
(3.54), and the boundedness of (]]Bk} and- 1

(T$)(T-)
1

(r)
I111 + + 0(1111) 1

(.) #&
111[ + 0(),

Using thi relation nd (.), we see that for lrge there is constant such that

m (m )o- > (11

>-
i111( + )(11

>
2

min
q 7q

where in the lt step we have considered the ces
qk]]k]]2ek separately. Using (3.51) and the fact that qk 1, we have that

1 (1 7ek) cos2-2r Oklim inf
k k- 1

(a.)

>liminfmin{ 1 _7}.
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--1
Since {llBk }11 is bounded, the right side of (3.56) is positive.

Now note that k can only be zero when ek O, in which case the algorithm
terminates. By (3.51), (3.55), and the boundedness of (ll/}k-lll}, we have that

Therefore, by (3.47) and (3.56), sup(k} < 0. Cl

This result does not tell us how to compute the bounds k in practice, since k
is a function of the quantities IIBk and qk, which depend on the exact Hessian.
However, the result does show that it is possible to keep Ck < 0 away from zero and
obtain q-superlinear convergence.

4. Numerical experiments. In the previous two sections we considered nega-
tive values of the parameter Ck that allow the good properties of the BFGS method
to be preserved. Now we will investigate experimentally whether there are negative
choices for this parameter that will yield an improvement over the BFGS.

One possible criterion for choosing Ck involves the matrix function , which, as
we saw in 3, is a useful measure of the goodness of the Hessian approximation. It
is natural to ask what the value of Ck that optimizes (/}k+1) is, and whether this
value can be used in a practical algorithm. From (3.20) we see that (/k+l) is a
strictly convex function of Ck and has a unique minimizer. Differentiating (3.20) with

TBksk, we see thatrespect to Ck and noting from (3.7) and (3.8) that kTjkk 8k
the minimizer is

1 1
(4.1) r(sk Bksk)vk Vk 1 #k

However, knowledge of G. is required in u, thus making this formula impossible to use
in a practical algorithm. One could estimate ~T~ T -1Vk Vk Vk G. vk by using information
available during the iteration, or one could try to estimate : directly by balancing
the trace and determinant equations. We have experimented with several heuristic
formulas along these lines, and the results appear to be rather satisfactory. However,
since the convergence results of this paper do not apply to these strategies and since
the numerical results are not conclusive, we will not present the results here.

Instead, we will take the view that (4.1) is likely to be superior to any of our
heuristics, and we will experiment with it. Even though this is not a practical algo-
rithm, because of the knowledge of G. that is required, such experiments may indicate
how much of an improvement over BFGS can be obtained in the ideal case.

Since the last term in (4.1) is , we see that > . In fact, it can be seen that
guarantees global and superlinear convergence on uniformly convex functions. This

is true since the analysis of the BFGS method by Byrd and Nocedal (1989) is based
on upper bounding recursions involving the function and thus applies immediately
to any update that, at each iteration, gives a lower value of (Bk+l) than that given
by the BFGS formula. Note that can be of either sign.

To implement method (4.1) we replace ’k by

(4.2) vTk Glvk,
where vk is given by (1.5) and Gk is the Hessian of f at xk. We therefore asymptot-
ically obtain (4.1). Since this formula will cause difficulties when G is not positive

TG-Idefinite, we include the following safeguards: (i) if vk Vk <_ 0, then we set Ck 0
(the BFGS value); otherwise, (ii) if Ck < 0.95, then we set Ck 0.95.
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We have also experimented with the optimally conditioned formula of Davidon
(1975). In this method Bk/l is chosen to be the member of the Broyden class that
minimizes the condition number of BIBk+I, subject to preserving positive definite-
ness. The resulting value of Ck sometimes lies outside [0,1], which makes Davidon’s
formula relevant to our study. The value of Ck is given by

(a.3)

T [. TB-1 T8YkSkYk k Yk--Yk k)
( )([B; )-([ ),,, T8 2(sBksk)(YBlyk)

if Yk k <_ sBkskTyBlyk
otherwise.

Davidon’s update sometimes coincides with the symmetric rank-one formula
(SR1), but it has the advantage that is always greater than , ensuring posi-
tive definiteness of (Bk}. Several other properties of this method are discussed by
Schnabel (1978). We have not been able to apply the convergence results of this pa-
per to Davidon’s formula, and we do not know whether it is globally or superlinearly
convergent. Our investigation of this method will be entirely numerical.

We now list the methods used in our tests; they differ only in the choice of Ck.
1. BFGS. The BFGS method (k 0).
2. Davidon. Davidon’s method (4.3).
3. Method I. The method given by (4.1), wherek is replaced by (4.2).

In all methods we used a line search routine written by Mo%, which enforces a strong
form of the Wolfe conditions: In addition to (1.6) it ensures that

Ig(xk + okdk)Tdkl <_ 2 T

We used the values fll 10-4, f12 0.9. The algorithms were stopped when Ilgkll <--
10-7. All the runs were made on a SUN 3/60 in double precision.

A technique suggested by several authors (cf. Luenberger (1984)) is to scale the
matrices Bk at every iteration to try to alleviate ill conditioning. Shanno and Phua
(1978) recommend scaling only once--at the end of the first iteration. We tested, this
strategy, in which before updating B1 we multiply it by

T -1
Yl B1 Yl

However, in our experiments this strategy did not improve the performance of the
methods for any of the starting matrices. It helped in some problems but was detri-
mental in others; overall, it performed similarly to the unscaled method. Therefore,
we will report only the results without scaling.

The first test problem is an extension to n 4 of the function studied in Byrd,
Nocedal, and Yuan (1987). It is given by

(4.4) f(x) 1/2xTx + 0.25a(xTAx)2,

where a is a parameter and

5 1 0 O.5
1 4 0.5 0
0 0.5 3 0
0.5 0 0 2
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This is a strictly convex function that allows us to control the deviation from a
quadratic by means of the parameter a. The starting point is

xl (cos 70, sin 70, cos 70, sin 70)T.

The initial Hessian approximation B1 was always chosen to be diagonal. We used
three types of matrices B1, with large, small, and moderate eigenvalues, respectively.
They are

(4.5) B diag (1,..., 1, 10, 104),
(4.6) S diag (1,..., 1, 10-1, 10-4),
(4.7) Bn diag (0.1, 0.5, 2, 10).

The results, using a 1 in (4.4), are given in Table 2. The first number represents
iterations, and the second the number of function evaluations. For Method I we
indicate in parentheses the number of times that the safeguard (ii) was employed
(safeguard (i) was never active since the function is strictly convex).

TABLE 2
Results ]or the perturbed quadratic function.

Method Large
BFGS
Davidon
Method

a0/a

Starting matrix
Small Moderate’
28/47 ’8/36
3/a /o

Similar results were obtained for a 0.1. An examination of the computations
showed that in the vast majority of the iterations of Davidon’s method and Method
I, the value of Ck was negative. For Method I this value was often near . Overall,
Method I gives a substantial reduction of function evaluations and iterations compared
to the BFGS method. Table 2 also shows that Davidon’s method performs very well
on this problem.

TABLE 3
Large eigenvalues in B1.

Prob N
1 4
4 5
6 3
7 6
8 3
9 2
10 3
11 10
12 2
15 5
16 8
17 4
18 2
19 4

BFGS
246/322
50/60
32/34
73/83
3/10

151/198

Davidon

/5
27/29
66/77
3/o

182/222

Method
107/179 (3i’
29/50 (11)
16/22 (2)
5/S5
3/8(1)

121/143 (3)
28/36
42/52
14/27
43/46
173/220
62/70
22/31
79/105

27/35
aO/50
/0
a2/a5
163/186
49/58
23/31
89/lO9

18/29 (15)
20/37 (9)
13/27 (2)
25/46 (15)
154/248 (96)
45/66 (10)
12/25 (4)
60/96 (20)

To see if these observations generalize to other objective functions we tried 14
problems from the collection of Mor, Garbow, and Hillstrom (1981). The starting
points were obtained by setting factor 1 in their routines. We first present, in
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TABLE 4
Small eigenvalues in B1.

Prob N BFGS Davidon Method

4 5
6 3
7 6
8 3
9 2
10 3
11 10
12 2
15 5
16 8
17 4
18 2
19 4

a/a
/
e/s
/s
/0
F

e/0
23/42
F

20/34
98/144
46/66

56/89

156/196
23/44
27/39
8/7o
5/9
F

21/26
2/38
13/21
19/33
125/158
35/55
15/38
62/98

107/201 (40)
18/35 (0)
23/35 (0)

209/371 (84)
a/7 (o)

F
12/16 (0)
lS/34 (0)

F
19/34 (1)
sa/2
35/55 (3)
12/29 (0)
s/m (e)

TABLE 5
Moderate eigenvalues in BI.

Prob N BFGS Davidon Method
1 4
4 5
6 3
7 6
8 3
9 2
10 3
11 10
12 2
15 5
16 8
17 4
18 2
19 4

154/205
25/35
29/38
37/as
3/5

150/192
29/37
/
11/29
2o/2
sa/2o
/5
a/9
53/81

190/236
23/33
31/37
37/42
3/5

185/226
o/s
19/29
e/l
2o/a
92/111
32/45
/
5/

122/164 (12)
19/26 (3)
25/35 (4)
33/43 (10)
3/5 (0)

120/136 (0)
16/25 (4)

F
11/29 (1)
17/20 (3)

66/119 (21)
34/44 (2)
11/19 (0)
47/84 (11)

Tables 3 and 4, the results with large and small eigenvalues in the initial matrix,
defining B1 by (4.5) and (4.6). Once more the results are presented in the form
(number of iterations) /(number of function evaluations). For Method I we indicate
in parentheses the number of times that any of the safeguards was used.

We verified that the three methods converged to the same solution point (problems
for which this was not the case were not included in our test set). F denotes a failure,
which was caused by (i) a line search error due to a badly scaled search direction or (ii)
a failure to obtain the solution to the prescribed accuracy. The BFGS and Davidon
matrices never suffered from a loss of positive definiteness and used no safeguarding.
Method I used the safeguards described in the paragraph following the formula (4.2).
These safeguards were often used; the total number of times that safeguard (i) or (ii)
was applied is indicated in parentheses next to the number of function evaluations
for Method I. We see from Tables 3 and 4 that Davidon’s method performs better
than the BFGS method for large eigenvalues but is only slightly better for small
eigenvalues. Method I is substantially better than BFGS in the large eigenvalue case,
but its advantage is less pronounced for small eigenvalues.

To observe the effect of moderate eigenvalues, we use B1 I, the identity matrix
(as opposed to (4.7)). The results are given in Table 5.
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TABLE 6
Percentage of iterations for which < O.

Prob N Davidon Method
Large Small Moderate Large Small Moderate

1 4
4 5
6 3
7 6
8 3
9 2
10 3
11 10
12 2
15 5
16 8
17 4
18 2
19 4

50 43 28
73 39 65
70 71 48
42 60 51
67 0 67
37 F 36
74 38 27
62 76 84
25 23 25
74 53 50
39 27 37
69 74 81
65 67 45
44 31 36

78 68 45
79 67 68
6 56 68
64 67 61
100 0 67
46 F 46
44 75 69
80 0 F
54 F 45
80 79 70
45 70 71
89 80 73
75 75 73
68 64 74

Once more, Method I appears to be the best, and in this case BFGS and Davidon’s
method are comparable. In Table 6 we give the percentage of iterations for which
Ck < 0 in Davidon’s method and Method I for large, small, and moderate eigenvalues
in the initial Hessian approximation. It is clear that negative values of Ck are often
used by both methods, especially by Method I.

We conclude from this small set of experiments that Davidon’s method is probably
superior to BFGS, but its advantage is not great. Method I is clearly better than
BFGS, but it is not a practical method. A practical algorithm with performance as
good as that of Method I would be a candidate for replacing BFGS as the method of
choice for solving small- and medium-size problems. However, such a method would
need to be nearly as efficient as Method I to represent a significant improvement over
the BFGS method.
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NEW RESULTS ON A CONTINUOUSLY DIFFERENTIABLE EXACT
PENALTY FUNCTION*
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Abstract. The main motivation of this paper is to weaken the conditions that imply the correspondence
between the solution of a constrained problem and the unconstrained minimization of a continuously
differentiable function.

In particular, a new continuously differentiable exact penalty function is proposed for the solution of
nonlinear programming problems. Under mild assumptions, a complete equivalence can be established
between the solution of the original constrained problem and the unconstrained minimization of this penalty
function on a perturbation of the feasible set.

This new penalty function and its exactness properties allow us to define globally and superlinearly
convergent algorithms to solve nonlinear programming problems. As an example, a Newton-type algorithm
is described which converges locally in one iteration in case of quadratic programming problems.

Key words, exact penalty function, nonlinear programming, constrained optimization
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1. Introduction. Many research works have been devoted to the study of methods
which attempt to solve constrained nonlinear programming problems by means of
unconstrained minimizations of continuously differentiable exact penalty functions;
see, for example, [1], [2], [3], [4], and [5].

Recently Di Pillo and Grippo [6] have shown that, under suitable compactness
and regularity assumptions, it is possible to establish a total equivalence between the
solution of a constrained problem and the unconstrained minimization of a differenti-
able function. In particular, given a point n, they consider an open perturbation

of the feasible set containing both and the feasible region. Then they define a
continuously differentiable exact penalty function which goes to infinity on the boun-
dary of the set . This feature of the penalty function proposed in [6] and its exactness
properties ensure that the original constrained problem can be solved by using any
algorithm for the unconstrained minimization of this new penalty function and by
employing as a starting point the vector . This correspondence between the constrained
and the unconstrained problem is established under some regularity requirements on
the problem constraints. More specifically, the penalty function of Di Pillo and Grippo
can be defined only if the gradients of the active constraints are linearly independent
at every point in , and its exactness properties can be stated if the extended
Mangasarian-Fromovitz constraint qualification (see Proposition 2.5(ii)) holds at every
nonfeasible point of 9. However, imposing both the linear independence assumption
of the gradients of the active constraints and the extended Mangasarian-Fromovitz
constraint qualification at every nonfeasible point of may limit the applicability of
the penalty function introduced by Di Pillo and Grippo, especially when the set is
much larger than the feasible region. Unfortunately, this situation may occur frequently
in practice. In fact, rarely do we have a feasible point; therefore, we often have to use,
as a starting point of the unconstrained algorithm, a point that is far from the feasible
set, and this implies that we must choose a very large 9. Moreover, if we also have a
feasible point, it is better, from the computational point of view, to use a set quite
different from the feasible set. In fact, if the set were a small perturbation of the
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feasible set, then any solution of the constrained problem, which is usually located at
the boundary of the feasible region, would be very close to the boundary of @ where
the penalty function goes to infinity. This may be the cause of serious numerical
instabilities in the minimization algorithm.

In this paper we propose a new continuously differentiable exact penalty function
that tries to overcome the limitations presented by the penalty function proposed in
[6]. In fact, it allows us to significantly weaken the conditions required outside the
feasible set that ensure the total correspondence between the unconstrained minimiz-
ation of this new penalty function and the solution of the original constrained problem.

Our approach is based on the following considerations. When we want to solve
a constrained optimization problem, the situation is very different depending on whether
or not we have a feasible point. In the first case the constrained problem is well defined
and it is completely characterized by the behaviour of the objective function and the
constraints over the feasible set. Therefore, in this case, there is no clear reason to
impose a regularity assumption at nonfeasible points and, hence, it should be possible
to define a penalty function whose exactness properties could be stated by requiring
some regularity assumptions only in the feasible set. In the second case, we do not
have any feasible point and, in many real situations, we do not even know whether
or not the feasible set is empty. In this case the original constrained problem is composed
of two subproblems: the feasibility subproblem and the subproblem of minimizing the
objective function. In order to ensure that the first subproblem is well defined, the
only actual possibility is to impose a "good behaviour" of the constraints at nonfeasible
points. In fact, in this case, if we want to prove that an unconstrained minimization
of a penalty function yields a solution of the original constrained problem, we must
require some regularity assumptions on the constraints in order to ensure the attainment
of feasibility. These assumptions, together with the ones that imply the existence of a
minimum point of the penalty function, can be considered as sufficiency conditions
for the nonemptiness of the constraint region. Therefore, in the case where we do not
have a feasible point, the aim should be to define an exact penalty function which
requires assumptions that are as weak as possible, at least for a particular class of
constraints.

In this paper we define a new continuously differentiable penalty function which,
unlike the penalty function of [6], agrees well with the preceding considerations. In
fact, if we have a feasible point, then all exactness properties of this new penalty
function can be stated without imposing any assumption outside the feasible set. If a
feasible point is not available, then the equivalence between the original constrained
problem and the unconstrained minimization of this new penalty function can be
established without assuming the linear independence of the gradients of the active
constraints outside the feasible set and by requiring, at any infeasible point, only a
regularity condition on the constraints, which is much weaker than the extended
Mangasarian-Fromovitz constraint qualification. In the general case, this regularity
condition is a sufficient condition for the feasible set not to be empty, whereas it is
also necessary in the case of compact feasible sets given by convex inequalities.
Therefore, at least for this class of systems of constraints, this condition is the weakest
possible assumption which ensures that the original constrained problem is well defined,
and that, hence, it is possible to state a total correspondence between the constrained
problem and the unconstrained minimization of a penalty function.

For the proposed penalty function it is possible to introduce an automatic adjust-
ment rule for the penalty coefficient which allows us to define a general algorithm
model for solving nonlinear programming problems. This model is the basis for the
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construction of implementable Newton-type algorithms which, under suitable assump-
tions, reconcile global convergence properties with a local superlinear convergence
rate. Although the algorithm model proposed in this paper has a structure which derives
essentially from the structure of a similar algorithm given in [6], it presents, compared
with the preceding one, stronger theoretical properties. In fact, on one hand, its global
convergence towards Kuhn-Tucker points of the constrained problem can be estab-
lished under much weaker regularity assumptions and, on the other hand, following
the line of recent papers (see, e.g., [7] and [8]), it is able to give some information
about the original problem even when the feasible set is empty or when some regularity
assumptions do not hold.

The paper is organized as follows. In 2 we state the problem and we discuss the
assumptions. In 3 we define the new exact penalty function. In 4 we establish the
exactness properties of this new penalty function. In 5 we define an automatic
adjustment rule for the penalty coefficient and we describe an algorithm which allows
us to reconcile the global convergence property with a local superlinear convergence
rate.

For the sake of simplicity we consider nonlinear programming problems with
inequality constraints; however, the results reported in this paper can be easily extended
to nonlinear programming problems with equality and inequality constraints (see [9]).
An extensive study of the algorithmic applications of the new penalty function and
their computational aspects are beyond the scope of this paper (we refer to [9] for
some preliminary results). These arguments will be the subject of future research.

2. Problem formulation and assumptions. The problem considered is the nonlinear
programming problem:

(P) minimize f(x) s.t. g(x)<-O,

where f’"- and g’"" are twice continuously differentiable functions. We
denote by

:= {x e N" g(x) <-- O}

the feasible set of (P).
The Lagrangian function associated with (P) is the function L(x,A):=

f(x)+h’g(x). A Kuhn-Tucker (K-T) pair for (P) is a pair (, h)eN" xN" such that

VxL(X,X)=O, G(X)X=O, X>=O, g()<-O,

where G(x) := diag (g(x)). Furthermore, we say that the strict complementarity holds
at a K-T pair (, ) if > 0 for such that g()=0.

For all x " we define the index sets

I(x):={i’gi(x)=O}, I(x):={i’gi(x)<O}, I+(x):={i’gi(x)>--O}.

We denote by g+(x) the vector with components g-(x):= max [0, gi(x)], 1,..., m.
Let a, p R be given scalars such that a > 0 and p _>-2. In connection with these

two scalars we consider an open perturbation of the feasible set defined by:

,dp:= xe"" , gf(x)P <a
i=1

and we denote by p the closure of p. Moreover, we introduce the function

(2.1) a(x) := a 2 gT(x)p,
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which takes positive values on p and is zero on its boundary. Then we introduce
the following regularity condition.

DEFINITION 1. Given the scalars a > 0 and p 22, the (a, p)-weak Mangasarian-
Fromovitz regularity condition is said to be satisfied at a point x p if

E 1 +P
,= 2 a(x)

g-f (x)p-2 g-f(x)Vg,(x) O

implies that g(x)- 0, for i- 1,..., m.
We remark that if p 2, the (a, 2)-weak Mangasarian-Fromovitz regularity condi-

tion reduces to the fact thati1 g(x)Vgi(x) 0 implies that g-(x) 0, for 1,..., m.
In the sequel we shall make use of the following hypotheses.
ASSUMPTION A1. The set p is compact.
ASSUMPTION A2. For every x the gradients Vg(x), iI(x), are linearly

independent.
ASSUMPTION A3. The (a, p)-weak Mangasarian-Fromovitz regularity condition

holds at every point x p.
Assumption A1 is a mild requirement on the constraint functions; in fact, in the

following proposition, we give as an example some conditions under which Assumption
A1 is satisfied for every a > 0 and every p 2.

PROPOSITION 2.1. Assume that one of the following conditions is satisfied"
(i) all the problem variables are bounded;
(ii) there exists a function g(x) such that limll,ll_,oo g(x)
(iii) there exists an index set J such that the functions g (x), J, are convex and

the set {x "" g(x) <-_ O, J} is compact.
Then Assumption A1 is satisfied for every > 0 and every p >= 2.

Proof. If either (i) or (ii) holds the assertion follows immediately. Therefore,
assume that (iii) is satisfied. First, it is easy to show that the function rl(x) j g-f(X)p

is convex for all p -> 2. Then we recall that, by (iii), the set {x " r/(x) -< 0} is nonempty
and compact and, since it is given by a convex inequality, we can apply Theorem 24
of [10] to also establish that the set {x" r/(x)_-< a} is a compact set. t-I

We observe that all the globally convergent algorithms for the solution of con-
strained problems need an assumption similar to Assumption A1. In particular,
Assumption A1 is often substituted by the almost equivalent requirement that the
sequence of points produced by the algorithm be bounded.

Regarding Assumption A2, we note that it is closely related to the fact that we
want to define an exact penalty function that is continuously differentiable. In fact,
the key element for the construction of every continuously differentiable exact penalty
function proposed in the literature is the definition of a continuously differentiable
multiplier function that yields an estimate of the multiplier vector associated with (P)
as a function of the variable x. Such a multiplier function requires an assumption like
Assumption A2. However, we remark that Assumption A2 appears much weaker than
the corresponding assumptions considered in all papers dealing with global conver-
gence of exact penalty function algorithms (see, e.g., [2], [3], and [6]) where the linear
independence of the gradients of the active constraints is assumed also outside of the
feasible set .

Now consider Assumption A3; this assumption involves the behaviour of the
constraint functions outside the feasible set and, as we said before, it is connected to
the feasibility of the original problem. The following propositions clearly show this
connection.
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PROPOSITION 2.2. Let a > 0 and p >= 2 be such that the set SCp is not empty. If
Assumptions A1 and A3 hold on the set p, then the feasible set is not empty.

Proof. Let us introduce the following function bp(X):= IIg+(x)ll/a(x), whose
gradient is

Vbp(X)
a(x) i=1 2 a(x--- gf(x)P-2 g-f(x)Vgi(x).

By assumption, the p is not empty and by Assumption A1 it is compact. Then, since
4p(X)-o for x converging to any point of 0, the function 4p admits a global
minimum point on p and, hence, it has at least a stationary point on ,p. Now,
Assumption A3 implies that any stationary point of 4p is a feasible point and hence
the proposition follows.

Obviously it is always possible to find a > 0 and p ->_ 2 such that the set p is not
empty; in fact, given a point Y ", it is sufficient to choose a > i=1 gf(Y)P.

PROPOSITION 2.3. Assume that the feasible set is not empty and that gl,..., gm
are convex functions. Then Assumption A3 holds for all a > 0 and p >- 2.

Proof Let x be any point in " and let . By the convexity assumption we
have for all i= 1,..., m"

0>= g,()>- g,(x)+Vgi(x)’(:-x).

This implies that, if gi(x)>0, we must have Vgi(x)’(Y-x)<O. Therefore, letting
z -x, we obtain

Vgi(x)’z < O, {i" gi(x) > 0}.

Now, by using Gordan’s theorem of the alternative (see, e.g., 11]) and by taking into
account that x was arbitrary, we prove the proposition.

Then, from Proposition 2.1(iii), Proposition 2.2, and Proposition 2.3 we have the
following.

COROLLARY 2.4. Assume that thefeasible set is a compact set and that gl,

are convex functions. Let a > 0 and p >- 2 be such that the set op is not empty. Then the

feasible set is not empty if and only if Assumption A3 holds on
The preceding corollary shows that Assumption A3 is the weakest assumption,

which implies the consistency of a compact set given by convex inequalities. Regarding
more general feasible sets we can state the following result.

PROPOSITION 2.5. Assume that at x "cep one ofthefollowing conditions is satisfied"
(i) the following set"

,.Je(X)’.--{ZGn" Vgi(x)’z+gi(x)O i I+(x)}

is not empty;
(ii) the Mangasarian-Fromovitz regularity condition holds; namely, there exists a

z n such that"

Vgi(x)’2<O, /eL(x).

Then we have that the (a, p)-weak Mangasarian-Fromovitz regularity condition holds
at x for every a > 0 and every p - 2.

Proof. If (i) holds there exists a z such that

Vgi(x)’z=-gi(x)<O, il/(x),

where /(x):-(i" gi(x)>0). Then Gordan’s theorem of the alternative ensures that

viVgi(x) "-0,
i l+(x)
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with vi-> 0 for all a/+(x), and implies that vi 0 for all i/+(x). Thus the assertion
of the proposition follows.

If (ii) is satisfied, then the assertion is a direct consequence of Gordan’s theorem
of the alternative. U

Proposition 2.5(i) is the typical assumption used in sequential quadratic program-
ming methods (see, e.g. [12], [13], and [14]), whereas point (ii) is the assumption used
in [6]. Therefore, by Corollary 2.4 and Proposition 2.5, we can conclude that Assump-
tion A3 is a very mild condition and that, in particular, it is implied by the assumptions
used by many of the methods proposed to solve nonlinear programming problems.

In the sequel, we will assume that Assumptions A1 and A2 hold. Assumption A3
will be invoked explicitly when needed.

3. The penalty function. In this section we describe the new continuously differenti-
able penalty function. First, we introduce a new continuously differentiable multiplier
function ,(x), which yields an estimate of the multiplier vector associated with (P) as
a function of the variable x. This multiplier function is a generalization of the function
proposed by Glad and Polak in [3] and its distinguishing property is that it can be
defined by assuming that the gradients ofthe active constraints are linearly independent
only on the feasible set (Assumption A2) and without requiring any assumption
outside of (as needed by Glad and Polak’s multiplier function).

PROPOSITION 3.1. For any x Rn, 2’1 > O, 2’2 > O, and p >- 2, we have:
(i) there exists a unique minimizer h(x) of the quadratic function in h,

(A; x):-IlVxL(x, )11=+ lla(x)ll=+ E g-[(x)PlIAII
i=1

over ", given by:

(3.1) ,(x) -M-l(x)Vg(x)’Vf(x),
where M(x) is the m x m matrix defined by

M(x) Vg(x)’Vg(x)+ yG2(x)+ / E g-(x)Plm,
i=1

and I, indicates the m x m identity matrix;
(ii) if (2, ) En x E" is a K-Tpair for (P), we have
(iii) the Jacobian matrix of (x) is given by:

VA(x)’=-M-(x) Vg(x)’VL(x, A(x))+ E e’VxL(x, A(x))’V2g,(x)
i=l

+2yA(x)G(x)Vg(x)’+pyA(x) E g-(x)P-Vg,(x)
i=1

where A(x):= diag (A(x)) and e’f denote the ith column of the m x m identity matrix.

Proof (i) First we consider the m x (n + 2m) matrix:

r(x):= Vg(x)’ ,(x) ’ __2 gT(x) ,..
By Assumption A2 we have that rank N(x)] m, so that the matrix M(x) N(x)N(x)’
is nonsingular and positive definite. This implies that the vector A(x) is the unique
minimizer of the quadratic function (A; x).

(ii) If (2, )En E" is a K-T pair for (P), we have (; 2)=0, from which
() =X.
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(iii) By the assumptions made on the problem functions and the fact that the
functions g-(x)p, 1,..., m, for p => 2 are continuously differentiable, we have that
the multiplier function h(x) is also continuously differentiable. The expressions of the
gradient Vh(x) can easily be derived by differentiating the following equations, which
are satisfied by h(x):

Vg(x)’VxL(x, A(x)) + yG(x)2A(x)+ y E g-(x)PA(x) =0.
i=1

Now, by using the functions h(x) and a(x), given by (3.1) and (2.1), respectively,
we can define the following exact penalty function:

(3.3)

where

1
Z(x; e):=f(x)+A(x)’c(x; e)+ e-- IIc(x; )112,

c(x; ):= g(x)+ Y(x; )y(x; ),

(3.4) y,(x" e):= -min O,g,(x)+ ,e,a(x) Ai(x)
2

Y(x; e):= diag (y,(x; e)).

The expression of the function Z can be derived by repeating the same arguments
that led to the expression of the penalty function of [6] (see also [4]). The peculiar
features of the function Z are the different structure of the multiplier function ,(x)
and the particular form of the barrier term 1/a(x) on the perturbation p of the
feasible set. These differences from the function of Di Pillo and Grippo allow us to
weaken the conditions that imply the correspondence between the solution of a
constrained problem and the unconstrained minimization of the proposed penalty
function.

Given a point Y ,flap we can define the following level set:

av(Z; e):= {x e d,,: Z(x; )-<z(z; e)}.

Some preliminary properties of the function Z(x; e), which are an immediate con-
sequence of its definition, are pointed out in the following proposition.

PROPOSITION 3.2. For any e > 0:
(i) Z(x; e) is continuously differentiable for all x p, with gradient

VZ(x; e)=Vf(x)+Vg(x)A(x)+VA(x)c(x; e)

2(3.5) + Vg(x)c(x; e) +p
ea(x)

IIc(x; )11 =
Vgi(x)g_(x)p_l;

ea(x)2
i=1

(ii) Z(x; e)<-f(x) for all x e iT;
(iii) Z(x; e) admits a global minimum point on 12p(2; e);
(iv) iff and g are three times continuously differentiable and p >-3, then Z(x; e) is

twice continuously differentiable for all x Sgp except at the points where gi(x)+
ea(x)Ai(x)/2 =0 for some i.

Proof Parts (i) and (iv) directly follow from the definition of the function Z.
(ii) By (3.3) we have

(3.6) Z(x; e)-f(x)= , Ai(x)ci(x; e)+
ci(x;

i=, ea(x)
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Now we consider the ith term of the summation in (3.6). If the index is such that
yi(x; e)2= 0, we can write (taking into account that gi(x)<= O)

gi(x) + ea(x)
0 <= gi(x) + ea(x)

Ai(x) _--< Ai(x),
2 2 2

gi(x)2 + ea(x)Ai(x)gi(x) <= O,

which yields

(3.7) A(x)c(x; e)+-ci(x; e )2 1

ea(x) ea(x)
[gi(x)2 + ea(x)Ai(x)gi(x)] <- O.

If, on the contrary, the index is such that y(x; e)2> 0, we have

(3.8)
Ai(x)ci(x" e)+ Ai(x)

e 1 e

 a(x)
a(x),X,(x) + a(x),X,(x)

ea(x)-X(x)<-O.

Therefore, by using (3.7) and (3.8) we have that any term of the summation in
(3.6) is nonpositive, so that we can conclude that Z(x; e)<=f(x) for any x .

(iii) We prove this point by showing that the set fp(5; e) is compact. By
Assumption A1 we have that flp(; e) is bounded. In order to prove that it is also
closed we show that every limit point : of every sequence {Xk} of points in f/p(;; e)
still belongs to cp(; e). Suppose by contradiction, that : ap(; e); then we should
have that Ol2p(;; e) and, hence, limk_, a(Xk) a() =0. Then, by recalling that
Xk 12p(; e) for all k, we should obtain:

O=> lim a(Xk)[Z(Xk; e)-Z(:; e)]= II( z;  )11

which would imply that : and hence that a(g)= a > O. I-I

4. Exactness properties of the penalty function. In this section we describe the
exactness properties of the function Z(x; e).

By repeating the proofs of Theorem 1 and Proposition 4 of [6], we can state the
following proposition.

PROPOSiTiON 4.1. (i) Let (g., .) be a K-T pair for (P). Then, for any e > O, we
have c(; e)=0, Z(; e) =f(), and VZ(; e)=0.

(ii) Let Mp be a stationary point ofZ(x; e) and assume that c(; e)=0. Then
(, A()) is a K-Tpair for (P).

In order to establish a converse theorem we need some intermediate results.
PROPOSITION 4.2. Let . 7hen there exist numbers e(;) > O, tr() > 0 and

p() > 0 such that, for all e (0, e () andfor all x Mp satisfying x <- tr(), the
following formula holds:

(4.1)   -IlVg(x)’VZ(x;  )11

Proof By definition of y(x; e), we have

2
(4.2) y2(x; e)A(x)= y2(x, e)c(x; e).

ea(x)
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Now, by definition of A(x) and by using (4.2), we can write:

(4.3)

Vg(x)’VxL(x, A(x)) -yG(x)2A(x)- y22 2 g-(x)PA(x)
i=1

( 2 )=-yG(x) A(x)+ Y(x; e) c(x" e)()

y2 E g[(x)PA(x)
i=1

Now, by using (3.5) and (4.3) we get

eVg(x)’VZ(x; e)= eVg(x)’VxL(x; A(x))+Vg(x)’( 2 )a(xi Vg(x)+eVA(x) c(x; e)

(4.4) +p

where

IIc(x; )11 =
a(x)2 i=IE Vg(x)’Vgi(x)g-(x)

p-1

K(x; )c(x; )- E g;(x)x(x),
i=1

2
K(x" e): a(x) (Vg(x)’Vg(x) yG(x)Y(x e)2)

(4.5) + e(Vg(x)’VA(x)- "y21G(x)A(x))

+ a(p--x.x)
i=,

Vg(x)’Vgi(x)g-f(x)P-lc(x" e)’.

Now we recall that, for any two vectors v, um, we have 211v+ull>=llvll-Ellull 2,
and that, by using the equivalence of the norms on N’, there exists a constant 1’ > 0
such that y m__ gf(X)p<- xllg/(x)ll. Therefore, by (4.4) we obtain

(4.6) e2llVg(x)’VZ(x; e)ll=>=1/2O’m(K(x; )311c(x; )ll2-==x211a(x)llllg+(x)llZ

where tr.,(K(x; e)2) is the smallest eigenvalue of K(x; e)-.
Then we can observe that

c(x; e)= max g(x),-- a(x)i(x) _-> g-(x),
so that II(x; 11>- IIg/(x)ll 2. Therefore, by (4.6) we get:

(4.7) e211Vg(x)’VZ(x; e)ll2_->[1/2rm(g(x; e)=)-e=x=llA(x)[l=llg+(x)l[=("-lJIIc(x; )11 =.
Now we can note that, if , we have

(4.8) K(. 0)=
2 2 /Q(:)/Q(y),a() [Vg(’)’Vg(Y)+y2G(:)2]=a()

where )Q(:):= [Vg(Y) y,G()].
By again using Assumption A2 we obtain that rank []Q(Y)] rn and hence the

matrix K(:; 0) is nonsingular and positive definite. Therefore, we can find numbers
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e()) > 0, r(:) > 0, and p()) > 0 such that, for all e (0, e())] and for all x
satisfying x we have

(4.9) (K(x;
and hence the proof of the proposition follows from (4.7) and (4.9).

LEMMA 4.3. Let {ek} be a sequence ofpositive numbers converging to zero and let
{Xk} be a sequence of points such that Xk Op(Y; ek); then {Xk} admits a limit point
p.

Moreover, if we assume that or, alternatively, that Assumption A3 holds and

lim eTZ(x; e) O,(4.10)

then we have that .
Proof By Assumption A1 we have that dp is compact; therefore, there exists a

convergent subsequence (relabel it again {x}) such that lim, x d,p.
If O,p then lim a(x) a() 0. Since x p(Y; e) for any k, we have

(4.11) 0 lim ea(x)[Z(x; e)-Z(Y; e)] IIc(; 0)11= IIg+()ll 2,

which contradicts the statement a() 0 and hence implies that p and a() > 0.
If we assume that Y , by Proposition 3.2(ii) we obtain Z(Y; e) f(Y) for any

k and, by the continuity assumptions, this yields

lim sup Z(x; e)=f() + A()’c(; 0) +lim sup Nf()
ea(x)

which implies c(; 0)=0, so that we have e .
Now we suppose that Assumption A3 and (4.10) hold. Then, recalling (3.5) and

taking the limit of eVZ(x; e) over the subsequence converging to , we obtain:

O= lim eVZ(x; e)=
l [1+ l’g+()llg[()p-]

which, by Assumption A3, yields that e . U
Now we can establish the following result which, together with Proposition 4.1(i),

completes the correspondence between stationary points of Z(x; e) and the K-T pair
for (P).

THEOREM 4.4. Assume that either or Assumption A3 holds. en there exists
an e*>0 such that for all e e (0, e*], ifx e Op(Y; e) is a stationary point of Z(x; e),
the pair (x, A(x)) is a K-Tpair for (P).

Proof The proof is by contradiction. Namely, whether Y or Assumption A3
holds, we assume that, for any integer k, there exists an e N 1/k and a point x
Op(Y; e) such that 7Z(x; e)=0, but (x, A(x)) is not a K-T pair for (P).

Now Lemma 4.3 ensures that the sequence {x} admits a limit point
Therefore, taking into account that e 0 and that every x is a stationary point of Z,
we have, by Proposition 4.2, that c(x; e)=0 for sufficiently large values of k. Then,
Proposition 4.1 (ii) ensures that, for sufficiently large values of k, the pair (x, 1(x))
is a K-T point for (P) and this establishes the expected contradiction.

Now we are ready to describe the correspondence between local or global solutions
of (P) and local or global unconstrained minimum points of Z.

TnzozM 4.5. Suppose that (P) is well defined, namely, the feasible set is not

empty. en there exists an e* such that for all e (0, e*], any global minimum point of
(P) is a global minimum point ofZ(x; e) on p and conversely.
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Proof Let e* be the threshold value of the penalty parameter introduced in
Theorem 4.4. Ifx is a global minima of Z(x; e) on Mp then we have that VZ(x; e) =0
and x p(Y; e) where Y6 . If e 6 (0, e*], Theorem 4.4 implies that (x, h(x)) is
a K-T pair for (P) and hence Proposition 4.1 yields Z(x; e)=f(x). Now, if x* is a
global minimum point for (P), by again using Proposition 4.1 we havef(x*) Z(x*; e).
Therefore, we can conclude that, for any e (0, e*], the functions f and Z take the
same value in correspondence at any point in p that is either a global minimum
point for (P) or a global minimizer of Z. This proves the theorem.

The proofs of the next results follow, with minor modifications, from those of the
corresponding results given in [6] (see [6] or [10] for the definition of the isolated
compact set of local minima that appears in Theorem 4.6 (i)).

THEOREM 4.6. (i) Let C(f*) be an isolated compact set of local minima of (P),
corresponding to the local minimum value f*; then there exists an e* such that for all
e 6 (0, e*], x* C(f*) implies that x* is a local unconstrained minimum point ofZ(x; e).

(ii) Assume that either ; or Assumption A3 holds. Then there exists an e* such
thatfor all e 6 (0, e*], ifx* glp (:; e) is a local unconstrained minimumpoint ofZ(x; e),
x* is a local minimum point of (P) and h(x) is the associated K-T multiplier.

The next proposition concerns the second-order optimality results and it requires
that the f and g are three times continuously differentiable, and that p _>-3.

PROPOSITION 4.7. (i) Let (x*, h*) be a K-Tpairfor (P) and assume that
(a) the strict complementarity holds at (x*, h*);
(b) x* is an isolated local minimum point for (P) and satisfying the second-order

sufficiency condition:

z’VL(x*,h*)z>O, for all z" Vgt(x*)z=O,zO.

Then, there exists an e* such that for all e (0, e*], x* is an isolated local minimum
point for Z(x; e) and the Hessian matrix V2Z(x*; e) is positive definite;

(ii) Suppose that strict complementarity holds at any K-Tpair (x*, h*) of (P) and
assume that either or Assumption A3 holds. Then, there exists an e* > 0 such that,
for all e(0, e*], if x* 6 lp(Y; e) is a local unconstrained minimum point of Z(x; e),
with positive definite Hessian V2Z(x*; e), x* is an isolated local minimum point of (P),
satisfying the second-order sufficiency condition.

5. The algorithm model. As in [6], we can define an automatic adjustment rule
for the penalty coefficient that appears in the function Z(x; e). This rule allows us to
propose an implementable algorithm that can be proved to be globally convergent
towards K-T points of (P). In the algorithm we make use of an iteration map
A’,p --> 2% that satisfies the following assumption.

ASSUMPTION A4. For every fixed value of e and every starting point Xo 6 Mp, all
the points Xk produced by A belong to the level set glp(Xo; e) and all the limit points
of the sequence produced by A are stationary points of Z(x; e).

These requirements on the map A can be easily satisfied by every globally
convergent algorithm for the unconstrained minimization of Z. In fact we can always
ensure, by simple device, that the trial points produced (along the search direction)
remain in l-Ip(Xo; e).

ALGORITHM EPS.
Data" Y ", eo > 0 and/ > 0.
Step 0: Choose a > 0 and p >-2 such that Mp, set j--0 and z0 x.
Step 1" Set k=0. If Z(Y; ej)<-Z(zj; ej) set Xo=Y; else set Xo=Z.
Step 2: If VZ(Xk; ej)=0 go to Step 3; else go to Step 4.
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Step 3: If C(Xk" Ej)--0 stop; else go to Step 6.
Step 4: If

go to step 5; else go to Step 6.
Step 5: Compute Xk+l A[xk], set k k + 1, and go to Step 2.
Step 6: Choose ej+l (0, ej), set z+ xk, j=j+ 1, and go to Step 1.

Algorithm EPS differs from the algorithm of [6] only in Step 1. However, although
little, this difference is very important because it allows us to take advantage of all the
potentialities of the new function Z so that Algorithm EPS presents theoretical proper-
ties that are better than those of the algorithm in [6]. In fact, its global convergence
can be stated under the same regularity assumptions used to prove the exactness of
the new penalty function Z, whereas the convergence of the algorithm given in [6] is
limited by the stronger assumptions required by the penalty function of Di Pillo and
Grippo. Furthermore, another distinguishing feature of the algorithm proposed here
is its capability to extract some information about the original problem even when
Assumption A3 does not hold or when the feasible set is empty.

Now we show the convergence properties of Algorithm EPS. If the algorithm
produces a finite sequence of points, by applying Proposition 4.1 (ii) directly we obtain
this first result.

PROPOSITION 5.1. If Algorithm EPS terminates at some x M,,p, then (x, h(x))
is a K-Tpair for (P).

In what follows we assume that the algorithm produces an infinite sequence of
points {Xk}.

Remark. Algorithm EPS produces a sequence of points Xk which belong to the
set Mp and hence, by Assumption 1, we have that the sequence {Xk} is bounded and
it admits at least a limit point.

As we said before, under the same assumptions required for the exactness of Z,
we can state the global convergence of the algorithm and, in particular, we can show
that the penalty parameter e is updated finitely many times.

THEOREM 5.2. Suppose that either ; or Assumption A3 holds. Then the sequence
{ej} produced at Step 6 is finite and every limit point x* of the sequence {Xk}
produced by Algorithm EPS yields a K-Tpair (x*, h(x*)) for (P).

Proof We note that the hypotheses made on the iteration map A, and the instruc-
tions at Step 1 ensure that

(5.1) Z(Xk; e)_--< Z(Y; ej)

for all k and for all j.
First we have to show that the sequences {zj} and e produced at Step 6 are finite.
By using Theorem 4.4 and Proposition 4.1 (i) we have that there exists a j*> 0

such that the algorithm cannot construct any point z with j >-j* on account of a failure
to satisfy the test in Step 3.

It follows that the point z, j =>j*, should have been produced because of a failure
to satisfy the test at Step 4; namely, for j>=j* we should have

By (5.2) and the instructions at Step 1 we have:

(5.3) lim  jllVZ(zj+,;  j)ll- o,
jc
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and hence Lemma 4.3 yields that the sequence {zj} admits a limit point . By
recalling (4.1) of Proposition 4.2 we have

(5.4) (j)211Vg(z/,)’VZ(z+,; )112>= 0(zj/,; j)llc(zj+,; )11 =,
where

O(gj+, j) [1/20"m((Zj+l
Since the matrix K is positive definite in a neighbourhood of for sufficiently small
values of e and since zj- 5 and e-0, we have, for sufficiently large values of j,
0(zj+ ej) > (ej)2, which contradicts (5.2).

Therefore, we can conclude that the sequence {zj} is finite. Then the algorithm
produces an infinite sequence {x} Mp and by Assumption A4 every limit point
of this sequence is a stationary point of Z in . By Step 4 we also have c(2; ej)= 0
so that, again by Proposition 4.1 (ii), the theorem is proved. 13

The next proposition follows, in some sense, the line (proposed by the recent
results given in [7] and [8]) of investigating the behaviour of Algorithm EPS in the
absence of the regularity assumptions of Theorem 5.2 (namely, the knowledge of a
feasible point or Assumption A3). In particular, this case occurs when the feasible set
is empty.

PROPOSITION 5.3. Let {8j}, {Zj}_. gop and {Xk}_. Map be the sequences produced by
Algorithm EPS. Then

(i) if the sequence { ej} is finite, every limit point x* of the sequence {Xk} yields a
K- Tpair (x*, A(x*)) for (P);

(ii) if the sequence {ej} is infinite, every limit point 5 fp of the sequence {zj} is
such that 5

_
; and

(5.5) Y +-P
,= 2 a(5)

g7(5)-2

Proof (i) Let e] be the last element of the sequence {6} and let x* be any limit
point of the sequence {x}. By Assumption A4 and by the test at Step 4 we have

VZ(x*; e) 0, c(x*; s) 0,
so that Proposition 4.1 (ii) proves Proposition 5.3 (i).

(ii) Consider the sequence {zj} (which is a subsequence of {x}) produced at Step
6. The points zj are produced because of a failure to satisfy either the test at Step 3,
namely,

(5.6) VZ(zj+, ej) 0, c(zj+,;
or the test at Step 4, namely,

(5.7) ]]VZ(zj+, 8j)ll2+[lVg(Zj+l)’VZ(zj+,; =.
Now let be any limit point of {z}; therefore, there exists a subsequence that we
relabel {zj} such that limj_. zj 5.

First we show that Z . In fact, if e then, for sufficiently large values of j,
both (5.6) and (5.7) would contradict Proposition 4.2.

Now, recalling that z+ e f,(; e) for all j, we have by Lemma 4.3 that
and a(5)> 0. Then we can note that both (5.6) and (5.7) imply

lim eVZ(zj+ sj)=0,

which yields

1 [l+Pllg+(2),, 2

O=j_lim ejVZ(zj+ 1; ej)=a-’ i=1 2 a(5)
g-(5)P-2 g
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We remark that the points that satisfy (5.5) can be viewed as nonfeasible Fritz
and John points, in fact, (5.5) shows that the zero vector can be expressed with a linear
combination of the gradients of the constraints with coefficients nonnegative and not
all equal to zero. Furthermore, we note also that these points are the stationary points
of the function Chap(X)= IIg/(x)ll2/a(x), where a(x)is given by (2.1), and this function
can be interpreted, loosely speaking, as a weighted measure of the violation of the
constraints. These last features of the points that satisfy (5.5) are pointed out more
clearly by setting p 2 in Algorithm EPS. In particular, we can state the following result.

PROPOSITION 5.4. Let p 2 in Algorithm EPS. If the sequences {e} and {z}
_
2

produced by the algorithm are infinite, then every limit point l2 of the sequence {zj}
is a stationary point of the distance function
(5.8) (x)=dist[g(x)l_]:=inf(llg(x)-yll;y<=O, i=1,..., m}.

Y

Proof By Proposition 5.3 (and recalling that p 2) we have that every limit point
of the sequence {zj} satisfies the relation

Y g7()Vg,() 0,
i=1

which implies that is a stationary point of the function (x2= Ilg+(x)ll. Then we
note that, at every nonfeasible point, the stationary points of b(x) coincide with the
stationary points of the function (x)= IIg+(x)ll Now, the thesis of the proposition
follows from the fact that (see [7, 7])

dist[g(x)lE_]:=inf{llg(x)-yl]2; yi_-<0, i= 1,..., m}= IIg+(x)ll.
Y

When the feasible set : is convex, we have Corollary 5.5, which follows directly
from Theorem 5.2, Corollary 2.4, and Proposition 5.4.

COROLLARY 5.5. Let p 2 in Algorithm EPS. Assume that the feasible set is a

compact set and that gl, g, are convexfunctions. Ifthe sequences {e} and {z} c_ a2
produced by the algorithm are infinite, then the feasible set is empty and every limit

point ag2 of the sequence {z} is a minimum point of the distance function (5.8).
Therefore, Proposition 5.3 and Corollary 5.5 ensure that, when the feasible set

is bounded and is given by convex inequalities, Algorithm EPS yields a KKT point
for (P) if this problem is feasible. However, it provides a point that is as close to

feasibility as possible if (P) is nonfeasible.
Proposition 5.4 and Corollary 5.5 are quite similar to some results reported in [7]

and [8]. The main ditterences between our approach and that of [7] and [8] are that,
on one hand, Algorithm EPA has the advantage of using a continuously differentiable
merit function and, on the other hand, it has the disadvantage of requiring Assumption
A2.

In order to complete the description of Algorithm EPS we must specify the iteration
map A. In principle, any method for the unconstrained minimization of the function
Z can be easily modified to satisfy Assumption A4 and hence it can be employed as

iteration map A in Algorithm EPS. In particular, if the map A is a globally convergent
modification of a Newton-type method, then, under the assumptions of Theorem 5.2,
Algorothm EPS allows us to solve (P) and to conciliate the global convergence property
with an ultimate superlinear convergence rate. Although the Hessian matrix V2Z, where
it exists, requires the third-order derivatives of the problem functions, it is possible to

define some Newton-type algorithms based on consistent approximation of the Newton
direction of the penalty function Z that employ only the first- and second-order
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derivatives of the problem functions. Here, as an example, we describe one of these
algorithms and we refer the reader to [9] for some other Newton-type algorithms for
the function Z.

First we need some additional notation. For every x SCp and every e > 0, we
introduce the following index sets:

Ia(x; e)= i" g,(x)+ a(x),(x)eO I(x; e)= i: g(x)+ a(x),(x)<O

Then, given a matrix B with columns B, i= 1,..., m, we denote by Ba and Be the
submatrices of B consisting of columns B, Ia(x; e) and B, I(x), respectively.
Given an m vector h we denote by ha, h, h, and he the subvectors of h with
components h, e I(x; e), h, e Ir(x; e), h, e Io(x), and h, e Ie(x), respectively.

AoRrrN NT.

Xk+l Xk "j" Otkdk,

where dk is computed by solving the system

(5.9) [V2L(Xk’A(Xk)) VgA(Xk)][dk] ----[Vf(Xkl]VgA Xk )’ 0 Zk k gA Xk

and Otk is the stepsize along the search direction and it can be computed by means ofsome
line search procedure.

Now we can state the following proposition, which describes the local behaviour
of Algorithm NT.

PROPOSITION 5.6. Let (x*, A*) be a K- Tpairfor (P) satisfying the strict complemen-
tarity assumption and let d be the solution of system (5.9). Then

(i) for any given e > 0, there exists a neighbourhood of x* and a continuous
matrix H(x; e) such that, for all x , we have

H(x; e)d =-VZ(x; e)

and in particular we have H(x*; e)= V2Z(x*; e);
(ii) if (P) is a quadratic programming problem and the second-order sufficiency

conditionsfor (P) hold at (x*, A*), then, for any given e > O, there exists a neighbourhood

* ofx* such that, for any x *, we have

x*=x+d.

Proof. The proof of part (i) is quite cumbersome and, for the sake of brevity, we
omit it; however, it can be derived by following essentially the same steps as the proof
of Proposition 8 of [15].

(ii) In this case we have f(x)=x’Qx/2+c’x and g(x)=D’x-b. Under the
assumption stated, the pair (x*, A*) is the unique solution of the system in (x, A)

(5.10) Qx+c+DA=O, D’ox-b=O, A=0.
Let x e Mp. We note that, if the vector (d, z) solves system (5.9), then the vector (d, u),
where UA Z--A(X)A and uN =-A(x)rq, solves the system

Qd + Du -(Qx + c+ DA(x)),

(5.11) D’Ad --(D’AX bA),

uu -x(x)u.
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Then by Proposition 3.1 and the definition of the index sets Ia, IN, It3, and Ie, we
have that if (x*, A*) is a K-T pair for (P) satisfying the strict complementarity
assumption, then, for any given e > 0, there exists a neighbourhood * of x* such
that for all x * we have

IA(X; e)-" Ii3(X*), IN(X; e)= Ie(x*).
Therefore, if x e N* we obtain from (5.11):

Q(x+ d)+ D(u+ A(x))+ c=O,

D’(x + d)- b =0,

ue+X(x) 0.

Therefore, the pair (x + d, u + A(x)) solves the system (5.10) and, hence, coincides with
(x*, ,*).

Proposition 5.6 (i) and Proposition 4.7 ensure that the direction d is a consistent
approximation of the Newton’s direction and that, in a neighbourhood of a local
minimum point of (P), it is a descent direction. By using these results, a global and
superlinearly convergent algorithm can be defined by using any stabilization technique
(see, e.g., [16], [17], and [18]). Part (iii) shows that Algorithm NT converges locally
in one iteration if the problem considered is a quadratic programming problem and
hence, in this case, it takes advantage of the simple structure of this problem. This
property is not peculiar to the new penalty function Z; however, it also holds for the
penalty functions proposed in [4] and [6], but it seems that the authors of these papers
did not notice this feature.
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ON THE IMPLEMENTATION OF A PRIMAL-DUAL
INTERIOR POINT METHOD*

SANJAY MEHROTRAt

Abstract. This paper gives an approach to implementing a second-order primal-dual interior point
method. It uses a Taylor polynomial of second order to approximate a primal-dual trajectory. The computa-
tions for the second derivative are combined with the computations for the centering direction. Computations
in this approach do not require that primal and dual solutions be feasible. Expressions are given to compute
all the higher-order derivatives of the trajectory of interest. The implementation ensures that a suitable
potential function is reduced by a constant amount at each iteration.

There are several salient features of this approach. An adaptive heuristic for estimating the centering
parameter is given. The approach used to compute the step length is also adaptive. A new practical approach
to compute the starting point is given. This approach treats primal and dual problems symmetrically.

Computational results on a subset of problems available from netlib are given. On mutually tested
problems the results show that the proposed method requires approximately 40 percent fewer iterations
than the implementation proposed in Lustig, Marsten, and Shanno Tech. Rep. TR J-89-11, Georgia Inst.
of Technology, Atlanta, 1989]. It requires approximately 50 percent fewer iterations than the dual affine
scaling method in Adler, Karmarkar, Resende, and Veiga [Math. Programming, 44 (1989), pp. 297-336],
and 35 percent fewer iterations than the second-order dual affine scaling method in the same paper. The
new approach for estimating the centering parameter and finding the step length and the starting point have
contributed to the reduction in the number of iterations. However, the contribution due to the use of second
derivative is most significant.

On the tested problems, on the average the implementation shown was found to be approximately two
times faster than OB1 (version 02/90) described in Lustig, Marsten, and Shanno and 2.5 times faster than
MINOS 5.3 described in Murtagh and Saunders [Tech. Rep. SOL 83-20, Dept. of Operations Research,
Stanford Univ., Stanford, CA, 1983].

Key words, linear programming, interior point methods, primal-dual methods, power series methods,
predictor-corrector methods
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1. Introduction. This paper considers interior point algorithms for simultaneously
solving the primal linear program"

minimize

(P) s.t.

and its dual

maximize

(D) s.t.

cx
Ax b,

x>=O,

b TTl"

ATTr + S C,

s>=O,

where c, x, s 9]", 7r, b 91", and A 9]"n. It is assumed that A has full row rank.
This can be ensured by removing the linearly dependent rows in the beginning. The
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primal-dual methods, which use solutions of both (P) and (D) in the scaling matrix,
are of primary interest.

The primal-dual algorithms have their roots in Megiddo [21]. These were further
developed and analyzed by Kojima, Mizuno, and Yoshise [15] and Monteiro and
Adler [27]. They showed that the central trajectory can be followed to the optimal
solution in O(x/-ffL) iterations by taking "short steps." Kojima, Mizuno, and Yoshise
[16] showed that the primal-dual potential function [31], which is a variant of Kar-
markar’s potential function [13], can also be reduced by a constant amount at each
iteration and therefore, they developed a primal-dual large step potential reduction
algorithm.

McShane, Monma, and Shanno [20] were the first to develop an implementation
of this method. They found it to be a viable alternative to the then popular dual affine
scaling method [1], [26] for solving large sparse problems. They also found that this
method typically takes fewer iterations than the dual affine scaling method. However,
it was found to be only competitive with the dual affine scaling method because of
the additional computations that their implementation had to perform. This
implementation created some artificial problems (by adding artificial variables/con-
straints to the original problem) and maintained primal and dual feasible solutions of
these problems. Further developments on this implementation were reported in Choi,
Monma, and Shanno [4].

Lustig, Marsten, and Shanno [18] implemented a variant of the primal-dual
method which is based on an earlier work of Lustig [17]. This method is developed
by considering the Newton direction on the optimality conditions for the
logarithmic barrier problem. An important feature of their approach is that it did
not explicitly require that feasible solutions for the primal or the dual problem be
available. They showed that the resulting direction is a particular combination of
primal-dual affine scaling direction, feasibility direction, and centering direction. In
support of their method they reported success in solving all the problems in the netlib
[7] test set.

This paper builds on the work of Lustig, Marsten, and Shanno [18]. In doing so
it makes use of the work of Monteiro, Adler, and Resende [28] and Karmarkar,
Lagarias, Slutsman, and Wang [14]. The discussion in this paper assumes that direct
methods are preferred over iterative methods for solving linear equations arising at
each iteration ofthe algorithm. In our view, the following accomplishments are reported
in this paper:

It gives an algorithm and describes its implementation by using first and second
derivatives of the primal-dual affine scaling trajectory Taylor polynomial and by
effectively combining the second derivative with a centering direction.

A comparison with the results reported in the literature (on mutually tested
problems) shows that the method developed in this paper takes approximately 50
percent fewer iterations than the dual affine scaling method as implemented by Adler,
Karmarkar, Resende, and Veiga 1 ], 40 percent fewer iterations than the primal-dual
method implemented in Lustig, Marsten, and Shanno [18], and 55 percent fewer
iterations than the logarithmic barrier function method implemented in Gill, Murray,
and Saunders [8]. It requires 35 percent fewer iterations than the second-order dual
affine scaling method implemented in Adler, Karmarkar, Resende, and Veiga 1 and
20 percent fewer iterations than the "optimal three-dimensional method" implemented
by Domich, Boggs, Donaldson, and Witzgall [5].

An efficient preliminary implementation of the proposed approach was
developed. On average, it was found to be two times faster than OB1 (version 02/1990)
[18]. On average, it was also found to be 2.5 times faster than MINOS 5.3.



PRIMAL-DUAL INTERIOR POINT METHOD 577

While developing our implementation we ensure that a suitable potential func-
tion is reduced by a constant amount. This is accomplished by taking a two tier
approach. Most ofthe work is performed at the first level, which uses extensive heuristic
arguments. The second level ensures the robustness of the implementation.

It gives expressions for computing first and higher derivatives of a primal-dual
trajectory. This trajectory starts from any positive point and goes to the optimum.

It gives an adaptive approach to computing the centering parameter.
It gives a modified heuristic for computing step length at each iteration. The

approach allows us to adaptively take steps much closer to the boundary.
It gives an approach to generating primal and dual starting points, which treat

these problems symmetrically.
We find it convenient to outline the proposed approach first. This is done in the

next section. The organization of this paper is given in that section. The following
notation and terminology is used throughout this paper.

Notation and terminology, xk, 7r k, and s k represent the estimate of solutions of
(P) and (D) at the beginning of iteration k. Xk and Sk are used to represent diagonal
matrices whose elements are xk,xk ,xk and s k sk k

1, .,Sn, respectively, sGk--
Axk- b, k ATTrk+ Sk- C, x, and G are referred to as error vectors. D2 represents
matrix (sk)-ax k. e is used to represent a vector of all ones. ei represents column of
an identity matrix. is used to represent the Euclidean norm of a vector.

The term search direction in primal space is used for a direction px, which is
constructed from a combination of directions (pl,p2). The term primal blocking
variable is used for a variable that will first become negative when moving in a direction.
The term step factor represents the fraction of step length that makes the blocking
variable zero. Similar terminology is used for directions in the dual space.

Central trajectory is the set of feasible points in (P) and (D) satisfying xi(lz)si(lz)
/z, for i= 1,..., n. In all references to central trajectory we assume that x(/x), s()
exists for all

2. Implementation of an interior point method. This section outlines the approach
we take to implement an interior point method. We do this to provide a complete
picture of this paper and to fix certain additional notations used throughout. Various
steps in the development of this implementation are discussed in more detail in 3-7.
The procedure is outlined in Exhibit 2.1 and it is called AIPM (an interior point
method). We now discuss the procedure.

Procedure AIPM
Input: Let x> 0 and s> 0, 7r be the given starting points.
For k 0, 1,... until a stopping criterion is satisfied do:

Step 0

ks := ATTrk + sk c,

:k := AXk b,

D2:= sk-’x k.
Step 1

c find the first derivative of primal-dual affine scaling trajectory.

pl :--(AD2AT)-I(b-AD2k),
psl := k Arpl,

p 1 := xk D2p 1.

EXHIBIT 2.1. A pseudo-code for implementing a second-order primal-dual method.
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Step 2
c compute centering parameter /k.

CALL CENPAR (X k, pxl, S k, ps1,/zk).

C compute the second derivative of primal-dual trajectory with the centering direction.
Step 3

vi:=-2* ((pxl),. (psi)i- )/sk for i= 1, 2... n,

p=2:=(AD2AT)-IAv,

ps2 := ATp=2,

p := V D2p2.

c construct a Taylor polynomial and find maximum steps (e, e,.) using this polynomial.
Step 4

CALL SFSOP (xk, pl, p2, ex, s k, psl, ps2, e).

c construct a search direction.
Step 5

p := e * p1- .5 * e 2 * ps2,

p := e * p 1 -.5 * e * p2,

px := ex * p1- .5 * e * p2.

c compute step factors (fx, f).
Step 6

CALL GTSF (xk, p, s k, p, f,f ).

c generate trial points.
Step 7

:= x -fx * p,

:= s k -f * p,

:= rk -f * p,.

c test if the trial point is acceptable.
Step 8

If an appropriate potential function is reduced, then

X
k+l :___ ,

S
k+l ;--- y,
k+l

7/" :--

else
perform a line search/if necessary compute
additional vectors and ensure reduction in the potential function.

endif

EXHIBIT 2.1 (continued).
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The approach used to generate a starting point is discussed in 7.
Given xk, rk, and s k, Step 0 computes error vectors :k and :k representing the

amount by which primal and dual constraints are violated. D2 has the primal-dual
scaling matrix.

Step 1 computes direction pxl in primal and pl, psl in dual spaces. These
directions are tangent to a primal-dual trajectory. This trajectory is discussed in 4.
Expressions to compute all derivatives of this trajectory at a point are also developed
in 4.

The primal and dual directions computed at Step 1 are used in procedure CENPAR
to estimate the centering parameter /z k. Our approach to estimating the centering
parameter is given in Exhibit 5.1. This approach is discussed in 5.

Step 3 computes the second derivative of the primal-dual trajectory and the
centering direction. These directions could be computed separately. However, in the
current implementation we prefer to combine their computation in order to save a
forward and a back solve. We use the tangent direction and the direction in Step 3 to
construct a Taylor polynomial and to find a maximum step to the boundary (in primal
and dual spaces separately) using this polynomial. This is done in Procedure SFSOP
given in Exhibit 4.1. The computations performed in this procedure are also discussed
in 4.

In Step 5 we use the maximum step in a Taylor polynomial to generate search
directions px, p, and ps. In Procedure GTSF (Exhibit 6.1) we compute a fraction
(f,f) of the total step to the boundary in the search direction. This is discussed
further in 6. Using the search directions and the step factors, trial point , ,, g is
generated in primal and dual spaces.

Step 8 ensures the robustness of the overall procedure. It is loosely defined here.
It depends on the choice of the function used to measure the progress of the algorithm
and the best possible theoretical results that could be proved for this function. The
potential function we used to ensure the progress is developed in the next section ( 3),
and our motivations for using it are discussed there.

If the potential function is not reduced by the desired amount at the trial points,
we may perform a line search and, if necessary, compute additional directions to ensure
a reduction in this function. This actually happened for the potential function we
discuss in the next section. If this happens, we generate an additional three trial points
by using e, := es := min(e,, e); e, := e,, e := 0; and e := 0, e := es in Step 5 to compute
p, p=, p. The potential function was always reduced by the desired amount at one of
the new trial points. Therefore, on the tested problems, additional vectors were never
computed and explicit line searches were never performed.

3. A potential function. In our view the interior point methods generate one or
more interesting search directions at each iteration and effectively combine these
directions to ensure that sufficient progress in a suitable convergence function is made.
Various proposed methods differ in the directions they compute, in how they combine
these directions (implicitly or explicitly), and in the convergence function they use to
measure the progress [12]. Unfortunately, to our knowledge, the current theoretical
understanding of these methods has not reached a point where a clear superiority of
one method is established. Hence, practical implementations [1], [5], [18], [19], [20],
[22], [26] rely on heuristic arguments and empirical evidence obtained from performing
experiments on a set of real problems.

Use of a suitable potential function is frequently ignored while developing fast
implementations. In our experience, an important reason, among others, is that the
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cost of performing line searches in one- or higher-dimensional subspaces is significant
on sparse problems, and it is frequently not justified by the return.

In our opinion use of heuristic arguments is justified, but not at the cost of the
robustness ofthe solution procedures. Hence, even though in this paper several different
heuristics are proposed and their use justified solely on the basis of empirical evidence,
in the actual implementation we recommend the use of a potential function.

We now develop the potential function that was used to measure progress in our
implementation. We find it instructive to go through some construction to motivate
this function. Some steps used in this construction appeared in Karmarkar [13] and
others in Goldfarb and Mehrotra [9] and Todd and Ye [31].

S
OLet x> 0, 7r, > 0, be any given point. Let :o Axo b and :o ATTr+ So- C.

In order to solve (P) and (D), it is enough to find an optimal solution of

minimize

Sot.

(3.1)

A

Ax A b,

arTr-I s As c,

c rx- b r"a" + (b rTr- crx) O,

x,&, _->0, i=l,2,...,n.

(x, 7r, s, 1) is a feasible interior solution of (3.1). Let Z be a matrix whose columns
are the basis for the null space of A. Multiplying the second set of equations in (3.1)
with JAr" Z]r and solving for the free variables 7r results in

(3.2) 7r (AAT)-I(Ac As + AAsC);

therefore, solving (3.1) is the same as:

minimize A

s.t. Ax-A b,

PDO) ZTs AzTO ZTc,
cTx + b T(AAT)-As +A bT(AAr)-Ac,

Xi, Si, A O,

where s% (b TTr-- CX- bT(AAr)-A(). Consider the potential function

(3.3) F(x, s, A)= p In A- L In xisi
i=1

for p--2n+x/2n+ 1. In the Appendix we show that F(x, s, A) can be reduced by a
constant amount (.25) at any feasible solution of (PDO).

Let k=((b--axk) r, (c--sk)rz, br(aar)-la(c-sk)-crxk) r. Note that :k is A k

times the last column in (PDO). If xk, 7r k, s k, A k and xk+, rk+l, sk+, Ak+ are feasible
solutions of (PDO), then

/k+l
F(xk+l, s k+l, A k+l) F(xk, s k, A k) p In --- In-

i=1

=p In IlQfl+ll]- lnx/k+ls/k+l



PRIMAL-DUAL INTERIOR POINT METHOD 581

for any nonsingular matrix Q )(n+l)(n+l). An important consequence of this observa-
tion is that it ensures that the potential function

(3.4) E (x, s, :, Q)= p In QII- In x,s,
i-----1

can be reduced by a constant amount at each iteration. We use the following potential
function

E(x, s, )-- p In II(’x, ’sU, ,)11- In x,s,,
il

where K, and Ks are some prespecified constants. The potential function (3.5) is used
for the following reasons: (i) We think that a potential function of the form (3.5) is
superior for developing implementations because it allows for numerical errors [10].
(ii) It is easily computable without having to know Z. (iii) It allows us to separately
update primal and dual solutions and the corresponding error vectors. (iv) There is
no unknown that has to be determined during the algorithm. (v) Finally, it is possible
to compute directions which ensure that (3.3), and therefore (3.5), is reduced by a
constant amount.

The potential function (3.5) is, however, dependent on the scaling of rows (in
general, the choice of Q in (3.4)). Because of this, a search direction that may be
acceptable while using one scaling matrix may become unacceptable for a different
choice. However, in our implementation we use it to our advantage. We think that the
construction of directions p,,1, p=l, psl and px2, p=2, ps2 discussed in the next section
is inherently biased towards finding (nearly) feasible solutions first. The values of x
and s are chosen so that they emphasize primal and dual feasibility over the feasibility
of the last equality constraint in (PDO). As a consequence of this, search directions
that reduce ,, and/or s significantly, and do not reduce (or possibly increase) the
error in the last equality constraint of (3.1) become acceptable.

x 100 maxi {s} and s 100 maxi {x} were used for all the problems in our
implementation. The construction of x and so is described in 7.

A reduction by constant amount in (3.5) at each iteration ensures convergence to
an optimal solution provided that i"--1 In xis remain bounded. On the other hand, if
(3.5) cannot be reduced by a constant amount at some iteration, then either (P) or
(D) or both do not have a feasible solution. We may introduce a constraint providing
an upper bound on x and s if we detect (through some tests) that the method is not
converging.

4. Derivatives of a primal-dual trajectory. This section provides motivation for
using directions px 1, pl, Ps 1, p,,2, p2, ps2 in Procedure AIPM. It was mentioned that
these directions use first and second derivative information of a primal-dual trajectory
at a given point. This section defines the trajectory of interest and also shows how to
compute all of its derivatives at a given point. While we used the potential function
(3.5) to measure the progress, derivatives of the primal-dual trajectory being considered
are used because they are easily computed and found to be effective in practice.

The results in Monteiro, Adler, and Resende [28] are used frequently to develop
these expressions. Monteiro, Adler, and Resende [28] assume that feasible solutions
are available. We do not assume this here. The expressions are given in the context
of linear programming problems. Extensions to convex quadratic programming are
straightforward.



582 SANJAY MEHROTRA

Assume that xk> 0, "/l"k, sk> 0 is the current point. Consider the following system
of nonlinear equations:

X()s()=Xs,
Ax(a b + asc,

(4.1)
aTTr(a)+ s(a)= c+

x(,)_->o, s(,)_->o

for a [0, 1]. Let w(a)=(x(a), rr(a),s(a)) represent the solutions of (4.1) for a
given a.

PROPOSIa’ION 4.1. If the system of equations (4.1) has a solution for a =0, then it
has a solution for all re [0, 1 ]. Furthermore, the solution is unique for a (0, 1 ].

Proof For a (0, 1 (4.1) gives the optimality conditions for the weighted logarith-
mic barrier problems

minimize B(x, a)=- c + olks Tx Ol xki sk In x,
i=1

(P) s.t. Ax b + ak

and

x>0,

maximize (b + a)rTr + xsi In si
i=1

(D) s.t. AT’It’+ S C+,
s>0.

Let x(0), (0), s(0) represent a solution of (4.1) for a 0. For a fixed a e [0, 1],
Y() (1-)x(0)+x is a feasible solution for (P) and (a) (1-a)(0)+,
g(a)=(1-a)s(O)+s is a feasible solution for (D). If the feasible set of (P) is
bounded, then obviously (P) has a solution.

We now consider the case when the feasible set of (P) is unbounded. Since (a),
g(a) is a feasible solution for (D), it can be shown that the set {dlAd =0, d0,
d O, (c + a)Td O} is empty. Hence, the set Pt {x[Ax b + a, x > O, (c +
a)rx t} is bounded for all values of < m. Fuhermore, since the feasible region
of (P) is nonempty and unbounded, Pt is nonempty for all values of > t*, where t*
is the minimum value of (c+ a)rx subject to Ax b + a, x O. Clearly, B(x, a)
is bounded over Pt for all values of t. Now, to complete the proof for the existence
of the solution, note that in B(x,a), (C+a)Tx increases linearly in t, while
max =, (xs) In xg subject to {x[Ax b + a, x > O, (c + a)TX t} increases only
logarithmically in t.

The proof for the uniqueness of solution follows from the strict convexity of
B(x,a).

Let dw(a)/da be the jth derivative of (a). It is now shown that dJ(a)/da
can be computed for all j at a 1. Differentiating (4.1) for the first time gives

S()
dx() +X()
da

(4.2) A

ds() Xksk,
da

dx() x,
da

ds(a) kda
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The solution of (4.2) at ot 1 is given by

dot
_(ADAT)--1( b AD k),

(4.3)
ds(1)
dot ks _ATd’a’(1)

dot

dx(1)
dot

xk D2 ds(1)
dot

Further differentiating (4.2) gives

() dlxi(1) d(J-l)si(1
1=o dot dot(j-l)

=0, j>=2,

(4.4) AdJX(1)

i=l,...,n,

ds(1)ATd;r(1)
_

dot dot

From (4.4) it is clear that dJw(ot)/dot can be computed recursively. The derivatives
can be computed explicitly from

(4.5)

dJTr(1) _(AXS-,
dot

AT )-’ ASk-’u,

dis(l) ATdJr(1)
da dot

d Jx(1) sk-’u -ll- sk-’xk dJs(1)
dot dot

)( )ui=-j
dx(1) d-)s(1)
dot dot (j-)

i, i=l,...,n; j>--2.

The recursion (4.5) is the same as the recursion given in Monteiro, Adler, and
Resende [28] and Karmarkar et al. [14] (see also Megiddo [21] and Bayer and Lagarias
[2]). The derivatives resulting from the computations would be the same if :k 0 and

k 0 is assumed, and in the latter paper if no centering and reparameterization is done.
The point w(1 e) for 1 > e > 0 can be approximated by using the rth-order Taylor

polynomial

(4.6) w((1-e), r) -= w(1)/ i (-e)J dJw(1)
j=l j! dot

The Taylor polynomial is considered for the following two reasons.
(1) In the special case Monteiro, Adler, and Resende [28] established powerful

results (near the central path) for this approximation.
(2) Computational results indicate that near the optimal solution the first- and

second-order approximations result in nearly unit steps. Our results also indicate that,
asymptotically, w(ot) is well represented by the Taylor polynomial of a lower order.
In this context Megiddo [21] has argued that for problems with unique optimal solution,
if we start close to an optimal solution, the primal-dual paths take us approximately
in a straight line to the optimal solution. Most of the tested problems do not satisfy
this assumption, however they still show this property.
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In addition to other things, practical implementations that compute more than
one direction must offset the cost of doing extra work. Adler et al. [1] were the first
to show that in the dual affine scaling method the information from a second derivative
can be used to significantly reduce the number of iterations. However, on problems
in the netlib test set they found that reduction in the number of iterations did not
always translate into reduction in cpu time on sparse problems. Computational results
were also given in Karmarkar et al. [14] on a small set of "representative problems"
using methods implemented in the AT&T KORBX system [3].

This paper restricts itself to using the second-order Taylor polynomial. In fact,
we compute only two directions. The tangent direction dJw(c)/da is computed at
Step 1 of Procedure AIPM. Step 3 combines the computation of a second derivative
with that of a centering direction. This saves a forward and a back solve. We must
compute two directions at each iteration in order to use the adaptive approach for
computing the centering parameter ( 5).

Our strategy of combining the computations for second derivative and the centering
direction seem to work in practice for the following reasons. (i) The performance of
interior point methods in practice weakly depends on the choice of centering parameter.
(ii) If we view the computations in constructing the Taylor polynomial as that of
finding a search direction, then in practice it appears that a wide range of e can be
used without adversely affecting the performance of the implementation. To illustrate
this, we would like the reader to compare the iteration counts reported in Mehrotra
[24], [25] for a predictor-corrector method with those in Table 8.2. The predictor-
corrector method results if we take e 1 at each iteration.

We find that taking different steps in primal and dual spaces generally results in
superior performance. This is similar to the experience of Choi, Monma, and Shanno
[4] for their method. We construct different polynomials

(4.7) 2x(e2, 2) -= xk- exPxl + expx2,

(4.8) s( e, 2)-= sk- epsl + e2p2

in primal and dual spaces. The computations for ex and es that use (4.7)-(4.8) are
described in Procedure SFSOP (step from second-order polynomial) of Exhibit 4.1.
A procedure that finds the root of a quadratic equation is used to implement SFSOP.

Procedure SFSOP (Xk, pxl, px2, ex, s k, psl, p2, es)
Find maximum 0_-< ex--< 1 such that X(ex, 2) is feasible.
Find maximum 0=< e-< 1 such that s(e, 2) is feasible.

EXHIBIT 4.1. Computations for step size using the Taylor polynomial.

Before concluding this section, we point out that if there are reasons to believe
that at the current iterate it is better to target a solution satisfying XS W for some
positive diagonal matrix W, then expressions for derivatives of a trajectory taking us
to such a point can be obtained in a similar manner. The only difference would be to
replace "ogXks k’’ in (4.1) with "aXksk+(1--a)We. In particular, we may use the
Heuristic CENPAR to compute the centering parameter (given in the next section) in
order to decide a target point on the central path, then go back and find desired
derivatives of a trajectory going to this point.
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5. Centering. In 4 expressions were developed to construct a Taylor polynomial
at a given point in order to approximate a path going to an optimal solution. Obviously,
the performance of the algorithm depends to a great extent on how well a "small-order"
Taylor polynomial approximates this path at the current point, and on the domain in
which the Taylor polynomial results in good approximations.

The results in Monteiro, Adler, and Resende [28] and the convergence results of
large step polynomial time algorithms proved by Freund [6], Gonzaga and Todd [11],
and Ye [32] implicitly or explicitly use the properties of the central path. The projected
gradient ofthe potential function used for analysis in these papers encourages centering.
On the other hand, it is not clear if the central path (with equal weights) is the best
path to follow, particularly since it is affected by the presence of redundant constraints
[30]. Furthermore, the points on (or near) the central path are only intermediate to
solving the linear programming problem. It is only the limit point on this path that is
of interest to us.

In view of this, we make our implementation weakly dependent on centering. The
centering direction is obtained by solving the equations

jr txk(AD2Ar)-lASk-’e, s AT, x p,ksk-’e D2s
/x

k is called the centering parameter. It was mentioned in 4 that the computation
for the centering direction is combined with computations for the second derivative
to save an extra forward and backward solve.

Heuristic CENPAR given in Exhibit 5.1 was used to compute/xk. In the description
of this heuristic we assume that the direction tangent to the primal-dual affine scaling
trajectory has been computed. The heuristic is adaptive. It attempts to generate a value
of tx k, depending on the progress that could be made by moving in the tangent direction.

Heuristic CENPAR (Xk, Px 1, S k, Ps 1, k)
Step 1. Let e, el be computed as follows:

( )Xx ,1e)l min
(px 1)x

{ xki (pxl),>O},lx argmin
(px 1)i

e,1 min
(ps 1)1,

/s argmin {( si (pl)i > 0}.pl)i

Step 2. Let mdg=(X-exlpl)r(s-eslp.l).

Step 3. Let/xk=-
xrs [ tndg’

\xs]

Step 4. Let ef =(p)I)rD--2(pxl)+(pI)rD2(psl)xs
Step 5. If (ef> 1.1)/xk=/xk/min (ex, e).
EXHIBIT 5.1. A heuristic to compute centering parameter.
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The motivation behind various steps in Heuristic CENPAR are now discussed.
For the moment assume that sex 0 and Cs 0. If this is the case, then x rs is the current
duality gap and mdg is the minimum duality gap that one can achieve by moving in
directions px I and ps I in primal and dual spaces, respectively, ex I and e 1 are always
taken smaller than one, because at this value the computations for p 1 and p 1 ensure
that sex 0 and s 0 if no numerical error is present. Hence, for v 1 the choice of
/x is such that it targets the point on the central path at which the duality gap is mdg.

The ratio mdg/xTs provides us "some indication" of how well the primal-dual
affine scaling trajectory is being approximated locally. A value of ratio mdg/xTs near
1 means that the local approximations are not good, whereas mdg/xTs near zero
indicates that the approximations of the trajectory are good.

Table 5.1 gives the number of iterations required to solve the problems for choices
of v- 1, 2, 3, 4. All other parameters were the same as those for results in Table 8.2.
The last column of this table gives the number of iterations required to solve the
problem if no centering was done. The results in Table 5.1 on the test problems show
only a moderate variation in the number of iterations for values of v between two and
four.

The discussion on the computation of the centering parameter thus far assumed
that x 0 and O. If this is not the case, then ef (error factor) is used as an indicator
for their contribution to the search direction. If : 0 and : O, then it is easy to see
that

Dp, 1 DAT AD2AT)-AD](xks’)/2e,

D-lpx 1 [I- DAT(AD2AT)-AD](xksk)I/2e;

hence ef as defined in Step 4 of Exhibit 5.1 is equal to 1. If ef is smaller than 1, it
indicates that the presence of :x and : is probably reducing the norm of the search
direction and, therefore, it is expected to allow for larger steps in primal and/or dual
spaces. Since k and k reduce linearly in step size when moving in directions p 1 and
psl, respectively, larger steps result in greater reduction in the error vectors. Hence,
the value of ef smaller than one is not likely to hurt the performance of the
implementation.

Now if ef> 1, then empirical results indicate that the presence of , and/or s
results in a reduction in the step length, which adversely affects the improvement in
the duality gap as well as the reduction in the error vectors. Therefore, it might be
indicating trouble ahead. If this happens in practice, we seem to quickly get out of
the trouble spots by placing more emphasis on centering. In the current implementation
this is accomplished in Step 5.

6. Step length. Standard practice [1], [5], [18], [19], [20], [26] has been to move
a certain fixed distance (step factor) to the boundary to avoid one-dimensional line
searches. The step factor in the case of primal-dual methods has typically been .995
or .9995 18].

Although the performance of step factor =.995 or .9995 appears satisfactory in
practice, in our view, it has a major drawback as a heuristic: it limits the asymptotic
rate of convergence of the algorithm. Furthermore, during the earlier phase of the
algorithm it is overly aggressive. A modified approach to computing step factor is
given in Exhibit 6.1. It adaptively allows for larger (and smaller) step factors. In an
extreme case it may allow a full step to the boundary and generate a point with zero
duality gap.
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TABLE 5.1

Performance of implementation for different choices of u. +Stopped
after 100 iterations with one digit of accuracy in objective function.

Problem

afiro
adlittle
scagr7

stochforl
sc205
share2b

sharelb
scorpion
scagr25

sctapl
brandy
scsdl

israel
bandm
scfxml

e226
agg
scrs8

beaconfd
scsd6
shipO4s

agg2
agg3
scfxm2

ship041
fffffS00
ship08s

sctap2
scfxm3
shipl2s

scsd8
czprob
ship081

shipl21
25fv47

2 3 4 nc

9 8 7 7 8
14 11 10 10 11
17 14 13 13 15

16 16 16 16 21
14 12 11 11 11
14 12 12 13 14

23 22 22 20 25
13 12 12 12 12
19 17 16 17 18

17 15 15 15 17
21 20 20 19 19
9 8 8 8 8

30 25 24 24 26
20 17 17 19 17
21 19 18 18 19

25 21 20 20 21
27 22 25 27 56
24 21 21 21 22

11 8 7 7 7
13 10 10 10 10
15 12 13 13 15

23 21 24 23 26
22 19 21 21 23
22 18 19 19 20

14 12 12 12 12
36 38 38 38 100
16 13 13 13 13

15 13 12 12 13
25 20 20 20 19
18 16 16 17 19

12 10 9 9 9
39 33 35 35 38
18 14 14 14 14

19 16 16 17 17
32 27 26 25 27
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Procedure GTSF (x k, Px, s k, Ps, fx,Z
Let

and

Compute fx such that

Ix argmin { xi

s, I(p),>o}.ls argmin
(Ps)i

(Xk,-L * (p),.)(s-(p.),)=(6.1) n * "ya

f := max (L, Yy)

and f such that

(x-p)(s-p)

(S,x-f * (ps),s)(X-(px),s)=
(6.2) n *

f max (f, yy)

(xk--px)T(sg--ps)

EXHIBIT 6.1. Computation of step factor.

The step factor in the primal space is chosen so that the product of primal blocking
variable (lx) and the corresponding dual slack is nearly equal to the value their product
would take at the point on the central trajectory at which the duality gap is equal to
(X--px)r(s--ps)/(n * ya). Note that if sex=0 and : =0, then (x--px)T(s--p) is the
duality gap at the point obtained after moving full step. The parameter y, > 1 should
be used. The parameter 0 < y/<_- 1 is used to safeguard against very small or negative
steps. The explanation for computation of step factor for the dual variables is similar.
In essence, the choice offx and f is guessing the minimizer of potential function (3.5)
in directions Px and p while implicitly assuming that x 0 and : 0.

Provided that the computations for the search directions were performed with
sufficient accuracy, the computational experience on the tested problems shows that
the number of iterations required to solve the problems is relatively insensitive to the
choice of y and y/in a large range. We experimented with values of y .5, .75, .9,
.99, .999 and y 1/(1-yy). In our experience we found that on most problems the
number of iterations were fewer for a larger choice of yy, but the difference was small
for yy in the range .75 to .999.

However, we observed a very interesting phenomenon. The implementation
showed signs of instability for larger values of y/for problems brandy, scfxml, scfxm2,
and scfxm3. For these problems to obtain eight digits of accuracy in the solutions at
the last two iterations of the algorithm, the conjugate gradient method was needed to
improve the accuracy in the search direction. These problems were successfully solved
to the desired accuracy for yy .5, .75 and yy .9.

An examination of problem data of brandy, scfxml, scfxm2, and scfxm3 shows
that for these problems the set of optimal primal solutions is unbounded. An examin-
ation of various stages of our implementation (with different choices of parameters)
revealed that allowing for a larger step factor may result in premature convergence of
dual slacks corresponding to primal variables unbounded in the optimal set. At a later
iteration, this further causes the primal unbounded variables to become very large.
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Hence, xi/si corresponding to these variables become disproportionately large. This
results in cancellation of large numbers when computing the Cholesky factor, causing
computations to become less stable.

The reader is referred to Mehrotra [23] for a more elaborate discussion of the
precision of computations in the context of interior point methods and to Mehrotra
[22] for a discussion of issues involved in developing implementations based on the
preconditioned conjugate gradient method, which we may want to use to improve the
numerical accuracy.

7. Initial point. In all of our implementations the initial point is generated as
follows. We first compute

(7.1) =(AAT)-IAc; =c--AT’n’; :=AT(AAT)-lb,
and 6 max (-1.5 min {)i}, O) and 6 max (-1.5 min {i}, 0). We then obtain

(,+6xe)T(+6se)
(7.2) 6, x + .5 *

(Y + &,e) r(g+ ,se)
(7.3) 6, 3 + .5

Land generate 7r= and si=+ ,i=l,...,n and x=Y+ ,i=l,...,n as an
initial point.

We first discuss the validity of the above approach in generating x> 0 and s> 0.
In the cases in which it fails to produce such a point, either the problems reduce to
that of finding a feasible solution of (P) or (D), or an optimal solution is generated.

From the definition of 6 and we know that x=> 0 and sO_-> 0. A positive point
is always generated, if 6 > 0 and 6 > 0. Furthermore, to show that x> 0 and s> 0,
it is sufficient to show that 6 > 0 and 6 > 0.

First consider the case when 6 0 and 0. Clearly, in this case Y is a feasible
solution for (P) and , is a feasible solution for (D). If yT 0, then these solutions
are optimal for the respective problems. Otherwise, yT> 0 and hence > 0 and 6" > 0.
Now consider the case when 6 =0 and 6 > 0. In this case if Y # 0 for all i, then
obviously > 0 and 6 > 0. On the other hand, if Y 0 for all i, then b 0 and the
problem reduces to that of finding a feasible solution of (D). This problem can then
be solved separately or by generating a perturbed problem for which the right-hand
side is Ae for any positive 6. 6e can be used as a feasible interior solution of the
perturbed problem, and (7.2)-(7.3) can be used to generate a feasible point of the
perturbed problem. Finally, the case when 6 > 0 and 6 0 can be argued in a similar
manner.

We now discuss some properties of the proposed approach.

7.1. Desirable properties of the proposed approach.
Shift in origin. The approach is independent of the shift in origin. To explain

what we mean by this, consider the dual problem

maximize b r (Tr + A7r)

(D(A)) s.t. AT(’rr+ATr)+s=c,
s>_--0

for any fixed choice of Act. Clearly, the polytope defined by the constraints in (D(A))
is the same as the polytope defined by the constraints in (D) except for a shift of
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origin. It is desirable that an initial point be the same in relation to the respective
polytopes. Note that in (7.1) is independent of the choice of Ar.

To demonstrate how similar arguments hold for (P), we consider an equivalent
formulation of this problem. Let Z be a matrix whose columns form the basis for the
null space of A, and let Xo be any point satisfying Axo b. It is easy to see that (P)
is equivalent to

minimize (cTZ)(y+ Ay)
(p(A))

s.t. Z(y+ Ay) >=-Xo
for y n-m and any (fixed) choice of Ay. An approach analogous to that of finding
g computes

_(ZZ)--’Zxo.
The slacks in the constraint of (P(Z)) are given by

Xo z(zrz)-lZrxo [I z(zrz)-lzr]xo ar(aar)-laxo ar(aar)-l b .
Note that is the orthogonal projection of any vector satisfying Ax b onto the range
space of A. Since and g are independent of Ay and Ar, respectively, it is obvious
that x and so are also independent of this.

Simple scaling. The initial point is not affected if all the constraints in (P) are
scaled by a constant or if c is scaled.

7.2. Undesirable properties of the proposed approach.
Column scaling. The initial point is affected by the scaling of columns of A. To

illustrate this, in Table 7.1 we give a number of iterations required to solve the problems
after problems were scaled by using subroutine MSSCAL from MINOS. All other
details of the implementation were kept the same as those for results in Table 8.2.

The results in Table 7.1 indicate that scaling of columns may effect the performance
of the implementation. On most problems, use of MSSCAL improved the number of
iterations required to solve the problem or the number of iterations did not change
significantly. The notable exception was problem fffffS00. For this problem, scaling
increased the number of iterations by about 40 percent.

We point out that (P) and (D) can be solved in one iteration if we know the
correct scaling of columns of A. Hence, the problem of finding the best scaling of
columns appears to be as difficult as solving the linear programming problem itself.

Presence of redundant constraint. The initial point generated by using this approach
is affected by the presence of redundant constraints. This can be a problem, for example,
if redundant dual constraints with large slacks (primal variables with huge costs) are
present. In this regard we point out that the central trajectory itself is affected by the
presence of such constraints.

A possible way to alleviate this problem would be to ask the user to give relative
importance to various primal variables (dual constraints) in solving the problem. A
clearly redundant variable could be assigned zero weight, and therefore it could be
removed while generating an initial point. In general, the possibility of solving weighted
least squares problems to generate initial points in the context of "warm start" should
be explored further.

All the approaches [1], [5], [18], [26] used for practical implementations that are
reported in the literature are dependent on column scaling and the presence of
redundant constraints. Furthermore, they lack one of the desirable properties that the
proposed approach has.
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TABLE 7.1

Effect of scaling on the performance of the algorithm.

Problem

afiro
adlittl
scagr7

stochforl
sc205
share2b

sharelb
scorpion
scagr25

sctapl
brandy
scsdl

israel
bandm
scfxml

e226
agg
scrs8

beaconfd
scsd6
ship04s

agg2
agg3
scfxm2

ship041
fffffSO0
shipO8s

sctap2
scfxm3
shipl2s

scsd8
czprob
ship081

shipl21
25fv47

No scaling Scaling

7 6
10 10
13 14

16 8
11 11
12 14

22 24
12 12
16 17

15 15
20 17
8 7

24 17
17 15
18 17

20 16
25 16
21 18

7 8
10 10
13 12

24 20
21 19
19 20

12 12
38 52
13 14

12 12
20 20
17 14

9 9
35 30
14 15

16 15
26 23

The choice of constants "1.5" and ".5" in computing x and 8 is arbitrary. The
arguments about the validity of the approach (and its properties) do not change if we
replace 1.5 with any constant larger than one and .5 with any constant larger than
zero. We may do a one-dimensional line search (possibly in direction e) on the potential
function (3.5) to generate these constants.
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8. Computational performance. The basic ideas presented in this paper were imple-
mented in a FORTRAN code. This section discusses our computational experience
with this implementation and compares it with the results documented in the literature.

All testing was performed on a SUN 4/110 work station. The code was compiled
with SUN Fortran version 1.0 compiler option "-O3." All the cpu times were obtained
by using utility etime. The test problems were obtained from netlib [7]. The test set
includes small and medium size problems. The problem names and additional informa-
tion on these problems are given in Table 8.1.

All problems were cleaned by using the procedure outlined in Mehrotra [22]. An
in-house implementation of the minimum degree heuristic was used to permute the
rows. Complete Cholesky factor was computed at each iteration to solve the linear
equations. The procedure and the associated data structure, which we used to compute
the Cholesky factor, were described in Mehrotra [23]. All the linear algebra subroutines
were written by the author.

The algorithm was terminated when the relative duality gap satisfied

(8.1)
c Tx b TTr
1 +lbTTrl

eexit.

In the actual implementation :, and :s were computed afresh at each iteration. However,
(s)i was set to zero and absorbed in si if it satisfied I(s)l/s <.001. This occasionally
saved some computational efforts.

The following parameters were set to obtain the results reported in Table 8.2.

Eexit 10-8

v=3

yf--.9, ya =10

100 * max {s}

(in (8.1)),

(in Procedure CENPAR),

(in Procedure GFSF),

(in (3.5)),

Ks 100 max {x/} (in (3.5)).

The number of iterations required to solve the problems is given in the second
column of Table 8.2. The primal objective value recorded at termination is given in
column 3. The relative duality gap (8.1) is given in column 4. The primal infeasibility,

(8.2) Ilax b II/(1 + Ilxll),

and the dual infeasibility,

(8.3) IIA% + s- c11/(1 + s II),

recorded at termination are given in columns 5 and 6, respectively. This information
on relative duality gap and primal and dual feasibility is the same as that given in
Lustig, Marsten, and Shanno [18]. We use the same stopping criterion and provide
similar information in order to be consistent while making comparisons.

All the problems were accurately solved to eight digits. A comparison with the
results in Lustig, Marsten, and Shanno [18] show that on many problems in our
implementation the accuracy in the objective value at termination was better. This is
primarily due to our approach for computing the step factor.

In Table 8.3 we compare the number of iterations required to solve the test
problems. Column 2 of this table gives the number of iterations taken by our
implementation. Column 3 gives the number of iterations taken by the dual affine
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scaling method, as reported by Adler et al. 1 ]. Column 4 gives the number of iterations
required by the second-order dual affine scaling method in Adler et al. 1]. Column 5
gives the number of iterations reported in Lustig, Marsten, and Shanno [18] for a
primal-dual method. Column 6 gives the number of iterations reported in Gill, Murray,
and Saunders [8] for a logarithmic barrier function method. Column 7 gives the number

Problem

afiro
adlittle
scagr7

stochforl
sc205
share2b

sharelb
scorpion
scagr25

sctapl
brandy
scsdl

israel
bandm
scfxml

e226
agg
scrs8

beaconfd
scsd6
ship04s

agg2
agg3
scfxm2

ship041
fffff800
shipO8s

sctap2
scfxm3
shipl2s

scsd8
czprob
ship081

shipl21
25fv47

TABLE 8.1
Problem statistics.

Rows Columns Nonzeros

28 32 88
57 97 465
130 140 553

118 111 474
206 203 552
97 79 730

118 225 1,182
389 358 1,708
472 500 2,029

301 480 2,052
221 249 2,150
78 760 3,148

175 142 2,358
306 472 2,659
331 457 2,612

224 282 2,767
489 163 2,541
491 1,169 4,029

174 262 3,476
148 1,350 5,666
403 1,458 5,810

517 302 4,515
517 302 4,531
661 914 5,229

403 2,118 8,450
525 854 6,235
779 2,387 9,501

1,091 1,880 8,124
991 1,371 7,846

1,152 2,763 10,941

398 2,750 11,334
930 3,523 14,173
779 4,283 17,085

1,152 5,427 21,597
822 1,571 11,127
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TABLE 8.3
Comparison of number of iterations with other implementations.

Problem

afiro
adlittle
scagr7

stochforl
sc205
share2b

sharelb
scorpion
scagr25

sctapl
brandy
scsdl

israel
bandm
scfxml

e226
agg
scrs8

beaconfd
scsd6
ship04s

agg2
agg3
scfxm2

ship041
fffffS00
ship08s

sctap2
scfxm3
shipl2s

scsd8
czprob
ship081

shipl21
25fv47

AIPM AKRV2 AKRV1 LMS GMS DBDW

7 15 20 13 20 10
10 18 24 17 18 15
13 19 24 22 24 18

16 19
11 20 28 16 32
12 21 29 17 46

17
14

22 33 38 40 35 28
12 19 24 18 33 17
16 21 29 24 28 21

15 23 33 22 53 21
20 24 38 27 41 21
8 16 19 12 13 8

24 29 37 47 36 24
17 24 30 28 31 21
18 30 33 31 37 23

20 30 34 31 38 24
25 32
21 29 39 50 59 25

7 17 23 21 34 17
10 18 22 15 15 13
13 22 30 21 40 15

24 32
21 32
19 29 39 37 42 29

12 21 28 22 36 17
38 59 55
13 21 32 23 34 16

12 25 34 23 41 16
20 30 40 39 42 31
16 23 35 27 46 16

9 18 23 15 15 13
35 35 52 57 56 41
14 23 31 24 22 17

16 23 32 27 24 17
24 52 48 44 28

of iterations reported in Domich et al. [5] for a variant of the method of centers. Our
method and the second-order dual affine scaling method in Adler et al. 1] computes
two directions at each iteration. The method implemented in Domich et al. [5] computes
three directions at each iteration and solves a linear programming problem defined by
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using these directions. All other implementations compute only one direction at each
iteration.

On the average the number of iterations required by our implementation to solve
the mutually tested problems is 40 percent less than that reported in Lustig, Marsten,
and Shanno [18]; it is 50 percent less than that reported in Adler et al. [1]; and it is
55 percent less than that reported by Gill, Murray, and Saunders [8]. Compared to
the results in Adler et al. [1] for their second-order method, the results show that our
method takes about 35 percent fewer iterations. Finally, our implementation required
20 percent fewer iterations than those required in Domich et al. [5].

It is useful to point out that it is possible to further reduce the total number of
iterations needed to solve the problems by using higher-order derivatives. This is
discussed in a subsequent paper.

The number of iterations was always fewer than the number of iterations required
by the second-order dual affine scaling method implemented by Adler et al. 1]. Many
of the problems were solved in practically half the number of iterations when compared
with 1 ].

9. Comparison with OB1 and MINOS 5.3. This section compares the cpu times
required by our implementation to those required by the implementation of the
primal-dual method in OB1 [18] (02/90 version) and the simplex method in MINOS
5.3 [29]. The source codes (also written in FORTRAN) of OB1 (02/90 version) and
MINOS 5.3 were compiled using compiler option "-O3." Hence, everything was
identical while making these comparisons. All the default options of OB1 (02/90
version) and MINOS 5.3 were used. Printing was turned to minimum level in both
cases. In the case of OB1 (02/90 version), crush 2 was used for all problems.

The times for MINOS 5.3 are those for subroutine M5SOLV only. The TIMER
subroutine in OB1 was used to compute its cpu times. The times for OB1 were calculated
as follows:

OB1 Time=end of hprep-after mpsink+end of obdriv-after getcmo.

Times required by MINOS 5.3, OB1 (02/90 version), and our implementation do
not include times spent in converting the MPS input file into a problem in the standard
form. The times required by our implementation include all the time spent after the
input files were converted into a problem in the standard form.

The times required by our implementation is given in the second column of Table
9.1. The times required by OB1 (02/90 version) are given in column 3 and the times
required by MINOS are given in column 4. Column 5 gives the ratio of times required
by OB1 (02/90 version) to our code. Column 6 gives the ratio of times required by
MINOS 5.3 to our code.

From these results we find that, on the average, our implementation in the current
state performs two times better than the implementation in OB1 (02/90 version). The
ratio of cpu times with OB1 (02/90 version) is more or less uniform.

Comparing the results with MINOS 5.3 we find that the proposed implementation
is on the average better by a factor of 2.5. In this case, however, the ratio of cpu times
varies significantly. MINOS 5.3 was generally superior on problems with few relatively
dense columns, whereas our implementation of the primal-dual method was superior
on problems with sparse Cholesky factor.

10. Conclusions. Details of a particular implementation ofthe primal-dual method
are given. This implementation requires a considerably smaller number of iterations
and saves considerable computational effort. We have given expressions to compute
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TABLE 9.1
Comparison of cpu time with OB1 and MINOS 5.3 on SUN 4/110.

Problem

afiro
adlittle
scagr7

stochforl
sc205
share2b

sharelb
scorpion
scagr25

sctapl
brandy
scsdl

israel
bandm
scfxml

e226
agg
scrs8

beaconfd
scsd6
ship04s

agg2
agg3
scfxm2

ship041
iliif800
ship08s

sctap2
scfxm3
shipl2s

scsd8
czprob
ship081

shipl21
25fv47

Total

AIPM OB1 MINOS5.3
OB1

AIPM
MINOS5.3

AIPM

.12 .60 .09 5.0 .7

.64 1.81 .70 2.8 1.1
1.11 2.75 1.66 2.5 1.5

1.48 2.91 1.50 2.0 1.0
1.49 3.33 2.16 2.2 1.4
1.50 3.00 1.46 2.0 1.0

3.27 9.21 3.98 2.8 1.2
2.87 7.06 5.92 2.4 2.0
5.23 10.43 15.32 2.0 2.9

4.92 9.18 7.71 1.8
7.18 15.30 11.55 2.1
2.46 5.46 6.15 2.2

58.37 127.01 6.11 2.2
8.01 17.61 22.09 2.2

10.55 20.82 12.76 2.0

9.38 15.83 15.30 1.7
32.88 47.46 7.32 1.4
13.31 43.95 40.86 3.3

2.56 9.28 1.97 3.6
5.66 10.56 31.19 1.9
6.92 17.58 6.63 2.5

65.86 100.92 10.05 1.5
66.66 94.74 10.95 1.4
21.69 46.74 51.42 2.1

8.90 24.35 13.20 2.7
80.90 140.01 14.33 1.7
9.50 23.05 20.43 2.4

30.04 47.75 56.02 1.6
33.31 72.84 107.40 2.1
14.06 31.78 47.85 2.2

10.38 21.98 230.23 2.1
33.78 81.93 166.03 2.4
18.12 42.81 19.34 2.4

28.56 63.11 120.31 2.2
164.53 334.14 941.41 2.0

766.20 1,507.29 2,011.4

1.6
1.6
2.5

.1
2.7
1.2

1.6
.2

3.1

.8
5.5
.95

.15
0.16
2.37

.54

.17
2.1

1.9
3.2
3.4

22.2
4.9
1.0
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all the derivatives at a given point of a primal-dual affine scaling trajectory. The
implementation described here effectively combines the second derivative with the
centering vector. Heuristics for computing centering parameter and step length were
given and their effectiveness was demonstrated. A new approach to generating a starting
point was used. In addition, the results demonstrate that it is possible to develop fast
(robust) implementations of interior point methods, which ensure sufficient reduction
in a potential function at each iteration.

Comparison with OB1 (02/90 version) and the simplex method show that our
implementation was faster by a factor of 2 and 2.5, respectively.

Acknowledgments. I thank Professor Michael Saunders for making the source code
of MINOS 5.3 available. I thank Professor Roy E. Marsten for releasing a copy of
OB1 for comparison in this paper. Also, I thank Mr. I. C. Choi for helping out with
OB1 and Professor Donald Goldfarb for his constant encouragement, which made this
work possible. I also thank the two anonymous referees for their careful reading of
this paper and for their suggestions for improvement.

Appendix. Here we prove that the potential function (3.3) can be reduced by a
constant amount at each iteration. The development of our proof is based on the
analysis in Freund [6]. Let us define I-= 2n + 1,

,i=- o z
cT (AAT)-1A a

f) r =_ (b r, crZ, br(AAT)-IAc), and y (x r, s r, A) r. Hence, without loss of generality,
consider the problem

minimize yt

(PD) s.t. Ay b,

y>0,=

where y e Rt. Let us consider the potential function

(A.1) F(y)=- In y- E In y,,
i=1

where =/+vq. The function F(y) in (A.1) is the same as the function (3.3). Let
yk > 0 be any feasible point of (PD) and let yk be the diagonal matrix whose diagonal
elements are (Yl,..., Yt). Let

d -= [I-r(,r)-lA](/e,_ e),

where ,, yk. Let yk+l y k (e/]l d II) Y d, < 1. Then

k+ y/k+1 Z yk+
F(y )- F(yk) 3 In y----- )’, In y--’.ki=1

=ln 1-ll--d -i=lln 1-
2

2(1- e)
2

2(1-e)"
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The inequality above follows by using the fact that In (1 + 8)_-< 8 for 8>-1, and
In (1 + 8) -> (82/2(1 e)) if 181--< e < 1.

If [[dl[->_ 1, then for e =.5, F(y) is reduced by .25.
Otherwise, if lid < 1, then from the definition of d, we have

,’ 7" ,,7" fi (y e
k e)+ y

(d+e)= y e
P P

which gives a feasible solution to the dual of (PD). Furthermore, the duality gap is
given by

yk e T"( d + e) t/VTIId<=Y l+vQ <ykt"

But y/k is also the current objective value. Therefore, the optimal objective value of
(PD) must be positive. If this is the case, then either (P) or (D) has no feasible
solution, and we would stop.

Hence, if (P) and (D) have a feasible solution then F(y) can be reduced by .25
at each iteration. A failure to reduce F(y) by this amount would imply that either (P)
or (D) has no feasible solution.
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ON REGULARIZED LEAST NORM PROBLEMS*
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Abstract. This paper investigates the regularized least norm problem

minimize F(x)= (/s)llxll + IIAx- bll,,
where e is a positive constant, < s <, and <p <. Let x denote the solution that corresponds to a
given value of e, and let x* denote the minimum ls norm solution of the unregularized least Ip norm problem.
It is shown that x is a continuous function of e, IIxll_- IIx*ll, lim_x =0, and lim_o x =x*. Further-
more, if the system Ax b is solvable then there exists a positive constant such that x x* for all e (0, , ].
The question of whether x x* is related to a new theorem of the alternative. The main result is the
observation that the dual of the regularized least norm problem has the form

maximize D(y)=bT"y-(e/t)llAT"y/ell[

subject to Ilyll -< 1,

where s/(s 1) and q p/(p 1). Moreover, the primal solution is easily recovered from a dual solution, and vice versa. This pair of points satisfies D() F() and the classical primal-dual inequality D(y) =< F(x)
holds for all xR" and yRm such that IlYllq =< 1. The paper presents an iterative improvement process
which, under certain conditions, converges toward a solution of the unregularized least norm problem. The
inequality IlY]lq =< introduces an obstacle into the solution of the dual problem, but this obstacle may be
removed by applying penalty function methods.

Key words, lp least norm problems, regularization, optimality conditions, behavior of regularized
solutions, duality relations

AMS(MOS) subject classifications. 65K99, 65099

1. Introduction. This paper investigates the regularized least norm problem

(1.1) minimize F(x)-( /s)llxll / Ilax-bll 
where e is a positive constant, 1 <s<, 1 <p<o, A is a real rn n matrix, b=
(bl,..., b,) TIm, and x=(xl,...,x,)r l" denotes the vector of unknowns. For
the sake of clarity we mention that

Ilxll Ix l
j=l

and

) lip

IIAx-bll,- Elarix-bilp
i=1

where af (ail,..., ai,) denotes the ith row of A. The dual indices of s and p are
denoted by and q, respectively. That is,

1 1 1 1
-+-=1 and -+-=1.
p q s

One motivation for our research is that solving (1.1) may serve as a possible way
to extend the concept of regularization to non-Euclidean norms. The method of

* Received by the editors December 3, 1990; accepted for publication (in revised form) September 30,
1991.
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regularization has been introduced by Tikhonov and others as a means of improving
the stability of ill-posed problems (see, e.g., Tikhonov and Arsenin (1977)). In particular
it turns out to be a useful tool for handling data fitting problems which result in a
system of linear equations

Ax =b

such that small changes in the data (i.e., the elements of A or b) cause large changes
in the minimum norm solution of the least squares problem

(1.2) minimize 1/211Ax I1.
Suppose, for example, that we have an a priori estimate, Zo, of the solution of (1.2).
Then one way to "stabilize" the solution is by adding the term 1/2ellX-Zoll to our
objective function and shifting the origin to Zo. This results in a problem of the form

(1.3) minimize - xII + 11mx b 1122,
which is sometimes referred to as "regularization in standard form" or "Tikhonov’s
regularization." The singular value decomposition of A provides an insight into the
nature of this problem as well as efficient computational procedures (see, e.g., Elden
(1977)). The use of truncated singular value decomposition (SVD) solutions results in
a closely related regularization technique (see, e.g., Varah (1979), Hansen (1987), or
Chan and Hansen (1990)).

Although the traditional method of data fitting is by the least squares technique,
in some applications it is desired to replace (1.2) with the general least norm problem

(1.4) minimize IlAx-bll.
This raises the questions of how the regularization approach is extended to non-
Euclidean norms, and what properties characterize regularized least norm problems.
The current research is aimed at answering these questions. When p 2 the SVD of
A is not quite as helpful and the answers require different tools. It is also worth
mentioning that (1.1) is not the only way to extend the regularization approach. The
"natural" way is, perhaps, to consider the problem

(1.5) minimize [[xll/s/ IlAx-bll/p.
This formulation coincides with Tikhonov’s regularization when s =p 2, and has
some computational advantage (see 6). Nevertheless, as we now show, there are good
reasons to start our investigation with (1.1).

The interest that we have in (1.1) is stimulated by the following observations.
Recently, Dax (1991) proved that the dual of the regularized 11 problem
(1.6) minimize (e/2)llxll+ IIAx-blll
has the form

maximize bry (e/2) 11Ary/e 112
(1.7)

subject to Ilyllo 1,

and if y solves the dual then the vector AT"y/e solves the primal. Similarly, it is shown
in Dax (1992a) that the dual of the regularized l problem

(1.8) minimize (e/2)llxll+ IIAx-bl]
has the form

maximize bry-(e/2)llAry/e[l
(1.9)

subject to Ilyllll,
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and if y solves the dual then the vector Ary/e solves the primal. Recall that for any
given vector y (Yl,..., Ym) r m the norm IlYllp is a continuous function of p in the
interval [0, ), and

lim Ilyll,- max ly, I- Ilyll .

Consequently, the dual index of is defined as 1, and vice versa. The two examples
mentioned above suggest that the dual of the regularized lp problem

(1.10)

has the form

minimize e/2)11 x + Ax b p

maximize bry-(e/2)llAry/el[
(1.11)

subject to Ilyll =< 1,

and if y solves the dual then Ary/e solves the primal. Assuming that this observation
is true, it is tempting to make a further guess and to claim that the dual of (1.1) has
the form

maximize D(y)=bT"y-(e/t)llAy/ell[
(1.12)

subject to IlYlI<=I.
Establishing this conjecture is a major objective of this paper. Another question that
must be answered is how a primal solution is obtained from a dual solution when s # 2.

Both (1.6) and (1.8) can be viewed as special cases of the partially regularized
linear programming problem

k

minimize (e/2) Y x+ crx
j=l

(1.13)
subject to Ax_>- b,

where c is a given vector in " and k is a positive integer such that 1 <= k < n. It is
shown in Dax (1991) that the dual of this problem has the form

(1.14)
maximize

subject to y>--O and

where A and e are split such that

Moreover, let y solve (1.14) and define

(,7"y- :)/e;

then provides the first k components of the primal solution. This observation has
been used to establish the duality properties of (1.6) and (1.8). If k n then (1.12) is
transformed to the regularized linear programming problem

(1.15)
minimize e/2) x I1@ + c x

subject to Ax-> b.



ON REGULARIZED LEAST NORM PROBLEMS 605

In this case the duality theory of quadratic programming (see, e.g., Mangasarian (1969))
implies that the dual of (1.15) has the form

maximize bTy e/2) 11(aTy c)/ e 1122
(1.16)

subject to y-> 0,

and if y solves the dual then the vector (ATy--c)/e solves the primal. This relation
forms the basis of a useful successive overrelaxation (SOR) method for large scale
linear programming (see Mangasarian (1981)). However, neither (1.13) nor (1.15) are
equivalent to (1.1), which forces us to look for a different approach.

Tikhonov (1965) showed that as e tends to zero the solution of (1.3) tends to the
minimum norm solution of (1.2). Yet the two solutions never coincide (unless both
points lie at the origin). On the other hand, Mangasarian and Meyer (1979) proved
that the regularized LP problem (1.15) has the following property. There exists a
positive constant i5 such that for any e from the interval (0, 8] the solution of (1.15)
coincides with the minimum (Euclidean) norm solution of the unregularized LP
problem. These observations raise the question of whether (1.1) shares similar proper-
ties. The answer is given in the next section.

2. Optimality conditions. This section investigates the optimality condition of (1.1)
and the behavior of the solution as e moves from zero to infinity. We start by proving
existence and uniqueness of the solution.

LEMMA 1. Let S denote the set of all points that solve (1.4) and let x* denote the
unique solution of the problem

minimize Ilxll
(2.1)

subject to x S.

The problem (1.1) has a unique solution , which satisfies
(2.2) IIRII,--< IIx*ll,.

Proof. Recall that S is a closed convex subset of R". Hence the existence and
uniqueness of x* are ensured by the well-known Projection Theorem (e.g., Luenberger
(1969)). Since x* solves (1.4) the inequality

(2.3) Ax* b II, --< Ax b IIp
holds for all x ", and the level set

{x F(x) <_- F(x*)}
is contained in the compact ball

{x IIx[ls <= IIx*
Therefore, the existence and uniqueness of 8 are direct consequences of the fact that
F(x) is continuous and strictly convex in R". I-1

Let VF(x) denote the gradient vector of F(x) at a point x Rn. Then the jth
component of VF(x) has the form

OF(x)/Ox,  lx, l*-’ sign (x;)
(2.4)

+ alrx blp- sign (rx- b) IIAx- llN
i=1

which shows that F(x) is continuously differentiable at any point xn in which
Ax b. Moreover, if the system Ax b is inconsistent then F(x) is both strictly convex
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and continuously differentiable in R". In this case i is the only point in R" which
satisfies VF(x)= 0, while the fact that x* solves (1.4) implies that the gradient vector
of IIAx-bll vanishes at this point, which means that the jth component of VF(x*)
equals lx;,I-’ sign (x). If x* 0, then clearly i 0. Otherwise VF(x*) # 0 and i x*.
Now the uniqueness of x* and the inequality (2.2) imply

(2.5) Ilax* bll
while the uniqueness of i gives

(2.6) I111
It is also easy to verify that i 0 implies x* =0. Summarizing the above discussion
we obtain the following results.

LEMMA 2. Assume that the system Ax b is inconsistent. In this case is the only
point in " that satisfies VF(x)= 0./.f x*= 0 then O. Otherwise , # 0 and satisfies
(2.5) and (2.6).

Let us now consider the case when Ax*= b. Recall that Ilxll/s is continuously
differentiable in " and let g denote the gradient vector of this function at x*. Here
again x* 0 implies 0. Hence in the forthcoming discussion we assume that x* 0,
which means that g # 0. The convexity of Ilxll/s implies that the inequality

(2.7) IIx* +ull:/s-> IIx*ll:/s +gu
holds for all u" (see, e.g., Mangasarian (1969) or McCormick (1983)). Hence, by
using the equality Ax*= b, we obtain that

(2.8) F(x* + u) _-> F(x*) + egT"u +
for all u ". If the inequality

(2.9) eg7‘u / Ilmull, < 0

has no solution, then clearly x* solves (1.1). On the other hand, if (2.9) has a solution
u*, then the differentiability of Ilxll S/s implies the existence of a positive constant r/> 0
such that

F(x*+Ou*)<F(x*)

for all 0 (0, r/). The question of whether (2.9) has a solution is characterized by the
following theorem of the alternative, whose proof is given in Dax (1990).

THOgeM 3. Either the inequality (2.9) has a solution u , or the system

(2.10) AT"y= eg and Ilyll--< 1

has a solution y ", but never both.
A further result of Dax (1990) enables us to decide which of the two systems is

solvable.
THEOREM 4. Let y* solve the problem

minimize IIay- egll
(2.11)

<1subject to Ilyll-

and let

(2.12) u* Ary, eg
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denote the corresponding residual vector. If u* =0 then y* solves (2.11). Otherwise
u* solves (2.9). Furthermore, in the second case u* is the steepest descent vector of
g/ IIAull at the origin point. That is, the vector u*/ll*ll= solves the problem

minimize egu+ Ilaull
(2.13)

subject to I111-<_1,
COROLLARY 5. Assume that Ax*= b. If x*= 0 or u*= 0, then x*.
Another consequence of the equality Ax*= b is that x* solves the problem

minimize Ilxll/s
(2.14)

subject to Ax b,

while the optimality condition of (2.14) implies the existence of a vector y E* such that

(2.15) Ary=g
(see, e.g., Mangasarian (1969) or McCormick (1983)). Hence if we define to be the
unique solution of the problem

minimize
(2.16)

subject to

then (2.11) can be written in the form

minimize
(2.17

subject to

Ary g,

< 1. Now Corollary 5 can be sharpenedwhich shows that u*= 0 if and only if llll-
as follows.

THEOREM 6. Assume that the system Ax=b is solvable. If x*=0 or e

then x*. OtherwiseA b, 0 < I111 < IIx* IIs, and is the only point in n that satisfies
VF(x) =0.

The last theorem provides a partial answer to the question of what happens when
e tends to zero. The next result completes the answer to this question.

THEOREM 7. Let {e} be a sequence ofpositive numbers such that

(2.18) lim e =0,

and let x denote the solution of the problem

minimize Fk(X)= llxll/s/ IIAx-bll,.(2.19)

Then

(2.20) lim Xk X*.

Proof If x* =0 or Ax*= b then (2.20) is a direct consequence of Lemma 2 or
Theorem 6. Hence it is sufficient to consider the case when x* 0 and Ax* b. In this
case Lemma 2 implies that Xk satisfies the relations

(2.21)

(2.22)

IlAxk--bllp > I[Ax*-bll, > 0,

IIxll < IIx*ll,
and

(2.23) ekgk q- hk 0,
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where gk and h denote the gradient vectors of IIxll / and IlAx-bllp, respectively, at
the point Xk. The inequality (2.22) indicates that the sequences {Xk} and {gk} are
bounded. Hence from (2.18) and (2.23) we obtain that

(2.24) lim hk 0,
k-->

which shows that any cluster point of the sequence {Xk} solves (1.4). The existence
of such a cluster point is ensured by the fact that the sequence {Xk} is bounded, while
(2.22) implies I1:11, <_-IIx*ll,. We have proved, therefore, that any cluster point of the
sequence {Xk} converges to x*. Thus, since this sequence is bounded, the whole sequence
converges to x*. [3

The next observation clarifies the situation when e tends to infinity.
THEOREM 8. Let {ek} be a sequence ofpositive numbers such that

(2.25) lim

and let Xk denote the solution of (2.19). Then

(2.26) lim Xk 0.
k-c

Proof If x*= 0, then Xk ---0 for all k and the claim is straightforward. Otherwise,
when x* 0, Theorem 6 and Lemma 2 allow us to assume that relations (2.21), (2.22),
and (2.23) hold. Thus, by combining (2.23) and the fact that the sequence {hk} is
bounded, we deduce that

(2.27) lim gk 0,
k-->

which implies (2.26). [3

We shall finish this section by showing that the solution of (1.1) is a continuous
function of e.

THEOREM 9. Let {ek} be a sequence ofpositive numbers such that

(2.28) lim ek e,
kcx3

and let Xk denote the solution of (2.19). Then

(2.29) lira Xk
k-c

where, as before, denotes the solution of (1.1).
Proof Here again, if x* =0, then Xk --0 for all k and =0, so the claim is

straightforward. Otherwise Lemma 2 and Theorem 6 allow us to assume that relations
(2.21), (2.22), and (2.23) hold for all k. However, this time we must show that any
cluster point of the sequence {Xk} solves (1.1). In fact, since F(x) is strictly convex
and continuous, it is sufficient to prove that

(2.30) lim F(Xk)= F().
k-

Recall that the gradient vector of F(x) at the point Xk has the form

(2.31) VF(xk) egg +hk.

Hence by subtracting (2.23) from (2.31) we obtain

(2.32) TF(xk)-- (e --t3k)gk.



ON REGULARIZED LEAST NORM PROBLEMS 609

On the other hand, the convexity of F(x) yields

(2.33) F() _-> F(Xk) + (- Xk) TVF(Xk)
and

(2.34) 0 < F(Xk F() <= (Xk Z) TVF(Xk e ek )g/(Xk ).

Therefore, since the sequences {Xk} and {gk} are bounded, (2.34) implies (2.30).

3. Duality. In this section we show that the dual of (1.1) has the form

maximize D(y)=bT"y-(e/t)llay/ell’t
(3.1)

subject to [lY[[q --< 1.

To prove this assertion we need some further notation. Let c (a1,..., am) denote
the jth column of A, and let

(3.2) z(y) (z,(y),..., z,(y))

be a vector function whose jth component is

(3.3) z(y) IcjTy[ t-1 sign (crY).
Then Az(y)/e t-1 is the gradient vector of (e/t)llAWy/ell’,,

(3.4) [[z(y)/e’-ll- IlAy/ell’t,
and

(3.5) yAz(y)/E t-1
E IIATy/ e lit.

Similarly, we use

(3.6) g(x) (gl(x),..., g,(x))

to denote the gradient vector of Ilxll/s. That is,

(3.7) g(x) Ixl’-1 sign (x).
Now we can verify that

(3.8) g(z(y)/e ’-1) ATy/e.

In other words, Ay/e is the gradient vector of Ilxll/s at the point x=z(y)/e ’-.
Another useful vector function is

(3.9) r(x)--(rl(x), rm(X)) T,
where

(3.10) ri(x) la/x bi[p-1 sign (a/x bi)/(llAx-b[[p)p-1.

With these notations at hand

(3.11)

(3.12)

and

(3.13)

VF(x) eg(x) + ATr(x),

[[r(x)ll 1,

(A- b) Tr(x) [[Ax- b[[,.
Finally we introduce the vector function

(3.14) w(y) (wl(y),..., win(y)) r,
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whose ith component is

(3.15) wi(y) lyil q-1 sign (Yi)/(llyllq) q-1.

That is, w(y) is the gradient vector of the function Ilyll. Here one can verify that

(3.16) Ilw(y)ll 1

and

(3.17) yrw(y)--IlYlI.
THEOREM 10. Let solve (3.1). Then the vector

(3.18) Z()/E t-1 Z(/8

solves (1.1). Conversely, let solve (1.1) and assume that A b. Then the vector

(3.19) -r()

solves (3.1). In both cases we have

(3.20) D() F(),

and the primal-dual inequality

(3.21) D(y) -< F(x)

holds for all x n and y such that ]JYlJq
Proof. The first part of the proof considers the case in which the dual objective

< 1. In this case any point m thatfunction, D(y), has a maximizer such that II ll 
solves (3.1) is also a maximizer of D(y) and the gradient vector of D(y) vanishes at
this point. That is,

(3.22) b Az(t)/ e t-1 --0,

which means that the vector z()/e -1 satisfies both A b and

(3.23) F(C,)-(e/s)ll,ll-(/s)llz()/’-ll-(/s)llA/ll’,.
On the other hand, multiplying (3.22) by r gives

0 br-rAz()/8t-1 br- e IIA/
(3.24)

-br-(elt)llArlellt,-(els)llArlell’t D()-F().

Moreover, combining (3.8) with I1 11 =<1 shows (as in Corollary 5)that solves (1.1).
Before starting the second part of the proof we make a further comment on the

first case. Assume that solves (1.1) and that A-b. Then a further use of the proof
of Corollary 5 shows the existence of a vector such that I111--< 1 and

(3.25) Ar eg().

On the other hand (3.8) yields

(3.26) AT 8g(z()/8t-1).

Hence by comparing these equalities we deduce that

(3.27) R z()/e ’-1

and that is a maximizer of D(y). In other words, the dual objective function has a
maximizer such that II llq--< 1 if and only if the solution of (1.1) satisfies AR= b.
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The second part ofthe proof considers the case in which the dual objective function
has no maximizer such that I111--< 1. In this case a point m solves (3,1) if and
only if

(3.8 I111
and there exists a positive constant , such that

(3.29) b Az()/ e ,-1 Aw().

(These are the well-known Kuhn-Tucker optimality conditions.) Hence by applying
(3.16) and (3.18) we deduce that

(3.30) A ; IIw() I1 -I1()11 -I1- az()/’-’11 I1- all.
It follows, therefore, that if IIllq-- a and = z()/e ’--1, then solves (3.1) if and only
if

(3.31) w() -(A-b)/llA-bllp.

Moreover, multiplying (3.29) by yr gives

’= ; Ila 11

b7‘ e/ t)II A7/e I1’, (/ )11A7‘/e I1[ / A b

(3.33) / s) IIz()/’-’ I1% + IIA bll

It remains to show that if solves (1.1) and A# b then the vector =-r() solves
(3.1). On one hand we have

(3.34) eg() + Arr() 0

and

(3.35) g()= A(-r())/e A/e,
while on the other hand (3.8) yields

(3.36) g(z()/e t-) A/e.
Thus, by comparing (3.35) with (3.36), we deduce that

(3.37) z()/e ’-

In addition, (3.12) gives

(3.38) I111 IIw()ll ,
and the definitions of w(y) and r(x) lead to

(3.39) w() w(-r()) -(A-b)/IIA- bll.
Hence, as we noted above, relations (3.37), (3.38), and (3.39) imply that solves
(3.).

Another consequence of the above relations is that the vectors and b-A are
"aligned." That is,

(3.40) r(b-A) I111 lib- mll.

(3.32)

and
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It is also worthwhile to mention that the dual of the problem

minimize (/s)llxllg/llAx-ll
(3.41) subject to afx->bi fori=m+l,...,rfi

and arx=bi fori=rfi+l,...,r

has the form

maximize ry (e/ t)II ry/e
(3.42)

<1 and Yi >0 for i=m+lsubject to Ilyllq-
where y=(yl,...,y,)reN r, [l=(bl,..., b,)reN ", and / is an rfixn matrix
whose rows are a/r, i= 1,..., rfi. The proof of this observation is similar to that of
Theorem 10.

4. Iterative improvement of regularized solutions. This section presents and
analyzes a simple iterative method that can be used to "improve" the solution of the
regularized least norm problem. We have seen that one motivation for solving the
regularized problem is the existence of an initial estimate Zo. However, when the
regularized problem is solved we obtain a new estimate zl. Thus, by shifting the origin
to z, it is possible to construct an "improved" regularized problem and "improved"
solution z2. Similarly, z2 can be used to generate z3 and so forth. The exact formulation
of this process is as follows. Given Zk, we define

(4.1) bk b-Azk
and calculate Xk, the unique solution of the problem

(4.2) minimize ( /s)llxll:;/llAx-b ll .
Then the next point is defined as

(4.3) zk+ Zk+Xk.

The aim of this section is to answer the question of whether the sequence {zk} converges
and what properties the limit point has, if it exists.

The definition of zk+ implies the inequality

(4.4) Ilaz -blip -> (/s) Ilx II; + Ilaz/- bll,,
which shows that the sequence {llAz-bll,} is monotonic decreasing and bounded
from below. Consequently, this sequence converges,

(4.5) lim xk 0,

and

(4.6) lim g(xk) 0.
k-oo

If there exists an index k0 for which z solves (1.4), then clearly zk z for all k-> ko.
Hence there is no loss of generality in assuming that such an index does not exist,
and that Azk b for all k. Now the fact that xk solves (4.2) indicates that

(4.7) eg(Xk) + ATr(zk+) 0

and

(4.8) lim Arr(zk) 0.
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A further justification for applying this process lies in the following observation.
TI4EOREM 11. Let solve (1.4). Then

(4.9) lim [lAzy-blip [[A-II[.
kx

Proof. Let a denote the limit of the sequence {llAz If a 0 then the claim
is straightforward. Therefore, it is possible to assume that a > 0. Since IIr(z)llq 1 the
sequence {r(Zk)} has at least one cluster point, say r*=(r*,..., r*,,) T E". Let {Zkj}
be a subsequence of {zk} such that

(4.10) lim r(zkj) r*.

Then the limit

(4.11) lim [ai Zkj bi sign (a iTZk bi)/
jx

implies that the sequence {aTZkj- hi} converges. Consequently, the vector

(4.12) lim Azkj- b

is well defined and the least squares problem

(4.13) minimize I[Az--ll =
2

has a solution i such that

(4.14)

Further use of (4.12) gives

(4.15)

A-b=.

lim IIAz 11 lIAr-

while from (4.8) we deduce that

(4.16) ATr() lim ATr(zk 0.
j

That is, solves (1.4). [3

It is tempting to conjecture that the sequence {zk} converges to . Indeed, if the
columns of A are linearly independent then this assertion is a direct consequence of
the fact that IlAx-11 is strictly convex. However, when the columns of A are linearly
dependent this argument does not work. In this case (1.4) has infinitely many solutions
but the corresponding residual vector is unique. That is, A-b--A-b for any pair
of solutions. (This observation is a direct corollary of the well-known Minkowski’s
inequality.) An equivalent way to express the uniqueness of the residual vector is the
following. Let solve (1.4). Then can be written in the form

(4.17) =fi+,

where fi Null (A) and 6 Range (AT), and any other solution of (1.4) has the form
=u+ for some u Null (A). Note that is the unique solution of the problem

minimize Ilxl12
(4.18)

subject to x S.
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We can also verify that [lAx-blip is strictly convex on Range (At). Hence, if we have
a sequence {Vk} of vectors in Range (A’), then the limit

(4.19) lim IIAv bll [[A- blip

implies that

(4.20) lim Vk .
In particular, let us present Zk in the form

(4.21) Zk --’Uk -- Vk,where Uk Null (A) and Vk Range (A). Then the limit (4.15) leads to (4.19) and
(4.20). The question of whether the sequence {Uk} converges is not easy to answer.
However, in the important case where s 2, equality (4.7) is reduced to

(4.22) eXk + A7"r(Zk) 0,

which means that

(4.23) Uk Uo

and

k

(4.24) Vk Vo- E Arr(z/)/e
/=1

for k=l,2,....
COROLLARY 12. Assume that s 2. In this case the sequence {Zk} converges to the

point Uo + . Moreover, if Zo 6 Range A it converges to v, the unique solution of (4.18).

5. Dual penalty function methods. The practical value of Theorem 10 is that it

gives an alternative way to solve (1.1). Let us consider, for example, the regularized
ll problem (1.6). In this case the dual variables have simple bounds, and the dual can

be solved by applying a wide range of methods. In particular, when A is large, sparse,
and unstructured, we can use a row relaxation scheme that resembles Kaczmarz’s
method (see Dax (1991)). However, when p >1 the inequality Ilyll<_-I introduces a

certain difficulty into the solution of the dual problem. One way to remove this obstacle
is by using a penalty function.

THEOREM 13. Let solve the problem

(5.1) maximize by-(e/t)llA’y/ell’,-1/2(max {O, IlYllq-1})=/A,
where A is a given positive constant. Then the vector

(5.2) /max {1,

solves the problem

maximize by-(,/t)llAy/,ll’t
5.3

bject to IlYlI<I-,
where

(5.4) u= e/max {1, I111).
Furthermore, define
(.) Z()/ It-1-- Z(t)/ E t-1
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Then

(5.6)

and solves the problem

(5.7) minimize (/s)llxll+llAx-ll.

Proof. If IIllq--< 1 then Theorem 13 is a special case of Theorem 10. Hence it is
sufficient to consider the case when IIllq > 1. In this case the optimality conditions of
(5.1) indicate that satisfies

(5.8) b- Az()/e t-l= (1111 1)w()/h,

while (3.16) gives

(5.9) ([lll- 1)/A IIb-Az()/e’-lll, -IIm- bll,
and

(5.10) II[[q 1 / xlla-bll,.
Now the equality

(5.11) w() =w()

enables us to rewrite (5.8) in the form

(5.12) b-A=

Thus, by combining (5.5), (5.12), and the equality

(5.13)

we conclude that solves (5.3). E]

The usefulness of this approach is demonstrated when solving the regularized
problem (1.8). In this example the analog of (5.1) takes the form

(5.14) maximize by-.(e/2)ila’y/ell-1/2(max {0, Ilylll-1})/A,

and if solves this problem then -AT"/e solves the problem

(5.15) minimize (/2)llxll/ IIAx-bll,

where

(5.16)

Now the structure of (5.14) enables us to solve this problem by applying a row relaxation
method (see Dax (1992a)).

Another penalty function method is implied by the following observation.
THEOREM 14. Let solve the problem

(5.17) maximize bry e/ AT"y/ e l/ q y/ lz

where Iz is a given positive constant, and define
(5.18)

Then

(5.19) -/1111
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solves the problem

(5.20)

while

(5.21)

solves the problem

(5.)

maximize bTy-(,/t)[[ATy/l,[[

<1,subject to Ilyl[-

()/;i’’-1 if)/ ’-’X--Z --Z E

minimize (/s)llxll:+llAx-bll,.

Proof. Note that 0 if and only if b 0. Hence there is no loss of generality in
excluding this possibility. The optimality conditions of (5.17) imply that

(5.23) b- Az()/

while (3.16) gives

(5.24) ll//./, q
q-l-- liAr:- blip.

Hence the relations [[llq 1, = z()/v’-, and

(5.25) w(;) w(;)= -(A,- b)lllA-bll,,
indicate that solves (5.20).

Observe that here

(5.26) ’= e/(llA- bll-’),
which means that , can be greater than e. The appeal of (5.17) lies in the case where
both s and p lie in the interval (1, 2]. In this case the dual penalty function is twice
continuously differentiable, which enables us to apply Newton’s method. In the special
case where s =p 2, the problem (5.17) takes the form

(5.27) minimize 1/211aYll/e +llYll/-by,
and can be calculated via the SVD of A. Moreover, using the SVD of A we can
verify that if e 1 and solves (5.27) then the primal solution = AT" solves the
problem

(5.28) minimize -’llxll+1/211ax- bll,
which brings us back to "Tikhonov’s regularization." It is also worthwhile to note that
both (5.1) and (5.17) have the property that the vectors and b-A are "aligned."
That is,

(5.29) 7"(b- a) IIll lib- all,.
The validity of this assertion is verified by multiplying (5.12) and (5.23) by .

6. Concluding remarks. The analysis of (1.1) reveals several interesting properties
of this problem. We have seen that as e moves from oo to 0, the solution point x
changes continuously from 0 to x*, where x* denotes the minimum norm solution of
the unregularized least norm problem. Moreover, if the system Ax b is solvable then
there exists a positive constant 3, such that x x* whenever e < & Other features that
characterize (1.1) are the existence of a dual problem and the fact that a primal solution
is easily retrieved from a dual solution, and vice versa.
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The interest that we have in (1.1) lies in the fact that this problem can be viewed
as an extension of (1.6), (1.8), and regularized linear programming problems. However,
as was noted in the introduction, the "natural" way to extend Tikhonov’s regularization
is (1.5). Other forms of regularization that deserve our attention are

(6.1) minimize e Ilxlls + IIAx- bllPp/p
and

(6.2) minimize x + Ax b p.

The results of the current research suggest that the other forms share similar properties
and provide tools for investigating this conjecture. Of special interest is the question
of what structure the duals of (1.5), (6.1), and (6.2) have. The answer is displayed in
Table 1, but proofs and relations between primal and dual solutions are given elsewhere
(see Dax (1992b) ).

TABLE
Duality in regularized least norm problems.

Primal problem Dual problem

minimize e Ilxll g/s + IIAx- bllpP/p
minimize ellxllg/s+ I]mx-bl]p

minimize ellxlls + IIAx-bllg/P

minimize e Ilxlls + IIAx-bllp

maximize bary e Ilmry/e I/t -IlYll q/q
maximize bar’y ellay/ell’,/t
subject to I111 --<
maximize bT"y Ilyll /q
subject to IIay/e II, --<

maximize bT"y
subject to Ilay/e II, -< and Ilyllq --<

Note that the dual of (1.5) is a special case of (5.17) in which/z 1. Solving this
problem is advantageous when m << n, and when both s and p lie in the interval (1, 2].
Another advantage of the dual approach is that linear constraints are transformed into
simple bounds.

A further consequence ofthe current research is related to minimum norm problems
of the form

minimize Ilxll
(6.3)

subject to Ax=b.

The need for solving such problems arises in control theory applications as well as in
other areas (e.g., Cadzow (1973)). Luenberger (1969) shows that the dual of (6.3) has
the form

maximize bTy
(6.4)

subject to ATyIIt <1=,

but does not supply an explicit rule for retrieving a primal solution from a dual solution.
Yet the results of Theorems 6 and 10 suggest that such a rule exists! Moreover, the
difficulty in handling the inequality [IA’yllt <- 1 can be resolved by following the
approach proposed in this paper. In particular, we can show that the dual ofthe problem

minimize []x[l/s
(6.5)

subject to Ax b,
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is simply

(6.6) maximize bY-llAyl[/t.
For a detailed discussion of these ideas, see Dax (1993).
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ON THE CONTINUITY OF THE SOLUTION MAP IN LINEAR
COMPLEMENTARITY PROBLEMS*

M. SEETHARAMA GOWDAf

Abstract. The continuity properties of the solution map :(M, q) (M, q) are investigated, where
Ae(M, q) denotes the solution set corresponding to the linear complementarity problem LCP(M, q). A
Robinson-type upper semicontinuity result is established for b, and a generalization of the Mangasarian-
Shiau result concerning the Lipschitzian property of in the q-variable is proved. It is also shown that
when the matrix is positive semidefinite (or more generally a G-matrix), the solution map is Lipschitz
continuous with respect to the q-vector if and only if the matrix is a P-matrix.

Key words, complementarity problem, copositive matrix, upper and lower semicontinuity, Lipschitz
continuity

AMS(MOS) subject classification. 90C33

1. Introduction. Given a matrix M Rnn and a vector q s R n, the Linear Com-
plementarity Problem LCP (M, q) is to find a vector x in R such that

(1) x>-O, Mx+q>-O, and xT(Mx+q)=O.
The advantage of studying such a problem is well documented in the literature. See,
e.g., [20] and [4].

In this article, we study the behavior of the solution set as the data (M, q) changes.
This amounts to the study of the continuity properties of the multivalued mapping
At:R x R --> R defined by

9(M,q)=SOL(M,q),

where SOL (M, q) denotes the set of all solutions of LCP (M, q), i.e., the set of all x’s
satisfying (1). Since 9 is a multivalued mapping, its continuity can be studied in any
number of ways. In this article, we deal with the upper, lower, and Lipschitz (semi)
continuity properties of 9.

While there is a large body of literature concerning the stability and continuity
of solution in linear and quadratic programming problems, very few articles have been
written on the continuity ofthe solution map in LCPs. Motivated by linear and quadratic
programming problems, Robinson [26] studied the stability and continuity properties
of solution maps of generalized equations. In that paper Robinson proves the upper
semicontinuity property of 90 at a pair (M, q) where M is monotone and At is restricted
to monotone (i.e., positive semidefinite) matrices. In 2 we will extend this result to
copositive matrices.

In 3 we study the lower semicontinuity property. This concept is related to the
concepts of robustness [13] and stability [11], [8]. We show in this section that in
some important cases, lower semicontinuity implies uniqueness of solution. We observe
that for a fully semimonotone matrix M, the problem LCP (M, q) can have at most
one robust solution.

Section 4 deals with the (locally) upper Lipschitzian property of Se. This is
intimately related to a result of Robinson [27], which states that for any matrix M,

* Received by the editors February 11, 1991; accepted for publication (in revised form) October 8, 1991.

" Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore,
Maryland 21228 (gowda@umbc.bitnet).
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the mapping (q) 6e(M, q) is locally upper Lipschitzian. We give an alternate proof
and at the same time extend a result of Mangasarian and Shiau 18], that for a P-matrix
M, the mapping (q) is Lipschitzian.

Our final section deals with the Lipschitzian characterization of P-matrices. In
[18], Mangasarian and Shiau give an example of a positive semidefinite matrix for
which the mapping @ is not Lipschitzian. We show in this article that the mapping
corresponding to a positive semidefinite matrix cannot be Lipschitzian unless the matrix
is a P-matrix. In fact, in Theorem 13 we prove a converse of the Mangasarian-Shiau
result: If M is a G-matrix for which is Lipschitzian, then M is a P-matrix. The set
3 of all G-matrices includes semimonotone matrices. In particular, the set 3 contains
copositive matrices, Po-matrices, and positive semidefinite matrices. The results proved
in 5 partially answer a question posed to the author by Jong-Shi Pang: If the mapping

corresponding to a Q-matrix is Lipschitzian, should the matrix be a P-matrix? We
conclude this paper by proving the Lipschitzian property for negative N-matrices.

Let us say a few words about the notation. Throughout this paper, IIMII and q
denote (arbitrary but fixed) norms of the matrix M and the vector q, respectively. B
denotes the open unit ball in (R", I1"11). Corresponding to any set E we write IEI for
the number of elements in that set. The closure of a set in R"" is denoted by %
For any set E

___
R ", E* denotes the dual of E defined by

E* {y R"" y rx >- O Vx E}.

The domain of the mapping b is defined by

dom 6e= {(M, q) R x R"" 6e(M, q) 0}.

Corresponding to any nonzero solution x of LCP (M, q), the set a {i’x > 0} will be
called the support set of x and the submatrix M of M will be called the supporting
submatrix corresponding to x.

2. Upper semicontinuity.
DEFINITION 1. Let be a nonempty subset of R"", (M, q) x R". The mapping

5 is said to be q-upper semicontinuous C-usc for short) at (M, q) if for every e > 0
there exists a 6 > 0 such that

(2) 9(M’, q’)_ 9(M, q)+ eB

 ati fyin M’-M + q < we omit
prefix .

Remarks. Likely candidates for the set are singleton sets, the set of all skew-
symmetric matrices, the set of all positive semidefinite matrices, the set of all copositive
matrices, the set of all semimonotone matrices, R", etc. If we replace (in the above
definition) the open set 6e(M, q)+ eB (which contains 6e(M, q)) by an arbitrary open
set U containing b(M, q), we obtain a stronger definition. That this definition is indeed
stronger is illustrated in the example below. We note, however, that the two definitions
coincide when 6e(M, q) is compact.

Example 1. Let

M--
1

q= q=
elne

where O< e < 1. Put {M}. It can be easily verified that o(M, q) and o(M, q’) are
parallel (half-) lines in R and so (M, q’) cannot be contained in arbitrary open sets
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(which contain 0(M, q)) even if e is small. Since 5e is easily seen to be %usc at
(M, q), the statement made in the above remark is justified.

Our aim in this section is to describe certain triples (c, M, q) for which the
mapping 5e is %use at (M, q). We start with a fundamental result due to Robinson
[27], which shows that for any matrix M, 5e is {M}-usc at (M, q) for every q.

THEOREM 1. Let M be any n x n matrix. Then there is a positive number A with the
following property: Given any q R n, there exists an 6 > 0 such that

(3) b(M, q’)_(M,

for all q’ with q’- q < 6.
The next result can be found in [13, Thm. 5.6]. (Actually, in [13] the result is

proved for (M, q) with 5(M, q) 0. It is easy to show, using normalized vectors, that
the result is true even when 5(M, q) is empty.) Before stating the result, we recall that
a matrix M is an Ro-matrix if 5(M, 0)- {0}. It is well known that M is an Ro-matrix
if and only if 5(M, q) is bounded for every q.

THEOREM 2. Let M be an Ro-matrix. Then 5F is usc at (M, q) for every q.
We now concentrate on positive semidefinite matrices and copositive matrices.

The following simple example due to Robinson [26] shows that even when M is
positive semidefinite, the mapping 5 need not be upper semicontinuous.

Example 2. Let M=[0], q=[1]. Then 5(M,q)={0} while for any M’-[-e]
with e>0, we have 5(M’, q)= {0, l/e}. Clearly, ,90 is not usc at (M, q).

In [26], Robinson shows that when M is positive semidefinite and (M, q) is
nonempty and compact, 5 is (-usc at (M, q) where is the set of all positive
semidefinite matrices. Robinson proves this as a by-product of his theory of generalized
equations. Here, we extend this result to copositive matrices. We recall that an n x n
matrix M is said to be copositive if x’Mx >-0 for all x _-> 0 in R n. In the following
result, "int" refers to the interior.

THEOREM 3. Let M be an n x n copositive matrix and let q int Y(* where Y(

5(M, 0). Then b is C-usc at (M, q) where c denotes the set ofall n x n copositive matrices.

Proof Assume the contrary. Then there is an open set U containing 5e(M, q), a
sequence {(Mk, qk)} converging to (M, q) in R""x R" with each Mk belonging to
c, and a sequence {xk} such that for all k, xk (Mk, qk) and xk

_
U. The sequence

{l[xkl]} diverges to ; otherwise, a subsequential limit of {xk} belongs to 5e(M, q) and
to the complement of U, a contradiction. Let s be any subsequential limit of {xk/[]xk[[}.
Then it is easily seen that 0 s b(M, 0). From the copositivity ofMk and the equation
(xk)(Mkxk+qk)=o, we get (xk)’q k <=0. This leads to the inequality sT"q<-O. Since q
belongs to the interior of Y{’*, we must have s Tq > 0 and thus we reach a contra-
diction.

We make several remarks regarding Theorem 3. First, Theorem 3 does not assert
the nonemptiness of 5e(M’, q’) when (M’, q’) is near (M, q). The nonemptiness of
5(M, q) is (essentially) guaranteed by Lemke’s theorem [15]. (See [9] for an explicit
reference.) The following result, first observed by Stone [4], answers the nonemptiness
question. Stone’s proof is based on the degree theory. For a proof based on the basic
theorem of complementarity of Eaves, see [10].

THEOREM 4. Let M be a copositive matrix and q int 77* where Y (M, 0). Then
for all copositive matrices M’ and all vectors q’ with (M’, q’) near (M, q), (M’, q’) ).

We give two illustrations of Theorem 3 by specializing M. First let M be a
copositive-star matrix, i.e., let M be copositive and satisfy the condition

x bV(M, O):=> MT"x <= O.
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For such a matrix, 9’’* {x: x >- O, MTx <-- 0}* R_- M(R_). Also, int (R_- M(R_))
int R_-M(R_). We have the following corollary.

COROIr.AR 1. Let M be a copositive-star matrix and suppose that LCP (M, q) has
a strictlyfeasible solution, i.e., there exists a nonnegative vector u* such that Mu* + q > O.
Then the conclusion of Theorem 3 holds.

For the second illustration, let M be copositive-plus, i.e., let M be copositive and
satisfy the condition

x >= O, xrMx O(M+ MT")x O.

Then M is copositive-star and (see [16]) q int 3’{* if and only if SO(M, q) is nonempty
and compact. We thus obtain the conclusion of Theorem 3 when M is copositive-plus
and the solution set of LCP (M, q) is nonempty and compact. This of course yields
the result of Robinson mentioned before.

The following examples show that the conclusion of Theorem 3 may nor may not
hold when q

Note that the interiorityExample 3. Let M =[0], q=[0]. Then 5(M, q)= R/.
assumption in Theorem 3 does not hold, but still 5 is upper semicontinuous at (M, q).

Example 4. Let

M=
0 -e eln

where 0 < e < 1. It can be easily verified that M and M’ are positive semidefinite, and
that (M’, q’) is near (M, q) when e is small. Furthermore, 9’{ (M, 0) is the nonnega-
tive x-axis in R and so q lies in the boundary of ’/’*. The vector with components
x (1/e){e In e-In e} and y -In e is an element of 5(M’, q’) but is far away from
5(M, q) when e is small. Thus 5 is not upper semicontinuous even when restricted
to positive semidefinite matrices.

3. Lower semicontinuity.
DEFINITION 2. Let be a nonempty subset of R", (M, q) x R. The mapping

5 is said to be CO-lower semicontinuous (-lsc for short) at (M, q) if for every e > 0
there exists a > 0 such that

(4) (M, q)c_ 5(M’, q’)+ eB

for all (M’, q’) (qg x R) c dom 6 satisfying M’- M / q’- q < . If c is R,
we omit the prefix

It is clear that the above definition implies that 5 is -lsc at every x* in 5(M, q)
where C-lsc at x* means: For every e > 0 there exists a > 0 such that

(5) ST(M’, q’)

for all (M’, q’) x R) dom 5e satisfying IIM’- MII / IIq’- qll < . (It is not dimcut
to show that the two formulations are equivalent if 5(M, q) is compact.) In the above
two formulations, we demand that (M’, q’) be in dom 5. This is done in order to
accommodate points on the boundary of dom 5. Suppose we remove the restriction
that (M’, q’) be in (COx R")cdom 5 from the definition of -lower semicontinuity
at x*. The resulting definition is precisely that of robustness [13] of x* for LCP (M, q).
Thus we conclude that if a solution x* is robust for LCP (M, q), then 5 is C-lsc at
x* for every nonempty set c_c_ R. We remark that the notion of robustness is weaker
than the stability issue treated in [11] and [8]. (In fact, a solution x* is stable for
LCP (M, q) if and only if it is isolated and robust [13].)
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To illustrate the above definition, consider a copositive-star matrix M and let c
denote the set of all copositive matrices. Let q R" be such that 15(M, q)l 1 and
q int 9’t’*. (The second condition is superfluous if M is copositive-plus.) By combining
Theorems 3 and 4 we see that 5 is C-lsc at (M, q).

We show in this section that in some important cases lower semicontinuity implies
uniqueness of solution. The underlying idea in the proofs of all the results in this
section is the following. If 5 is C-lsc at (M, q), then (4) holds for every e. By choosing
(M’, q’) so that 19(M’, q’)l 1, we can cause 9(M, q) to lie in a ball of arbitrarily
small radius. This implies that 9(M, q) is a singleton set. The conditions we need in
order to apply the above idea depend on whether q is zero or nonnegative or not
nonnegative.

Before stating our first lower semicontinuity result, we recall that a solution x*
of LCP (M, q) is nondegenerate with respect to M if x* + Mx* / q > 0 and that
LCP (M, q) is nondegenerate (or q is nondegenerate with respect to M) if every
solution of LCP (M, q) is nondegenerate. For a given n x n matrix M, the set of all
degenerate q’s is contained in a finite union of proper subspaces of R" (see [6, Lemma
4]). It follows that every open set, consisting only of q’s for which 5(M, q) is nonempty,
must contain a nondegenerate q. In particular, the set of all nondegenerate positive
vectors is dense in R, and when the matrix M is a Q-matrix (i.e., when 5(M, q) 0
for all q R") the set of all nondegenerate vectors is dense in R ".

THEOREM 5. Let M c c R’. If 9 is C-lsc at (M, 0), then M is an Ro-matrix.
Proof. Take any e > 0. Then

(M, O)
_
(M’, q’) + eB

for all (M’, q’) (x R")dom 5e sufficiently close to (M, 0). In particular, this
inclusion holds for a pair (M’, q’) where q’ is positive and nondegenerate with respect
to M’. But for such an (M’, q’), the set 6e(M’, q’) is finite [19]. The above inclusion
shows that 6e(M, 0) is bounded. Since 6e(M, 0) is a cone, we must have 5(M, 0)= {0}.
This completes the proof.
We recall some more definitions. We say that a matrix M is semimonotone if for

every nonzero nonnegative x there exists an index such that xi > 0 and xi(Mx) O.
An equivalent definition [6] is: For all d > 0, 9(M, d)= {0}. We note that copositive
matrices are semimonotone. A matrix M is said to be strictly semimonotone if for every
nonzero nonnegative x there exists an index such that x>0 and x(Mx)>O;
equivalently [6] if for all d=>0, 5(M, d)={0}. Cottle [2] characterizes a strictly
semimonotone matrix as a Q-matrix for which every principal submatrix is also a
Q-matrix. Our next definition involves a fully semimonotone matrix. To decribe this,
we consider a matrix M and an index set a

_
{ 1, 2,..., n}. Let fl denote the complement

of a in {1, 2,..., n}. If the principal submatrix M of M is nonsingular, we call the
matrix

[ M2(6) M= MM
a principal pivot transform of M obtained by pivoting on the submatrix M. (The
transform corresponding to a 0 is M itself.) We shall say that a matrix M is fully
semimonotone if every principal pivot transform is semimonotone. We note that positive
semidefinite matrices (more generally, Po-matrices, i.e., matrices with nonnegative
principal minors) are fully semimonotone.

The following observations regarding a matrix M and its principal pivot transforms
are useful. For a matrix M, suppose M is nonsingular and let z and w be two vectors
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satisfying w Mz + q. The triple (1/, t, ) is called the principal pivot transform of
(M, q, z) (obtained by pivoting on M) where//is defined above and

(7)
Z13 q

= qo-MM-q

[wo]

It is easily seen that is a solution of LCP (31/, ) if and only if z is a solution of
LCP (M, q) and 1S(31/, t)]= [(M, q)l. Furthermore, there exist constants C1 and C2
depending only on the matrix M such that for w Mz + q and y Mx +p,

(8)

and

(9)

-< Cl{llz xll + IIq -pit}

q P -< 4 -: II,
The transformation (M, q, z)--> ()/, t, ) has the following local homeomorphism

property. When M,, is nonsingular, a triple (N, r, u)R"nxR"xR" is close to
(M, q, z) if and only if (N, r, a) is close to (M, q, ) where (/Q, r, a) is obtained by
pivoting on the submatrix N. For more properties of the principal pivot transforms,
see [3], [24], and [30].

THEOREM 6. Let M be a semimonotone matrix and q >-O. Consider the following
statements:

(a) is lower semicontinuous at (M, q).
(b) is {M}-lower semicontinuous at (M, q).
(c) LCP (M, q) has a unique solution.

Then (a)==>(b)=:>(c). The implication (c)(a) holds ifM is an Ro-matrix.
Proof. The implication (a):=>(b) is obvious. Suppose (b) holds. Then for any e > 0,

the inclusion (4) holds for all (M’, q’) close to (M, q) where M’= M and (M’, q’)
dom S. Pick a positive q’ that is close to q. Since M’= M is semimonotone, 6e(M’, q’)
{0}. Because of (4), (M, q) is contained in a ball of arbitrarily small radius. Hence
LCP (M, q) has a unique solution. As regards the implication (c):=>(a): If M is an
Ro-matrix, we apply Theorems 2 and 3 in [8]. rq

THEOREM 7. Let M be a fully semimonotone matrix, 0; q R with ST(M, q) # O.
Consider the following statements:

(a) 9 is lower semicontinuous at (M, q) and (M, q’) 0 for all q’ near q.
(b) is {M}-lower semicontinuous at (M, q) and 5f(M, q’) # 0 for all q’ near q.
(c) 9 is lower semicontinuous at (M, q) and there exists a solution x*6 5f(M, q)

for which the supporting submatrix M is nonsingular.
(d) LCP (M, q) has a unique solution.
Then (a) =:> (b) ==> (d) and (c):=>(d). The implication (d)==>(a) holds if M is an

Ro-matrix and the implication (d)==>(c) holds if the supporting submatrix M of the
(unique) solution x* of LCP (M, q) is nonsingular.

Proof (a)==>(b) is obvious. Suppose (b) holds. Then for any e > 0, the inclusion
(4) holds for all (M’, q’) close to (M, q) where M’= M and (M’, q’) dom 5e. Since
S(M, q’) # 0 for all q’ close to q, we can pick a q’ close to q such that q’ is nondegenerate
with respect to M. Since M is fully semimonotone, an observation due to Stone [30,
p. 119] shows that S/’(M’, q’)= 5e(M, q’) is a singleton set. Because of (4), (M, q) is
contained in a ball of arbitrarily small radius. Hence LCP (M, q) has a unique solution.
Thus we have (d).
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Now suppose that (c) holds. Then by pivoting on M, we can transform
LCP (M, q) into an equivalent problem LCP (Mo, qo) where qo=>0. It can be easily
verified (using the local homeomorphism property described earlier) that 90 is {Mo}-
lower semicontinuous at (Mo, qo). Since M is fully semimonotone, Mo is semimonotone
and so by Theorem 6, LCP (Mo, qo) has a unique solution. This implies that LCP (M, q)
has a unique solution.

If (d) holds and M is an Ro-matrix, we apply Theorems 2 and 3 in [8] and get
(a). If (d) holds and the supporting submatrix M of the (unique) solution x* of
LCP (M, q) is nonsingular, we apply Corollary 2 in [8] and get (c). [3

Remarks. The condition that 90(M, q’)# for all q’ near q in parts (a) and (b)
of the above theorem holds [16] when 90(M, q) has a nondegenerate vertex solution.
This condition can be slightly weakened by requiring q to lie in the closure of the
interior of the set K(M)- {r Rn:90(M, r) ). This weaker condition is satisfied,
for example, when qR_-M(R_)-K(M) (i.e., when M is a Qo-matrix and
LCP (M, q) has a feasible solution).

The proofs of Theorems 6 and 7 can be modified to get Corollary 2.
COROLLARY 2. (a) IfM is semimonotone, then for every q >-_ O, the zero vector can

be the only possible robust solution for LCP (M, q).
(b) IfM is fully semimonotone, then for every q, the problem LCP (M, q) can have

at most one robust solution.

4. Lipschitz continuity of 6e(M, q). This section deals with the Lipschitz continuity
ofthe mapping 90. The concepts we will define below are somewhat similar to Robinson’s
locally upper Lipschitzian property stated in Theorem 1. In what follows we let ’denote a nonempty subset of R and let TO denote a nonempty subset of R"". We
drop the prefix TO if To is R.

DEFINITION 3. (a) We say that 90 is %locally upper Lipschitzian at (M, q)
TO R if there is a positive number A and a 6 > 0 such that

(M’, q’) 90(M, q)+ A(IIM’- MII / IIq’- qll)n

for all (M’, q’) TO x R" satisfying IIM’- MII + IIq’- qll < .
(b) We say that 9 is %locally lower Lipschitzian at (M, q) TO x R" if there is a

positive number h and a 8 > 0 such that

90(M, q) 90(M’, q’)+ A([IM’- MII / IIq’- qll)B

for all (M’, q’) (TO x R") dom 90 satisfying M’-M + q’- q < .
(c) 9 is said to be Lipschitzian on c x ’ if there is a positive number L such that

(M, q) (N, p)/ L(IIM- NII + IIq-plI)B

for all (M, q) and (N, p) in (TO x )dom 90.
It is clear from the above definitions that if 90 is To-locally upper Lipschitzian

(To-locally lower Lipschitzian) at (M, q), then it is %upper semicontinuous (%lower
semicontinuous) at (M, q). The following result gives a converse.

THEOREM 8. Suppose that 90(M, q) is nonempty, compact, and 90 is To-usc at (M, q).
Then 90 is To-locally upper Lipschitzian at M, q).

Proof It follows from the hypothesis that there are constants 7 > 0 and 1 _-< L < m
such that

(10) Ilxll L Vx 90(M’, q’),
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for all (M’, q’) c x R" with M’-M + q’- q < r/. By Theorem 1, there are numbers
h and e such that for all q" with [[q"-q[[ < e, we have

(11) Y(M, q") Se(M, q)+,llq"-qllB.

Now consider (M’, q’) satisfying the conditions

(12) M’ , L M’ M + q’ q < min { e, /}.

Let xs(M’, q’) so that xeY(M, q") where q" =(M’-M)x+q’. By (12) and (10),

IIq"-

so that by (11),

(M, q")_ (M, q)/A{LlIM’-Mll+llq’-lll}B,

Therefore, x Y(M, q)+hL{]]M’-M[[+]lq’-q[[}B. This gives the desired result.
Combining Theorems 2 and 8, we get the following corollary.
COROLLAgY 3. Let M be an Ro-matrix. Then is locally upper Lipschitzian at

(M, q) for every vector q with
In Definitions 3(a) and (b), the vector q’ is allowed to vary in a neighborhood of

q. We show below that when M is an Ro-matrix, this restriction can be removed. First
we prove a lemma.

LEMMA 1. Suppose that M is an Ro-matrix. Then there is an e > 0 and a positive
number L such that

(13) x’ -<- L( q’ + M’ M II)

for all (M’, q’, x’) with IIM’- MII < , q’ R" and x’ 6e(M’, q’).
Proof. Assume the contrary. Then there are sequences {Mk} R, {qk} R,

{x} R" such that Mk --> M, xk (Mk, qk), and

(14) IIxll > k(llqll / M- MII)
for all k. If {xk} is unbounded, we can assume without loss of generality that IIx
Then the above inequality shows that Ilqll/llxll- 0, in which case a subsequential
limit of {x/llxll} belongs to 6e(M, 0). Since this subsequential limit is nonzero and
M is an Ro-matrix, we reach a contradiction, and hence {xk} must be bounded.
But then, (14) shows that qk _.> O. By Corollary 3, there is a positive A such that for all
large k,

5e(M, q)_ (M, 0)+ x(ilqll / M MII)B.
Since 6e(M, 0)= {0}, we reach a contradiction to (14). This proves the lemma. I-!

TI-IZOrtM 9. Let M be an Ro-matrix and q R" such that 6e(M, q) . Then:
(a) There exist a K > 0 and an > 0 such that for all (M’, q’) c x R with

M’ M < the inclusion

e(M’, q’) e(M, q)/ K(IIM’- MII / IIq’- qll)n

holds.
(b) /f is C-locally lower Lipschitzian at M, q), then there exist a K > 0 and an

e > 0 such that for all (M’, q’) (c x R) c dom 6e with M’-M < the inclusion

SO(M, q)
_
6e(M’, q’) + K(IIM’- Mll / IIq’- qll)n

holds.
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Proof. We prove (a), the proof of (b) being similar. Suppose that (a) is false. Then
there are sequences {Mk} in c, {qk}, {x}, {u } in R such that M - M, x (Mk, qe),
u 6e(M, q), and

(15) min IIx-ull IIx-ull> k(IIM-MII / IIq-qll)
uSl’(M,q)

for all k. (Note that 6e(M, q) is compact so that the above "min" is well defined.) We
claim that {llqll} is bounded. Suppose not and assume without loss of generality that
IIqll-. Lemma 1 shows that the sequence {x/llqll} is bounded. By dividing the
above inequality by kllqll and letting k go to through a suitable subsequence, we
conclude that a subsequential limit of {q/l[qll} is zero. This, of course, is false, and
hence {q} is bounded. But then, by Lemma 1, {x} is bounded. The above inequality
shows that qk q. By Corollary 3, 6e is locally upper Lipschitzian at (M, q) and so
there is a positive h such that for all large k,

,O(Mk qk)
_
(M, q)+ A(IIMk MII / Ilq k qll)n.

This contradicts (15), and hence we have proved (a). !-!
We conclude this section by proving a Lipschitzian property of . The result says

that Y is Lipschitzian in (M, q) when (M, q) varies over a compact subset of the set
x R where is the set of all P-matrices. This is a generalization ofthe Mangasarian-

Shiau result [18], which says that the mapping (q):= 5e(M, q) is Lipschitzian in q
over all of R" when M is a P-matrix. Mangasarian and Shiau prove their result using
complementary cones. In the present paper we give an alternate proof of the
Mangasarian-Shiau result. The generalization and the alternate proof of the
Mangasarian-Shiau result may have been known to several researchers and may
perhaps be implicit in the works of [22], [23], and [28]. We recall a few things about
P-matrices. Let M be a P-matrix so that by definition every principal minor of M is
positive. It is well known that for any q R", [Y(M, q)l-- 1. In fact, this is a characteriz-
ation of P-matrices 19]. Another equivalent characterization due to Gale and Nikaido
is that for every nonzero vector x,

max x(Mx) > O.
li=n

It can be easily verified that the quantity

(16) a(M):= min max xi(Mx)
Ilxlloo-- l<----i<----n

is well defined and positive where IIxllo denotes the -norm of the vector x. Further-
more, a(M) is continuous on . In what follows, we write IISe(M, q)-Se(M, r)lloo for
the -norm of the vector x-y where 6e(M, q)= {x} and 6e(M, r)= {y}. The -norm
of a matrix M (i.e., the norm of the operator M:(R, II" II) - (R, II" II)) is denoted
by IIMll.

TI-mOaeM 10. Let M be a P-matrix. Then

(17) IlSe(M, q)- (M, r)ll<= (M)-lllq r[]oo

for all q and r in R.
Proof. Let 6e(M, q) {x} and 6e(M, r) {y} so that x -> 0, u Mx + q >- O, xru O,

y >= O, v My + r >= O, and y rv 0. Then for every index i,

(x y),{M(x y)}, (x y),{Mx + q (My + r) + (r- q)},

(x Y)i(r q)i xivi yiui,
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where we have used the complementary conditions xiui 0 and yiv 0. Since xv and
yui are nonnegative, we have

(M)lix- yl[ <- max (x- y){M(x- y)}

-<_ max (x-y)i(r-q)i
lNi<=n

<--Ilx-yl[llr-qllo.

This gives the desired inequality. 1-]

THEOREM 11. Let c be a compact subset of and be a bounded subset of R n.
Then 9 is Lipschitzian on c x . In fact,

[16e(M, q)-9(N, p)lloo-< L(IIM- NIle/ Ilq-pllo)

for all M, q) and N, p) in x where

L max { 08-2,
MC qa

Proof. First of all, we observe that L is finite since a (as a function on ) is
continuous and c is compact. Now let (M, q) and (N, p) be any two elements of
c x . Let 9(M, q)= {x} and 6e(N, p)= {z}. By putting r=0 in (17), we get

Ilxll--< (M)-’llqll.
Since x is the only solution of LCP (N, (M- N)x + q), we deduce from Theorem 11
(applied to N) that

IIx- zll(R)--< (N)- (M- N)x + q -pll

--< (N)-{IIM NIlllxll+ IIq-PlII
<- (N)-{(M)-IIM- NIIollqll+

--< -{0-IIM NIle+ IIq-PlII
<- L(IIM- NIle+ IIQ-PlI).

This completes the proof.
Remarks. Note that in Theorem 10 the vectors q and r are unrestricted while in

Theorem 11 the vectors q and p vary over a bounded set ’. It is easy to see that
Theorem 11 is valid for ’ R if and only if c is a singleton set. Indeed, suppose
that Theorem 11 is valid for c x R for some c. By putting q =p kr (where r R
is arbitrary) we deduce that

9(M, kr) 9(N,

for all natural numbers k. Since 9 is positively homogeneous in the second variable,
we can divide both sides of the above inequality by k and let k go to o to conclude
that 9(M, r)= 9(N, r) for all r e R. Let x be any nonnegative vector. Then x is an
element in 9(M,-Mx) 9(N,-Mx) from which we get the inequality Nx-Mx >=0.
Similarly, Lx-Nx >-0 so that Mx Nx. Since x-> 0 is arbitrary, we conclude that
M=N.

5. Lipschitz continuity of 6e when M is fixed. In this section we fix the matrix
M s R"" and consider Ae as a function of q alone. We write

(q):=9(M,q)
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and

dom {q R": (q) 0}.

We say that is upper semicontinuous (lower semicontinuous) at q if 9 is {M}-upper
semicontinuous ({M}-lower semicontinuous). By specializing Definition 3 to c {M}
and

(a) We say that is locally upper Lipschitzian at q if there is a positive number
h and an e > 0 such that for all q’ R" satisfying IIq’-q < e one has the inclusion

(18) (q’) - (q) + lllq’- qllB.

(b) We say that is locally lower Lipschitzian at q if there is a positive number
I and an e > 0 such that for all q’ e dom satisfying q’- q < e one has the inclusion

(19) ,(q)

(c) is said to be Lipschitzian if there is a positive number L such that for all q
and p in dom

(20) *(q)
_
*(p) + L[[q -P .

In view of Theorem 1, for any matrix M, the corresponding is locally upper
Lipschitzian at all q. Note that one single A works for all q. We shall see later (in the
proof of Theorem 14) that the existence of such a universal A is useful. As noted
earlier, Theorem 1 shows that is upper semicontinuous at all q. It is obvious that
is lower semicontinuous at q whenever it is locally lower Lipschitzian at q.

In the definitions (a) and (b) above, the vector q’ is allowed to vary in a
neighborhood of q. By specializing Theorem 9 to c {M}, we deduce that these local
upper or lower Lipschitzian properties are equivalent to "global" upper or lower
Lipschitzian properties when the matrix is a R0-matrix.

THEOREM 12. Suppose that M is fully semimonotone. Then the following are
equivalent:

(a) is Lipschitzian.
(b) is locally lower Lipschitzian at all q dom .
(c) is lower semicontinuous at all q dom .
(d) M is a P-matrix.
Proof The implications (a)::>(b) and (b)(c) are obvious and the implication

(d)(a) follows from Theorem 10. We prove the implication (c)(d). Suppose that
is lower semicontinuous at all q dom . By Theorem 5 (applied to c {M}), M

is an Ro-matrix. Since M is assumed to be semimonotone, by [21], M is a Q-matrix.
By Theorems 6 and 7, for every q R", LCP (M, q) has a unique solution. It follows
(see [29] or [19, Cor. 4.3]) that M is a P-matrix. [3

The above proof actually reveals that if M is fully semimonotone and is lower
semicontinuous at the zero vector and at q, then LCP (M, q) has a unique solution.

The above theorem naturally leads to the question of whether the implication
(a)=>(d) holds under more general conditions. This is answered in the results below.
We say that a matrix M is a G-matrix iffor some d > O, the zero vector is the only
solution of LCP (M, d). G-matrices are generalizations of semimonotone matrices. For
properties of such matrices, we refer the reader to [7] and [10].

THEOREM 13. Let M be a G-matrix. Then is Lipschitzian if and only ifM is a
P-matrix.

The proof of this result is based on the following lemmas. In these lemmas we
assume without loss of generality that the norm (of a vector) refers to the Euclidean
norm.
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LEMMA 2. Let M be any matrix for which (q)= b(M, q) is Lipschitzian. IfM is
any principal pivot transform of M, then the mapping

(q) := (r, q)

is also Lipschitzian.
Proof. Let M be obtained by pivoting on the principal submatrix M so that

is given by (6). Suppose that (q) 6e(M, q) satisfies (20). Consider two vectors r and
s in dom . Given any x(r), there exist q and pc R n, zd(q) such that -x,
4=r,/--s. From (20), there exists u (p) such that

IIz-ull<-_Lllq-Pll.

In view of (8), the vector a (s) satisfies the inequality

I1- all -< c,{llz- nil / Ilq -p 11}.

The above inequalities together with (9) give

(r) (s)+ CIIr- slln
for a suitable constant C depending on the matrix M. This completes the proof of the
lemma.

LEMMA 3. IfM is a G-matrix and is Lipschitzian, then M is strictly semimonotone.
Proof. Suppose that is Lipschitzian and let d be a positive vector such that

(d) {0}. To get the desired result, it is enough to show that (q) {0} for all q -> 0.
Now let f be the set of all positive vectors e such that (e) {0}. The set l is nonempty
because d f. We claim that l is an open set. Fix an e I. For all u B we have
from the Lipschitzian property,

(ke+u)(ke)+Lllu[[B Vk= l,2,...

Since dP(ke)=kdP(e)={O}, the sets dp(ke+u) are uniformly bounded. For any x
dP( ke + u) we have

x>=O, y=Mx+u+ke>=O, yrx=o.
It follows that for all large k, x 0 so that for all such k, dP(ke + u) {0}. Since ke + u > 0
for large k, the set {t(ke+u): t>0, uB} is an open set which contains e and which
is contained in f. Hence is an open set. Now we show that f is closed in R++
(= the set of all positive vectors in Rn). To this end, let p R/+ be in the closure of
f. Since every neighborhood of p contains a point e of fl and for any such point

(e) {0}, it follows from the Lipschitzian property that (p) must be contained in
an arbitrarily small ball around the zero vector. Hence (p)= {0} so that p f. Thus
the set f is both open and closed in R++. Since R++ is connected, f R++. To
complete the proof, let q->_ 0. Then every neighborhood of q contains a point of f.
By the Lipschitzian property we see that (q) is contained in a ball of arbitrarily small
radius. Since 0(q), we see that (q)={0}. This completes the proof of the
lemma.

LEMMA 4. Suppose that M is stricly semimonotone and is Lipschitzian. Then
every proper principal submatrix N ofM is strictly semimonotone and the corresponding
multifunction A(r):= SOL (N, r) is Lipschitzian.

Proof. Since strict semimonotonicity property is inherited by all principal sub-
matrices, we only show the Lipschitzian property of A. Let N M where a is a
proper subset of {1, 2,..., n}. Without loss of generality let a be the first lal natural
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numbers. Let/3 be the complement of a in {1, 2,..., n}, r, s RI1, and e be the vector
of ones in RI1. For k= 1,2,..., let

[r] Is] [0]rk k ek
ke

s
ke’ ke

We claim that for all large k,

To see this, we observe, from the Lipschitzian property, the inclusion

dp( rk) c: dp( e k) + LII r[ B.
Since strict semimonotonicity of M implies that (ek) {0} for all k, we see from the
above inclusion that (rk) is uniformly bounded for all k. It follows that for large k,
the fl-pa of any solution of LCP (M, rk) is zero. This gives one inclusion toward the
equality of sets in (21). The reverse inclusion follows immediately from the observation
that since N is strictly semimonotone, it is an R0-matrix and hence A(r) is bounded.
We thus have (21) for large k. Now fix r and s in dom A. The Lipschitzian propey
of M gives

(r + Lll - slIB
for all k. By choosing a large k we can apply (21) and conclude that

A(r) A(s)+ Llr- IIB’,
where B’ denotes the open unit ball in R Il. Thus we have shown that A is Lip-
schitzian.

Proof of eorem 13. In view of Theorem 10, we need only show that M is a
P-matrix whenever is Lipschitzian. Because of Lemma 3, it is enough to show that:
If a k x k matrix M is strictly semimonotone and the corresponding multifunction
is Lipschitzian, then M is a P-matrix. We induct on k. When k 1, the entry in M is
positive and hence the matrix is a P-matrix. Now assume the result for all k=
1, 2,..., (n- 1). Let M be an n x n matrix that is strictly semimonotone and whose
multifunction is Lipschitzian. From Lemma 4 and the induction hypothesis we
conclude that every proper principal submatrix of M is a P-matrix. To complete the
proof we need only show that M has positive determinant. Since M is strictly
semimonotone, every entry in the diagonal ofM is positive. Let a denote the (1, 1)-entry
in M. We put a { 1}, r [- 1], and N a and we define rk as in the proof of Lemma
4. We choose k large so that (21) holds and k>0 where (, k) is obtained from
(M, rk) by pivoting on the (1, 1)-entry in M. For brevity, we write q for rk. Since
SOL (N, r) is a singleton set, by (21),

I(M, q)l 1.

Fuhermore, 1(, q)l= 1. Since >0, (, )={0}, i.e., is a G-
matrix. Since is assumed to be Lipschitzian, by Lemma 2, the multifunction
corresponding to is Lipschitzian. By Lemma 3, M is stristly semimonotone. From
Lemma 4, we conclude that the principal submatrix T:= M<_)<,-1) is strictly semi-
monotone and its corresponding multifunction is Lipschitzian. From the induction
hypothesis, this submatrix is a P-matrix. In paicular, the determinant of T is positive.
But T is the Schur complement [1] of the matrix Mll N, and so the well-known
Schur formula 1]

det M (det M)(det T)



632 M. SEETHARAMA GOWDA

holds. We conclude that the determinant of M is positive. This completes the proof
of the theorem. U

The following are easy consequences of Theorem 13.
COROLLARY 4. Suppose that M is a Q-matrix for which is Lipschitzian. If some

principal pivot transform ofM is a G-matrix, then M is a P-matrix.

Proof. If some principal pivot transform M of M is a G-matrix, then by Lemma
2 and Theorem 13, M is a P-matrix. Hence M is a P-matrix. [3

COROLLARY 5. Suppose that M is a Q-matrix for which is Lipschitzian. If there
is a nondegenerate q such that LCP (M, q) has a unique solution, then M is a P-matrix.

Proof. Let x* be the unique solution of LCP (M, q) with x* + Mx* + q > 0. Since
the supporting submatrix corresponding to,x* is nonsingular [13], by pivoting on this
submatrix we can get (2/, , *). Since [6e(M, t)l Ig(M, q)[= 1 and t0, we see that
;* 0 and hence *+ I(I* + x* + Mx* + q > 0. This shows that M is a G-matrix.
We now apply the previous corollary to get the result. V1

Remarks. It is not known at this stage whether the above corollary is valid without
the existence of a nondegenerate vector for which the LCP has a unique solution. It
is also not known whether Theorem 13 holds under the weaker assumption of being
locally lower Lipschitzian at every q dom .

Our next result deals with N-matrices. Recall that a matrix M is an N-matrix 14],
[25] if every principal minor of M is negative.

THEOREM 14. LetMbe an N-matrix with all entries negative. Then is Lipschitzian.
Proof. Since M is a negative matrix, the domain of is R. Also (q) {0} for

all q-> 0, q ; 0. By Kojima and Saigal 14] or by Parthasarathy and Ravindran [25],
for every q > 0 we have (q) {0,f(q)} where f(q) is the unique nonzero solution of
LCP (M, q). To establish the Lipschitzian property of @, we first prove the existence
of a positive constant C such that

(22) [[f(q)-f(P)ll <= CIIq-plIB Vq>O, p>O.

We proceed as in Lemma 3.1 of Mangasarian and Shiau [18]. Corresponding to each
J___ {1, 2,..., n}, we let Q(J) denote the set of all vectors q for which the system

Mx+q_>-0, x=0 VjeJ,
(23)

Mx+q=0, x>-O Vj:J

has a solution where M denotes the jth row of M, etc. We observe that
Q({1,2,..., n})=R. If J#{1,2,...,n} and O<qQ(J), then f(q) is the unique
solution of (23). Now for any q > 0 and p > 0, the line segment

[q, p]={(1- t)q+ tp: 0 <- <-_ 1}

is contained in the union of Q(J) as J varies over all proper subsets of {1, 2,..., n}
including the empty set. (Note that each q > 0 must be in the above union since (23)
corresponding to {1, 2,..., n} gives only one solution, namely zero, and we know that
(q) contains a nonzero solution.) The proof of Lemma 3.1 in [18] can be modified

to show that Lemma 3.1 is valid with Ji contained in but not equal to {1, 2,..., n}.
Using this and the argument employed in the proof of Theorem 3.2 in 18], we deduce
the existence of a C satisfying (22). Now suppose that q and p are arbitrary. Since
the Lipschitzian property is obvious if both q and p have (some) zero components,
assume without loss of generality that 0z q => 0 and p > 0. By Theorem 1, there is a
universal constant A such that

(q’) (q)+ Allq’- qlln
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for all q’ near q. Now let q’> 0 be the line segment [q, p] close to q so that the above
inclusion holds. We also have, from (22),

(P) (q’)+ Clip

Above inclusions give

(p) c_c_ (q)+(C + t)ll p qllB.

Finally, (q)= {0It_ {0, f(p)}__ (p)+(C + A)llp-qllB. Thus we have shown that
has the Lipschitzian property with the Lipschitzian constant C + A. This completes the
proof. D

From Theorems 13 and 14, we infer that when M is either a P-matrix or an
N-matrix with all negative entries, the corresponding is Lipschitzian. Since every
negative N-matrix is a Z-matrix (i.e., a matrix with nonpositive off-diagonal entries),
it follows that Theorem 13 is not valid for Z-matrices. The following example shows
that the Lipschitzian property of is not limited to P and N matrices.

Example 5. Let

M=
-2 -1 2 3

Since M is an N-matrix with negative entries, by Theorem 14, the mapping corres-
ponding to M is Lipschitz[an. By Lemma 2 the mappinj corresponding to the
principal pivot transform M is Lipschitzian. (Note that M is obtained from M by
pivoting on the (1, 1) entry in M.) We observe that M is neither a P-matrix nor an
N-matrix.

Our next example shows that Theorem 14 is false for an arbitrary N-matrix.
Example 6. Let

M= q= q’=
2 -1

where e > 0 and small. It is clear that M is an N-matrix. For this M, (q) has two
elements and (q’) has exactly one element for any e. It is clear that the inclusion

dp(q) c_ dp(q’)+ Lllq- q’llB

cannot hold for a fixed L and all e. Thus corresponding to M is not Lipschitzian.

6. Concluding remarks. In this paper we have described continuity properties of
the solution map 5. The results proved in this paper naturally lead to several interesting
questions. For example, is Theorem 3 (or a variation of that) true for other matrices,
such as L-matrices and G-matrices? Are Theorems 6 and 7 true for other types of
matrices? Is it possible to characterize matrices M for which is Lipschitzian? The
answers to all of the above questions are not presently known. We end this paper by
noting that the question of Pang (stated in the introduction) remains unresolved.
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LINEAR INEQUALITY SCALING PROBLEMS*

URIEL G. ROTHBLUMf

Abstract. Let a R m, b R m, and C R be given, where a is strictly positive. A C-scaling of the
vector a is defined to be a vector a’ R with aj= aj[II’=(uk)CkJ for some strictly positive vector u R
The problem of finding a C-scaling of the vector a that satisfies the linear system Cx b is called the linear
equality scaling problem (LESP). The current paper considers the linear inequality scaling problem (LISP),
which concerns the identification of a C-scaling of a which satisfies the linear inequality system Cx <= b,
where it is required that u-< and that ui for each with (Cx)i < bi. It is shown that LISP generalizes
LESP and that it unifies a number of matrix-scaling problems that have been studied recently. Further, it
is shown that LISP can be reduced to one of two convex optimization problems and these reductions are
used to characterize solutions to LISP and to derive necessary and sufficient conditions for their existence.
In addition, uniqueness of solutions is established and perturbed relaxations of LISP are considered.

Key words, scaling, inequality systems, linear
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1. Introduction. A scaling of an array of numbers, e.g., a vector or a matrix, is
obtained by multiplying each of the elements of that array by a corresponding positive
number where some structure is imposed on the multiplying coefficients. For example,
if A (Aij) is a (rectangular) matrix and B (Bij) is a matrix with Bj diAiej for
some positive vectors d and e, we call B a (D, E)-scaling of A. Also, if A (Ai) is
a square matrix and B=(Bj) satisfies Bi=dAi(dj)-1 for some positive vector d, we
call B a (D, D-1)-scaling of A. Scaling problems concern the identification of scalings
of given arrays where certain specified properties are to be satisfied. Problems where
the target properties are defined via linear equations are of particular interest; see
Bacharach (1970), King (1981), Eaves et al. (1985), Bapat (1982), Raghavan (1984,
1985), Schneider and Zenios (1987), Rothblum and Schneider (1989), and references
therein. A unifying approach to such problems was recently derived and analyzed by
Bapat and Raghavan (1989), Franklin and Lorenz (1989), and Rothblum (1989). The
purpose of this paper is to extend the formulation of scaling problems to situations
where the desired properties concern linear inequalities. Instances of such matrix
scaling problems were recently considered by Balinski and Demange (1987, 1988) and
Schneider (1989, 1989a); see 5 for further details. We also note that our approach
generalizes the one for linear equations by the standard transformation of equality
constraints to pairs of inequalities; see the end of this section and 4 for further details.

Before presenting the scaling problem to be considered in this paper we summarize
some definitions and notation that will be used. We call a vector w R p nonnegative,
written w-> 0, if all the coordinates of w are nonnegative; we call w strictly positive,
written w >> 0, if all the coordinates of w are positive; and we call w semipositive, written
w>0, if w=>0 and w#0. Also, we write w=<v, w<<v, or w<v, for w, vRp if,
respectively, v w => 0, v w >> 0, or v w > 0. Corresponding notation will be used for
matrices. The notation II will be used for the l norm, i.e., for a vector x R’,
Ilxll=max {Ix, l" 1 =<i-<_p}. Finally, we denote by 1 the vector whose coordinates are
all 1. The dimension of this vector will be clear from the context.

*Received by the editors October 23, 1989; accepted for publication (in revised form) October 25, 1991.
t Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technology, Haifa

32000, Israel and Rutgers Center for Operations Research (RUTCOR), Rutgers University, P.O. Box 5062,
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Throughout the remainder of this paper, let a R n, b R m, and C Rmxn be given
where a is a strictly positive vector. The linear inequality scaling problem (LISP) with
data a, b, and C is defined to be the problem of finding vectors u R" and a’ R"
satisfying

(1)

(2)

(3)

and

0<< u=<l,

a aj (ui)C, for j 1,..., n,
i=

Ca’<= b,

(4) ui 1 whenever (Ca’)i < bi.

Studying solutions to (1)-(4) is the main goal of our paper. In particular, we characterize
such solutions and obtain necessary and sufficient conditions for their existence and
for the existence of solutions for perturbed relaxations of the problem (to be formally
defined in 3). Also, we derive uniqueness results.

Of course, if a is nonnegative rather than strictly positive, then for every C-scaling
a’ of a, a’i 0 whenever ai--0. It follows that when considering the LISP with data a,
b, and C, we can drop the zero coordinates of a and the corresponding columns of
C. Thus, without loss of generality, we may assume that a is strictly positive. Still, in
applications where the vector a represents a matrix, the inclusion ofthe zero coordinates
is convenient and natural because it facilitates the use of matrix notation. When we
develop the theoretical analysis of the LISP we will assume that the given vector a is
strictly positive; but, in the discussion of examples, we allow zero coordinates whenever
convenient.

A vector a’ is called a C-scaling of the vector a if a’ has the representation (2)
for some strictly positive vector u R m, in which case u is called a weight vector
corresponding to a’. Such a weight vector is called normalized if u =< 1, i.e., if u 1.
We call a C-scaling a’ of a normalized if it has a corresponding weight vector that is
normalized. Thus LISP is the problem of finding a normalized C-scaling a’ of a that
satisfies the linear inequalities

(5) Coa <= bi fori=l,...,m,
i=1

such that for some normalized weight vector u corresponding to a’ we have that (5)
holds with equality for each for which ui < 1.

The linear equality scaling problem (LESP) with data a, b, and C, is defined as the
problem of finding a C-scaling a’ of a that satisfies Ca’= b. We note that given a, b,
and C, the LISP with data a, (-b), and (_) is the problem of finding v, w, R and
a’ R satisfying

0<< v <= 1, 0<< w _<- 1,

a aj
i=

for j= 1,..., n,

and

Ca’= b.
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Taking the change of variable ui vi/Wi, the above problem reduces to finding u R"
and a’ R that satisfy

’= forj 1, ,n,0<<u, a a (u)%
i=

and

Ca’ b,

which is the linear equality scaling problem with data a, b, and C. So, the LESP is a
special instance of the LISP.

Our development relies on the identification of two convex optimization problems
whose optimal solutions correspond to the solution of the LISP. Variants of these
optimization problems were previously applied by Bapat and Raghavan (1989),
Franklin and Lorenz (1989), and Rothblum (1989) to study the LESP. We show in 4
how the results of the current paper can be used to derive results for LESP obtained
in the above references.

2. Characterization. We will find it useful to apply the change of variables S

In (ui) to (1)-(4), resulting in the following system:

(1’) s=<0,

(2’) aj =aj exp Z siCi for j 1,..., n,

(3’) Ca’<= b,

and

(4’) Si[ (Ca’)i bi] 0 for 1,..., m.

In particular, a pair (a’, u) satisfies (1)-(4) if and only if the pair (a’, s) satisfies
(1’)-(4’). So, the LISP reduces to the problem of identifying a solution to (1’)-(4’).

The following nonlinear optimization problems are useful for studying the LISP:

Program I" min x [In (x/a 1
j=l

subject to Cx <= b, x >- O,

where, as usual, x[ln (xj)] is defined as zero when xj =0, and

Program II" min aj exp yCo yb

subject to y =< 0.

We note that the objective functions ofthese programs are convex. This fact is immediate
for the objective of Program I (by differentiation twice) and was verified for Program
II in Rothblum (1989, Lemma 1). Also, standard arguments show that Program II is
equivalent to the dual of Program I; see the Appendix in Rothblum (1989a) for details.

The next two lemmas use convexity arguments to characterize optimal solutions
of the above two programs. In particular, the issue in Lemma 1 is a careful examination
ofthe boundary ofthe feasible region of Program I. Our approach here follows Franklin
and Lorenz (1989), who considered a variant of Program I with the equality constraints
Cx b rather than the inequality constraints Cx <= b. The approach in the analysis of
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Program II in Lemma 2 follows Rothblum (1989), who considered the unconstrained
variant of Program II. Proofs of the two lemmas are included for the sake of com-
pleteness.

LEMMA 1. Assume that Program I is feasible. Then:
(a) Program I has a unique solution;
(b) if x* is the optimal solution of Program I and x is any feasible solution of that

program, then {j 1,..., n xj*. >0}_{j= 1,..., n" xj>0};
(c) the optimal solution of Program I is strictly positive if and only if {x Rn:

Cx <- b, x >> 0} ; and
(d) a strictly positive vector x R is the optimal solution of Program I if and only

if there exists a vector A in R such that (x, A) satisfy

(6)

(7)

(8)

and

(9)

ln(xj/aj)+(ATc)j=O forj= l,...,n,

Cx <- b,

Ai(Cx-b)i=O for i= l,.. m.

Proof. Let R/ (t R" => 0}. For j 1,..., n consider the function f" R+- R
defined by f(t) t[ln (t/aj) 1] for > 0 while f(0) 0. Each f is continuous and
strictly convex on R/, is twice differentiable on R+\{0}, attains a unique minimum
over R/ at aj, and f(aj)=

Let _x be any (fixed) feasible solution of Program I. As limt_.f(t)=oo for each
j, we have that for some K>0, f(t)=>f(_x)+Yaj for all t>K. Let K=
max {K1,..., Kn}. Now, if y is feasible for Program I and Ilylloo> K, then for some
k= 1,..., n, Yk> Kk and

f(y)>--fk(Yk)+ f(a)>= [f(_x)+ aj]+ (-a) >f(_x).
jk jk

Hence, min {f(y): Cy<-b, y>-0I=min {f(y): Cy<-b,y>-O, Ilyll_-<K} and standard
compactness arguments show that Program I attains a minimum. The uniqueness of
the optimal solution of Program I follows immediately from the convexity of its feasible
region and the strict convexity of each of the functions f. So, part (a) has been
established.

Let x* be the (unique) optimal solution of Program I and let x be any feasible
solution of that program. For each O=< e_-< 1, let x(e) (1-e)x*+ ex and let J-=
{j 1,..., n: x > 0 or xj > 0}. Then, for 0_-< e _-< 1, x(e) is feasible for Program I;
furthermore, for 0 < e < 1, x(e)j > 0 and

(d/de)f[x(e)] E (xj-x) In [x(e)/aj ].

Let Jo {j J" x 0} and we will show that Jo . Now, for j Jo, xj > 0 and

(d/de)f[x(e)]=xjln (exj)+O(1)=( ffJo xj)In (e)+O(1) as e-O.
jeJo

So, if Jo , then (2Jo xj) 0 and the limit of the above derivative as e 0 is -oo,
implying that fix(e)] <f(x*) for all sufficiently small positive e. This contradicts the
optimality of x* and therefore proves that Jo=, i.e., {j= 1,..., n’x>O}_
{j-- 1,..., n’x > 0}. So the proof of (b) is complete. Also, (c) is immediate from (b).
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We finally establish (d). We first show that if x*--the optimal solution of Program
I--is strictly positive, then there exists a vector h in R such that the pair (x*, h)
satisfies (6)-(9). Let I=-{i=l,...,m:(Cx*)i=bi} and let z be any vector in R
satisfying (Cz)i <- 0 for all I. Then for sufficiently small positive e, x* + ez is strictly
positive and is feasible for Program I; in particular, for such e, f(x*+ ez)>=f(x*),
implying that

[(vf)(x)lx:.]z d/ d)f(x* + z)l:o -> 0.

Thus, letting C be the submatrix of C corresponding to the rows of I, we have that

Ciz <= 0 implies that -[(Vf)(x)lx=x.]rz <- O.

By Farkas’s Lemma (see, e.g., Schrijver (1986, Lemma 7.1d, p. 89)), we conclude that
for some nonnegative vector h R" with hi =0 for all {1,..., m}\I,

ArC [(Vf)(x)]rl=.- (ln (xl/al),..., In (x,/a,)).

So, h and x* satisfy (6)-(9), the latter following from the fact that hi =0 for all
i{1,..., m}\I.
Next assume that _x is a positive vector in R" such that _x and a vector h in R

satisfy (6)-(9). Suppose that _x x*. As _x is feasible for Program I, and x* is the
unique optimal solution of Program I, the convexity of f assures that

[(Vf)(X)lx=_] r(x* x_ d/ de )f[(1 e)_x + ex*]l__o <-f(x*) -f(x_ < O.

As (6) asserts that [(Vf)(X)lx=_] r= -ARC, we get from the above, (9), (8), and the
feasibility of x* for Program I, that

0 > [(Vf)(X)lx=_] r(x*-_x)= -A rC(x*- _x) -A r(Cx* b)+ A r(C_x- b)

-A r(cx*-b)>=O,

a contradiction, which proves that x x*. V1

We observe that part (d) of the above lemma is a statement about the necessity
and sufficiency of the Kuhn-Tucker conditions for optimality for Program I. The
elaborate arguments were needed because of the nondifferentiability of f on the
boundary of its domain. A general result about the necessity and sufficiency of
Kuhn-Tucker conditions for convex optimization problems where the objective func-
tion is known to be differentiable only on the relative interior of its domain (without
any separability assumptions) was recently obtained in Schneider (1989, Thm. 7).
Schneider’s result could have been used to construct a more direct proof of (d). Still,
we used independent arguments because they are more elementary.

LEMMA 2. A vector y R is an optimal solution of Program II if and only if
(10) y_<0,

(11) Cijaj exp ykCkj <---- bi for i= 1,..., m,
j=l --,1

and

(12) Yi Coa exp ykCkj --bi =0 for i= 1,..., m.
j=l =1

Proof As the objective of Program II is convex and its constraints are defined
via linear inequalities, we have that the Kuhn-Tucker conditions are necessary and
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sufficient for optimality; see Avriel (1976, Thms. 4.38 and 4.39, pp. 97-98). For Program
II, the Kuhn-Tucker conditions assert that y <= 0 and for some vector

and

Caj exp ykCkj bi + Ii 0
j=l =1

for l, m,

z => 0 for 1,..., n,

YitXi=0 fori=l,...,m.

Trivially, these conditions are equivalent to (10)-(12). 13
We next use the above two lemmas to show that solving LISP is equivalent to

solving either Program I or Program II.
THEOREM 1 (characterization). Let s R and a’ R n. Then the following are

equivalent:
(a) the pair (a’, s) satisfies (1’)-(4’);
(b) a’ is an optimal solution of Program I, a’>>0, and the pair (a’,-s) satisfies

(6)-(9); and
(c) s is an optimal solution of Program II and

(13) a a exp siCij forj 1,..., n.

Proof (a)(b): Assume that the pair (a’, s) satisfies (1’)-(4’). Then (2’) implies
that a’ >> 0 and that

ln(a/a)=(srC) forj=l,...,n.

Combining this fact with (1’), (3’), and (4’) shows that the pair (a’, -s) satisfies (6)-(9).
Further, Lemma 1 (d) assures that in this case a’ is an optimal solution of Program I.

(b)=>(a): Observing that (6) asserts that

xj a exp E iiCij
i=l

for j= 1,..., n,

we have that the pair (a’, s) satisfies (1’)-(4’) if and only if (a’,-s) satisfies (6)-(9).
In particular, we have that (b) implies (a).

(a)=:>(c): Assume that the pair (a’, s) satisfies (1’)-(4’). Then (2’) coincides with
(13) and, on substituting (2’) into (3’) and (4’), we have that

Cia exp E SkCkj <= bi
j=l k=

for l, m

and

si Coa exp skCkj bi =0
j-----I k=l

for i= 1,..., m.

As (1’) asserts that s-<0, we have that s satisfies (10). It now follows from Lemma 2
that s is an optimal solution of Program II. So, (c) has been established.

(c)=>(a): Assume that s is an optimal solution for Program II and that (13) holds.
Then Lemma 2 implies that s satisfies (10)-(12). In particular, on substituting the
representation of a’ given by (13), we get that

s <= O, Ca’ <= b,
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and

yi(Ca’-b)i=O fori=l,...,m.

These conditions combine with (13) to show that the pair (a’, s) satisfies (1’)-(4’). [3

In order to characterize solutions to the original system (1)-(4) we apply a change
of variable zi exp (yi), i= 1,..., m, to Program II, yielding the following program:

Program II’: min aj z/c,j y In (zi) bi
j=l i=1 i=1

subject to 0 << z =< 1.

COROLLARY 1. Let u R and a’ R n. Then the following are equivalent:
(a) the pair (a’, u) satisfies (1)-(4);
(b) a’ is an optimal solution of Program II’, u >>0, and the pair (a’,-s) satisfies

(6)-(9) where s R is defined by si In (ui) for i= 1,..., m; and
(c) u is an optimal solution of Program II’ and

(14) aj=a u.’J forj= l,..., n.
i=1

Proof The equivalence of the above three assertions is immediate from Theorem
1 and the change of variables used to convert (1)-(4) into (1’)-(4’) and Program II
into Program II’.

3. Existence and uniqueness. Our next result gives a number of characterizations
for the existence of a solution to LISP with (the given) data a, b, and C.

THEOREM 2 (existence). The following are equivalent:
(a) LISP with data a, b, and C has a solution;
(b) {x e R" Cx <-_ b, x >> 0}
(c) there exists no , R that satisfies , >-_ O, , rb <= O, and eitherrC 0 or rb # 0;
(d) Program I has an optimal solution u that is strictly positive;
(e) Program II has an optimal solution; and
(e’) Program II’ has an optimal solution.

Proof (a)(b): Assume that a’ and u satisfy (1)-(4). Then the strict positivity
of a and u implies that a’ is strictly positive (see (2)). Combining this fact with (3)
shows that a’ {x R Cx <- b, x >> 0}; hence this latter set is nonempty, establishing (b).

(b):>(c): It follows from Motzkin’s Theorem, e.g., Schrijver (1986, Cor. 7.1k,
p. 94) that {x R" Cx <= b, x >> 0} if and only if there exists no h R and/x R"
such that

i TC __/./,T 0, / -> 0, /z => 0, A Tb <= 0 and either /x 0 or Z Tb 0,

i.e., there exists no R" satisfying the conditions spelled out in (c). So, indeed, (b)
and (c) are equivalent.

(b)c:>(d): This equivalence is immediate from Lemma l(c).
(c)(e): Assume that (c) holds, i.e.,

(15) h R", h 0, h TC 0, /b _--< 0 hC 0, hb 0

and we will show that Program II has an optimal solution. Denote the objective function
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of Program II by h(.), i.e., for y R", h(y) =j= aj exp (yrC)-bry. A direction of
recession of h(. is defined to be a vector d R for which

(16) sup {h(y+d)-h(y)}<=O.
yR

As the function h(. is convex, we have from Rockafellar (1970, Thm. 173, p. 267)
that existence of an optimal solution for Program II is implied by the assertion that
every direction of recession d =< 0 of h(. satisfies

(17) h(y+d)-h(y)=O for allyR’.

Thus, it suffices to show that if d =< 0 satisfies (16), then it must satisfy (17).
Assume that d =<0 satisfies (16). Substituting the explicit expression of h(.) into

(16), we have that for every y R’,

(18) a exp [(yrC)+(dC)] aj exp (yrC)-bd <-O,
j=l j=l

or equivalently,

(19) a{exp (yrC)[exp (drC) 1]}_-< brd.
j=l

We next argue that drC<=O. Let J+--{j=l,...,n" (drC)j>0} and let J_=

{j= 1,..., n’(drC)<=O} and we will show that J+=. Suppose that J+ and
p J+. Then for each M > 0, (19) with y Md implies that

ap exp [M(drC)p][exp (drC),-1]<= Y aj exp [M(drC)j][exp (drC)- l]
jJ+

<-bTd- E ajexp[M(dTC)][exp(dTC) -1]
jeJ_

<=brd+ E a,
jJ_

implying that a, exp[M(drC),][exp[M(drC)p-1] is bounded from above in M.
But this conclusion is false as (drC)p>O. This contradiction proves that J+ =, i.e.,
drC <=0. We also have from (19), again with y Md, that for each M > 0

bTd >- a {exp [M(drC)j][exp (dTC)j- 1]}.
j=l

As d rC-< 0, the right-hand side of the above inequality converges to zero as M eo

and we conclude that b Td >-0. So, we have seen that (16) implies that d Tc <=0 and
dTb>-_O. We next combine this fact with (15) to conclude that if d-<0 satisfies (16),
then necessarily dTc=o and dTb=O, implying that (19) and (18) must hold as
equalities. So, (17) must hold, thereby completing our proof that (c)=:>(e).

(e) :> (e’)" This equivalence is immediate as Program II and Program II’ are derived
from each other via a change of variables, zi exp (yi) and yi In (zi), i= 1,..., m,
respectively.

(e’)=>(a): Assume that (e’) holds and that u R is an optimal solution of Program
II. Given u, define a’6 R by

aj= aj
i=1

Then Corollary 1 assures that (a’, u) satisfies (1)-(4), implying that LISP with data a,
b, and C has a solution. V1
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Remark. We observe that conditions (b) and (c) of Theorem 2 are independent
of the vector a. Thus, Theorem 2 implies that if b R and C R are fixed and
either condition (a), (d), (e), or (e’) is satisfied for a, b, and C for one (strictly positive)
vector a in R n, then the same conclusion holds for all (strictly positive) vectors a in R".

Theorem 2 demonstrates that LISP need not have a solution. We next examine
relaxations of LISP, which can sometimes be solved in cases where LISP itself cannot.
In particular, we consider two types of relaxations of LISP. One concerns the relaxation
ofthe constraints Cx <- b through perturbations Cx _-< b + e 1 for arbitrarily small positive
e. The other concerns the replacement of some of the positive elements of the data
vector a by zero elements. Interestingly, solvability of these two different relaxations
is equivalent.

We need one additional piece of notation. For a subset J of {1,..., n}, we let C J

denote the submatrix of C corresponding to the columns indexed by J. Similarly, for
a vector x R ", we let xj be the corresponding subvector of x.

THEOREM 3 (existence for perturbed relaxations). The following are equivalent:
(al) for every e>0, LISP with data a, b+el, and C has a solution;
(a2) for some subset J of { 1,..., n}, LISP with data a, b, and C j has a solution;
(bl) for every e>0, {xR":Cx<-b+el, x>>0};
(b2) {x R" Cx <- b, x >- 0} ;
(c) there is no vector A in R" for which A >-O, A 7"C >-O, and A rb < 0;
(d) Program I is feasible and has an optimal solution;
(e) the objective of Program II is bounded from below; and
(e’) the objective of Program II’ is bounded from below.
Proof. The equivalences (al)c(bl) and (a2)c:>(b2) follow from Theorem 2 (the

latter relying on the convention that C Jx is defined as zero when J is empty); the
equivalence (b2) (c) follows from a variant of Farkas’s Lemma, e.g., Schrijver (1986,
Cor. 7.1f, p. 90); the equivalence (b2) :> (d) follows from Lemma 1; and the equivalence
(e)c:>(e’) follows from the fact that Programs II and II’ are derivable from each other
via the change of variable zi=exp (yi) for i= 1,..., m. We complete the proof by
showing that (bl)c(b2) and (b2) =:> (e) :=> (c).

(bl):=>(b2): Assume that (bl) holds. Then for every e >0,

{xR": Cx<< b+le, x>>O}_{xR": Cx<=b+2-1el, x>>O},
implying that

{xRn, sRm" Ilfx+Is-bll,x>>O,s>>O
_{xR",sRm" Cx+Is=b+2-1el, x>>O,s>>O}.

It now follows from standard results about linear inequalities, e.g., the Appendix of
Rothblum and Schneider (1989), that {x R", s Rm: Cx + Is b, x >- O, s >- 0} ,
i.e., {xRn: Cx<-b, x>_-0}#.

(b2)=:>(bl): Assume that (b2) holds, i.e., there exists a vector x* R" satisfying
Cx*<-b and x*=>0. Then for every e>0, x=-x*+e(llCllloo/l)-l
{x R": Cx <- b+ el, x >>0}.

(b2)=>(e): Assume that (b2) holds, i.e., there exists a vector x* R" satisfying
Cx* <- b and x* >- O. Let J=-- { l, n x* > O}. Then {xj Rll: Cx <- b, xj >>0}
and the equivalence of (b) and (e) in Theorem 2 implies that the minimization problem

min jaexp yiCi -i=1 i=1

subject to y =< 0
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has a minimum. As each term aj exp (yrC)j forj {1,..., m}\J is positive, the minimal
objective value of the above problem is a lower bound on the objective value of
Program II.

(e)=>(c): Suppose (c) is not satisfied and there exists a vector h R with h -> 0,
h rC => 0, and h rb < 0. Then for every M > 0, -MA is feasible for Program II and

ajexp[(-Mh)rC]j-(-Mh)Tb<= aj+MhTb.

As limM_, MATb----cx, we conclude that the objective function of Program II is
unbounded from below, i.e., (e) is not satisfied.

Remarks. 1. We note that condition (c) of either Theorem 2 or Theorem 3 can be
replaced with a finite set of constraints on C and b; see Eaves and Rothblum (1992)
for details. Particularly useful conditions that can be derived explicitly arise in problems
where the matrix C is an incidence matrix of a graph. This happens, for example, in
matrix scaling problems; see further discussion in 4 and 5.

2. The proof of the equivalence of (a2) and (b2) in Theorem 3 (using Theorem
2) shows that (a2) is satisfied for a specific subset J of {1,..., n} if and only if
{x R": C Jxj-< b, xj >> 0} # . As there exists a maximal subset J of {1,..., n} for
which {x Rn: Cx <-b, xj >>0} # , we have that this set is the maximal set J for
which LISP with data a, b, and C J has a solution.

Our next result concerns uniqueness of solutions to LISP.
THEOREM 4 (uniqueness). There exists at most one vector a’ for which there exists

a vector u R such that (a’, u) is a solution to LISP with data a, b, and C. Furthermore,
if (a’, u) is a solution to LISP with data a, b, and C, then (a’, a) is another solution if
and only if

(20) 0<< fi -<- 1,

(21) In (ui) C/ In (li) Cij for j 1,..., n,
i=1 i=1

and

(22) i 1 whenever Ca’)i < bi for 1,..., m.

Proof Assume that (a’, u) and (a’, tT) are solutions of (1)-(4). Then Corollary 1
implies that both a’ and ’ are optimal solutions of Program I, and therefore by the
uniqueness of a solution to that program (see Lemma 1), we have that a’= a’. Further-
more, we get from Corollary 1 that if (a’, u) and (a’, tT) satisfy (1)-(4), then

for j 1, n,

immediately implying (21). Also, (20) and (22) follow directly from the fact that (a’, )
satisfies (1) and (4), respectively.

Next, assume that (a’, u) is a solution of (1)-(4) and that fi satisfies (20)-(22).
First, (20) and (22) show that (a’, ) satisfies (1) and (4), and as (a’, u) satisfies (3),
so does (a’, ). Finally, on exponentiation of (21), we get that

1-I uck= 1-I tT’k forj=l,...,n,
k=l k=l
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implying that

aj= aj u% a
k=l

thereby showing that (a’, ) satisfies (2).

fi tkC’) forj=l,..., n,
k=l

4. Linear equality scaling problems. We continue to let a Rn, b R", and C
R" be given where a is strictly positive. Recall that the linear equality scaling
problem (LESP) with data a, b, and C is defined as the problem of finding a vector
u R and a’ RN satisfying

(23) 0<< u,

(24) a a u% for j 1,..., n,
i=1

and

(25)

Of course, the change of variables
to

Ca’= b.

In (ui) makes (23) superfluous and converts (24)

(24’) a a exp siCo for j 1,..., n.
i=1

We have seen in 1 that the LESP with data a, b, and C is equivalent to the LISP
with data a, (_bb), and (_). Programs I and II can be written for this instance of the
LISP as

and

Program I*" min xj [In (x / aj 1
j=l

subject to Cx b, x >-_ O,

Program II*" min a exp yCi , yb,
j=l i=1

where a standard change of variable was applied in the derivation of Program II*.
Programs I* and II* were used, respectively, in Franklin and Lorenz (1989) and
Rothblum (1989) to analyze the LESP. Earlier work of Marshall and Olkin (1968),
Bacharach (1970), Bachem and Korte (1979), Eaves et al. (1985) and Rothblum and
Schneider (1989) and others considered special cases of Programs I* and II* for
instances of LESP that concern matrix scalings. We next specialize the results of 2
and 3 to obtain many of the results of the above references. The arguments require
some standard transformations that are left to the reader.

THEOREM 1" (characterization). Let s R" and a’ R". Then the following are

equivalent:
(a) the pair (a’, s) satisfies (24’) and (25);
(b) a’ is an optimal solution of Program I*, a’>>0, and the pair (a’,-s) satisfies

(26), (27); and
(c) s is an optimal solution of Program II* and (24’) holds.
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THEOREM 2* (existence). The following are equivalent:
(a) LESP with data a, b, and C has a solution;
(b) {x R": Cx b, x>>0};
(c) there exists no rl R which satisfies A TC >= O, A Tb <= 0 and either A TC 0 or

Xrb 0;
(d) Program I* has an optimal solution u which is strictly positive; and
(e) Program II* has an optimal solution.
The remark following Theorem 2 shows that, given b R and C R, if either

condition (a), (d), or (e) ofTheorem 2* holds for a, b, and C for some (strictly positive)
vector a, then the same conclusion holds for all (strictly positive) vectors a.

THEOREM 3* (existence for perturbed relaxations). The following are equivalent:
(a) for every e >0, there exist vectors s R" and a’ R satisfying (24’) and

Ilfa’-bll<=e;
(bl) for every e>0, {xR: IlCx-bll<-, x>>0;
(b2) {x Rn: Cx b, x >= 0} ;
(c) there exists no A R for which A TC >-- 0 and A ’b < 0;
(d) Program I* is feasible and has an optimal solution; and
(e) the objective of Program II* is bounded from below.
We observed in 3 that condition (c) of either Theorem 2 or 3 can be replaced

with a finite set of constraints on C and b. A particularly useful form of such (finite)
constraints is available for matrix scalings (see 5), e.g., the Menon-Schneider condi-
tions for matrix scalings with prespecified row-sums and column-sums. See Rothblum
and Schneider (1989) for further details.

THEOREM 4* (uniqueness). There exists at most one vector a’ for which there exists
a vector u R" such that (a’, u) is a solution to LESP with data a, b, and C. Further,
if a’, u) is such a solution, then a’, f) is another solution if and only if f >> 0 and

In (ui)fj In (ai)Cij forj= 1,..., n.
i=1 i=1

We can combine the LISP and the LESP and consider scaling problems with both
equalities and inequalities. The results of 2 and 3 and those of this section can then
be combined correspondingly. We omit the details for the general case because they
are straightforward (though a little cumbersome). Still, we demonstrate the idea for
LESP with upper and lower bounds.

Suppose that in addition to the given a, b, and C we have two nonnegative vectors
r and in R n. Consider the LISP with data

b
b

C

a, and

Using standard transformations, this problem reduces to identifying a’ R", u R ",
and r/ R" such that

0<< u, 0<<

( kj] forj=l n,aj=a u rl
\ /k=l

Ca’=b and t_-<a’<=r,

a ) whenever r/ < 1,
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and

aj b whenever r/j > 1.

Furthermore, Programs I and II for the above LISPs are then given, respectively, by

Program If: min xj In (xj/ a) 1
j=l

subject to Cx b, <= x <- r

and

Program IIf min a exp ziCi + yi x b rz try + s rx
j=l i=1

subject to x-<_0, y-<_0.

Lemmas 1 and 2 and Theorems 1-4 can now be modified correspondingly; we omit
the details.

5. Matrix scaling. Many important applications concern scaling problems where
the vector a that is to be multiplied by scaling coefficients is actually a multidimensional
array of numbers. For example, when a represents a matrix, we refer to problems that
concern corresponding scalings as matrix scaling problems.

One type of commonly used scaling of a matrix A (A,) has the form (DiAoE ),
where D and E are diagonal matrices having positive diagonal elements. We note that
such scalings are C-scalings of the array (A) where the matrix C is the bipartite
node-node incidence matrix of the (un)directed graph that corresponds to the matrix
A; see Rothblum (1989) for details. We observe that in this case, with a’ corresponding
to the scaled matrix, we have that Ca’ represents the vector whose elements are the
row-sums and column-sums of the scaled matrix. So, the constraints Ca’- b or Ca’ <-_ b
represent, respectively, prespecification or upper bounds on row- and column-sums;
see Rothblum (1989) for a more explicit explanation of the equality case. Schneider
(1989) considered the equality case with upper and lower bounds and showed how
this problem generalized a number of matrix scaling problems with equality constraints.
Balinski and Demange (1987, 1988) considered the problem where upper and lower
bounds on the row- and column-sums are given.

Another type ofuseful scaling of a square matrix A (Aij) has the form (D,AiD ),
where D is a diagonal matrix having positive diagonal elements. Such scalings are
C-scalings of the array (A) where the matrix C is the node-node incidence matrix
of the directed graph that corresponds to the matrix A; see Rothblum (1989) for details.
We observe that in this case, with a’ corresponding to the scaled matrix, we have that
Ca’ represents the vector whose elements are the differences between row-sums and
corresponding column-sums of the scaled matrix. Further, the constraints Ca’= b or
Ca’ < b represent, respectively, prespecification or upper bounds on these differences;
see Rothblum (1989) for a more explicit explanation of the equality case.
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Abstract. This paper introduces two new proximal point algorithms for minimizing a proper, lower-
semicontinuous convex function f: R R w {oo}. Under this minimal assumption on f, the first algorithm
possesses the global convergence rate estimate f(Xk)- minxa’, f(x)= O(1/(..jk=- x/)2), where {Ak} k=0 are
the proximal parameters. It is shown that this algorithm converges, and global convergence rate estimates
for it are provided, even if minimizations are performed inexactly at each iteration. Both algorithms converge
even if f has no minimizers or is unbounded from below. These algorithms and results are valid in
infinite-dimensional Hilbert spaces.
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1. Introduction. In this paper we present two new proximal point algorithms for
the minimization problem

(1.1) min f(x)
XERn

where f" Rn--> R w {} is a proper lower-semicontinuous convex function, using the
terminology established in Aubin and Ekeland [1] and Rockafellar [17].

The classical proximal point algorithm was introduced into optimization literature
by Martinet [11]. It is based on the notion of proximal mapping Ja,

(1.2) Jx:= arg min {f(z)+ 1-
za" 2A Ilz-xll =

introduced earlier by Moreau [12]. The proximal point algorithm solves a single
optimization problem by solving a sequence of optimization problems (1.2)" it starts
from a point xoR" and generates the sequence {Xk}kO, where

(1.3)
x’Rn k

and where {Ak}k_-_O is a sequence of positive numbers. The proximal point algorithm
was popularized by Rockafellar [18], who showed that the algorithm converges even
if the auxiliary minimizations in (1.3) are performed inexactly, which is an important
consideration in practice. Giiler [7] analyzed the algorithm further and provided global
convergence rate estimates for it in terms of the objective residual f(Xk)- minxa f(x).

The minimization problem (1.1) is general enough to include the generic convex
programming problem

(1.4) min fo(x) s.t. f(x)_-< 0, i- 1,..., m,
xC

where C is a closed convex subset of R" and f" Rn- R, i-0, 1,..., m are convex
functions; see Rockafellar [19].

* Received by the editors December 26, 1990; accepted for publication (in revised form) August 7, 1991.
Department of Management Sciences, The University of Iowa, Iowa City, Iowa 52242.
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The usual application of the proximal point algorithm to convex programming is
not to the primal program (1.4), but to its dual

(1.5) max inf fo(x) + yf(x) s.t. y >_- 0.
yR [.xC

The resulting algorithm is called the augmented Lagrangian method. It was introduced
into optimization literature independently by Hestenes [9] and Powell 16]. Augmented
Lagrangian methods have many advantages over penalty methods; see Bertsekas [2]
and Rockafellar 19].

The algorithms developed here are close in spirit to the classical proximal point
algorithm discussed above. The only difference is that our algorithms generate an
additional sequence {yk}=0 of points in R", and calculate Xk+ from

(1.6) Xk+l JxkYk :’-- arg xR"min f(x) +k x yll =

The main work in the new algorithm is in the calculation of Xk+I in (1.6), the calculation
of Yk being trivial. As with the classical algorithm, we show that the minimization in
(1.6) can be performed inexactly.

For any feasible x R", the algorithms here possess the global convergence rate
estimate

( 1 )(1.7) f(Xk) f(x) 0 kl A

This is faster than the available rate

(1)(1.8) f(Xk) f(x) 0 k-1

obtained by Giiler [7] for the classical proximal point algorithm.
The paper is organized as follows. In 2 we present the first proximal point

algorithm for (1.1). We state the algorithm and estimate its convergence rate under
the assumption that exact minimizations are performed in (1.6). In 3, we present a
version of the algorithm that requires only inexact minimizations in (1.6). In 4, we
show that the algorithms in 2 and 3 have the property that f(Xk) -- inf,R, f(x), even
in cases where f has no minimizers or is unbounded from below. We also present a
monotonic version of the algorithm in which f(Xk+l) <--f(Xk). Some concluding remarks
are made in 5. In the Appendix, we present our second proximal point algorithm.

2. The proximal point algorithm. In this section we develop a new proximal point
algorithm for problem (1.1). The inspiration for the algorithm comes from a paper by
Nesterov 14] in which an optimal algorithm is developed for smooth convex minimiz-
ation.

The idea of the algorithm is to generate recursively a sequence {(0k}k%0 of simple
convex quadratic functions (with a diagonal matrix in the quadratic term) that approxi-
mate f(x) in such a way that at step k >= 0, the difference k(X)--f(x) is reduced by
a fraction 1- ak, that is, for all x

(2.1) pk+l(x) f(x) <= (1-- ak)(k(X) f(x)),

where ak is a number in the interval [0, 1).
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If (2.1) is satisfied for each k-> O, we obtain by induction

k(X)--f(x) <- (1- aj)(qo(X)--f(x)).
\j=0

Defining
k-1

(2.2) /3= 1-I (1-aj),
j=O

we have

(2.3) k(X) f(x) <= ,Sk(o(X) f(x) ).

If, at step k, we have at hand a point x such that

(2.4) f(Xk) <= q’ := mi.n, q(z),

then we obtain from (2.3) the global convergence estimate

(2.5) f(Xk) f(x) <-- flk(qo(X)--f(x)).

This is a significant bound only iff(x) < co, that is, if x is feasible. Iff has a minimizer
x*, (2.5) specializes to

(2.6) f(Xk)--f* <- fl (q0(X*)--f*).

If/3- 0, then {x} is a minimizing sequence for f The magnitude of the constant
is a measure of the convergence rate of f(x,) to f*.

We define the quadratic functions o(x), k => 0, recursively, as follows:

A
tpo(X) := f(xo) +- IIx xoll =,

(2.7) o+,(x) := (1 a)o(x)

+ a(f(JxYk)+ ((Y JxY)/A, x- Jxy)).

Here A and A are positive numbers and a is a number in the interval [0, 1). The
point Xo is feasible, that is, f(xo)< oo. Here the point y e R" can be arbitrary. Later,
it will be chosen to satisfy certain desirable properties.

LEMMA 2.1. For all k >= O, the quadratic functions opt(x) defined above satisfy
inequality (2.1), that is,

p,+,(x) f(x) <= (1 ak)(Ok(X) f(x)).

Proof Since JakY, is the minimizer in (1.6), we have by the subdifferentiation
formula (see Roekafellar [18, pp. 889]), Oof(J,kyk)+(J,yk--Yk)/Xk, that is,

(2.8) (Yk Jyk)/hk of(Jyk).

Since f is convex, for any x R", we have

f(x) >--f(JaYk + ((Yk JYk)/ hk, X JaYk).(2.9)

Thus

qk+,(X) f(x) 1 ak)(Ok(X) f(x))

+ ak(f(JakYk) + ((Yk JaYk)/Ak, X JaYk)--f(x))
-<_ (1 a,)(k(X)--f(x)).
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It is not obvious a priori how points Xk R can be chosen to satisfy inequality
(2.4). Toward this goal, we first note that the quadratic function k(X) can be written
in the canonical form

Ak(2.10) (Ok(X) (Ok "-[-’- [Ix- /]k[[ 2

where 0k* is the minimum value of the function Ok(X) in R and ’k is its minimizer.
Clearly Ao A and ’o Xo. Using (2.7) and (2.10) it is easy to show that for k _-> 0,

(2.11) Ak+I (1 ak)Ak flk+lA,

ak(2.12) Vk+I Vk--Ak+IAk (Yk--JxkYk)"

We will determine the points {Xk} satisfying (2.4) recursively. Suppose we already
have a point Xk satisfying inequality (2.4). The following result indicates how Yk and
Xk+I can be chosen such that Xk+I also satisfies (2.4). It is the main result of this section
and uses ideas from Nesterov [14, Lemma 1].

THEOREM 2.1. If, for some k >- O, Xk satisfies the inequality (2.4), that is, f(Xk) <--_ *k
then for any Yk Rn, Ak O, and Olk [0, 1), the following inequality holds"

(0+1->---f(JkYk)+k 2-A+IA/ IlY-JYII
(2.13)

1

+--k (Yk JYk, (1 ak )Xk + ak’k Yk)"

Proof We obtain from (2.7), (2.10), and (2.11)

(# k+l := (k+l (/k+l)

(1 ak)Pk(’k+l) + akf(JxYk)

(2.14) + ak (Yk J,Yk, ’k+l JxYg)
Ak

Ak+l=(1-a)+
2

[[Pg+’-g[[2+a(Jh"Yg)

k+(Yk JYk, k+l JxYk).
hk

Since by assumption f(Xk), we obtain from (2.9) that

f(Xk) f(Jyk) + ((yk JYk)/ hk, Xk JYk).
Using this in (2.14), we obtain

Ak+I+1 f(JYk)+
2 k+- k[[ 2

(2.15)
1+-- (Yk JYk, (1 ak)Xk + akk+ JYk).
Ak

The term (1- ak)Xk + akPk+l--Jzkyk above can be written as

((1 ak)Xk + agog Yk) + ak( k+ k) + (Yk JYk).
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Substituting the value of ’k+l- Uk from the formula (2.12) into the second term above,
we see that the scalar product term in (2.15) can be written as

(2.16) (Yk--JakYk, (1--ak)Xk+ak’k--Yk)+

Also, substituting the value of k+ k in (2.12) into the second term of (2.15), we obtain

(2.17 ak
2 --2A+A IlY-JYII="

We obtain (2.13) by using lines (2.16) and (2.17) in (2.15). This proves the
theorem.

COROLLARY 2.1. If in eorem 2.1, we choose

Yk (1 ak)Xk + kk,(2.18)

then

(2.19) (,k+l >=f(Jakyk)+k 2-A+-A/ IIY Ly[I

Corollary 2.1 suggests many possibilities for obtaining convergent proximal point
algorithms. For example, we can choose

(2.20) xk/l Jy := arg min f(z)+ I1- yll

(2.21) a Ak+IAk ".= (1 -ak)AkXk.

COROLLARY 2.2. Ifyk is chosen as in (2.18), Xk+ is chosen as in (2.20), and ak is
chosen as in (2.21), then

1
(2.22) (+1 >=f(Xk+)+k IlYk Xk+lll2 >-- f(Xk+l)

Our proximal point algorithm chooses Yk, Xk+, and ak according to Corollary 2.2.

THE PROXIMAL POINT ALGORITHM.
Initialization. Choose a feasible starting point Xo R" (f(xo)< o), and constants

Ao > 0 and A > 0. Define o := Xo, Ao := A.
Step k, k => 0:
(a) Choose Ak > 0, and calculate ak > 0 from the equation a (1 ak)AkAk, that

is,

x/(AkAk)2 dr 4AkAk AkAk(2.23) Ctk 2

(b) Define

(2.24)

Yk (1 ak )Xk + akUk,

Xk+l := Jxyk =arg min {f(z)+ 1 }o
z- Yk =

1
lk+l /)k -’’ (Xk+l--Yk),

ok

Ak+l=(1--ak)Ak.
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Remark 2.1. In the algorithm above, the starting point Xo must be feasible.
However, this is not a serious restriction since one preliminary iteration of the classical
proximal point algorithm can generate such a feasible point Xo.

In order to estimate the convergence rate of the algorithm, we must estimate the
magnitude of fig, as the inequality (2.6) shows. The following result gives tight bounds
for fig. The upper bound below is an extension of a result in Nesterov 14]. The lower
bound is needed in 3, Lemma 3.3.

LEMMA 2.2.

1 1
(2.25)

(1 ..r k’l -kZ =o =0

Proo We first prow the upper bound on in (2.25). From (2.2), we obtain
flk+=(1--ak)flk, which implies ak=l--flk+/flk. Also, from (2.11), A+l=flk+lA.
Substituting this in (2.21) results in

1-1 flk+,AAk.

We make the substitution k 2 in the equality above. Taking the square roots of
both sides of this equality and then multiplying both sides of the resulting equality by

2
k+, we obtain

(2.26) 2+- +.
It is easy to show that 2k+l(k+ --k)+-. Using this in (2.26) results in

2+(+-) +,
which implies + /2. Summing this inequality for j 0, I,..., k I and
noting o I, we obtain

I+o

Substituting / above proves the upper bound on #.
It remains to prove the lower bound on #. Note that #+ # implies+ .

2Thus +(+-)+-. Using this in (2.26), we obtain + .
As above, summing this inequality for j 0, I,..., k- I, we obtain

k-1

j=0

Substituting k fll12 above proves the lower bound on
From Corollary 2.2 and inequality (2.3), we obtain the following basic convergence

rate result.
THEOREM 2.2. For any feasible point x R", the proximal point algorithm stated

above has the global convergence rate estimate

1 f(xo) Tf(x) + (AI2)iix,+ +

Remark 2.2. The convergence rate estimate above is given in terms of the objective
function gap f(Xk)--f*. The convergence of the points {Xk} is a future research topic.
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Even if we can show that the sequence {Xk} converges to an optimal solution x*, it is
unlikely that a convergence rate can be provided for {llx-x*ll} without further
assumptions on f. Of course, iff is strongly convex, then, using the standard properties
of strongly convex functions, we can show that {Xk} converges to the unique optimal
solution of f and that

L2o
Also, in certain problems (for example, linear programming) we can prove that {Xk}
converges to the optimal set and provide an estimate of the convergence rate; see
Giiler [8].

Remark 2.3. The term Ily_--xll=/(2,_) in (2.27) is not strictly necessary to
obtain convergence estimates for the algorithm presented in this section. However, it
will be crucial in the next section where we present a relaxed proximal point algorithm
in which Xk+ is calculated only approximately"

Xk+ J"Yk := arg mi {f(z)+ 1 }z IIz-y =

It is also crucial in proving the finite termination of the augmented Lagrangian
algorithm for linear programming in Gfiler [8], which is an application ofthe algorithm
presented in this section.

The convergence rate of the proximal point algorithm is summarized below.
THEOREM 2.3. Supposefhas a minimizer x* andf* =f(x*) minima, f(z). Denote

the set of minimizers offby X*. eproximal point algorithm above possesses the global
convergence rate estimate

(2.28) f(Xk,_f. <
4 ( _f.A )(2

f(xo + o(xo, x*,
e algorithm converges, that is, f x f* if

(.9 2 .
k0

In particular, if > 0, we have the convergence rate estimate

f(xo + o(xo, x*l
(.30

Remark 2.4. The convergence rate of our proximal point algorithm given in (2.26)
compares favorably with the convergence rate estimate

(.3 f(xl -f*
o(xo, x*

k21

obtained in Gfiler [7] for the classical proximal point algorithm. It is clear that the
convergence rate estimate (2.28) is faster than (2.31). Moreover, it is shown in Gfiler
[7] (Remark 2.1) that the condition k=O ak =m is necessary and sucient for the
convergence of the classical proximal point algorithm. In contrast, the algorithm
presented here converges under the weaker condition (2.29).
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Further properties of the algorithm are given below. Note that (2.34) follows from
(2.32) because of (2.8).

COROLLARY 2.3. If (2.29) holds true in the proximal point algorithm, then

(2.32) [[Xk+l--Yk[12"O.
hg

If the sequence {hk} is bounded from above, then

(2.33) Xk+1 Yk O.

Also,

(2.34) Akp (0, Of(Xk+l))2 O.

If the sequence {Ak} is bounded away from O, then

(2.35) p(O, Of(Xk)) O O.

Iff is differentiable, (2.35) means that

(2.36) IIf’(x)ll - 0.

Remark 2.5. Ekeland’s e-variational principle (see Aubin and Ekeland 1, Chap.
5]) can be used to prove that iffis bounded from below, that is,f* := inf,a- f(x) > -o,
then there exist Xk and Wk Of(Xk) such that f(Xk) f* and Wk 0. A slight generaliz-
ation of Corollary 2.3 shows that such Xk and Wk can be generated by our proximal
point algorithm.

3. The algorithm with inexact minimization. In the proximal point algorithm pres-
ented in 2, Xk/ is given by

(31) Xk+ Jkyk := arg min (f z + 1 }zea k Z Yk []2

The point Xk/ is thus the exact minimum of the augmented function

1
(3.2) bg(z) :=f(z)+k Ilz-yll -.
The calculation of Xk+ can be almost as difficult to solve as the original minimization
problem (1.1). In this section, we show that a modification of the algorithm in 2,
which requires only an approximate minimization of bk, that is,

(3.3) Xk+ JxkYk := arg min bk z),
zR

still yields a convergent proximal point algorithm.
DEFINITION 3.1. We will say that Xk+I is an approximation minimizer of tk if

the following criterion A’ in Rockafellar 18, pp. 880] is satisfied:

Ek(A’) ,(0, o(x+)) <---.
hk

Note that if f is ditterentiable, condition A’ means that

Ek

We will give conditions on the magnitude of the errors ek which are sufficient to obtain
convergent algorithms.
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The result below shows that Xk+ is in fact an approximate minimizer of tk. It
will be needed later in this section.

LEMMA 3.1. Let qb*k =minzl- Chk(Z). If Xk+l satisfies condition A’, then

1 e 2
k(3.4)

2hk Xk+I JakYk 2<- Chk(Xk+I)-- Ch =2hk
Proo We sta by proving the first inequality. By definition, JXkYk is the exact

minimizer of k" Since k is strongly convex with modulus 1lAg and 0 k(JxkYk), it
follows from Proposition 6(c) of Rockafellar [18] that

6k(Xk+l)- k(Xk+l)- k(JxYk)
1

(0, Xk+I--Jxyk)+ IIXk+I--LykII 2

1
x+-Jyll=.

2hk
This proves the first inequality.

It remains to prove the second inequality. Let Wk
ek/hk. Since 6k is strongly convex with modulus 1/hk, and wll /x, we have

1
k(JxYk) k(Xk+l) (Wk, Jxyk Xk+)+ IlLy x+[[ =

1

1
> IIL.y- x+ll + IILy-x 2

k tR

2
k

--Ak’
where the first inequality again follows from Proposition 6 in Rockafellar [18]. This
proves the lemma.

COROLLARY 3.1. If Xk+l is chosen according to criterion A’, then

(3.5) Ilx+-
Corollary 3.1 is proved in a more general context in Rockafellar [18, Prop. 3].
We will need the following slight generalization of Theorem 2.1. Its proof is similar

to that of the original Theorem 2.1.
LEMMA 3.2. If for some k O, Xk satisfies the inequality

(3.6) f(Xk)+6k,
then for any Yk Rn, k O, and ak [0, 1), the following inequality holds true"

(3.7)
1

Also, Corollary 2.2 generalizes to Corollary 3.2.
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COROLLARY 3.2. Ifyk is chosen as in (2.18) and Olk is chosen as in (2.21), then

+1__(3.8) 0k*+l+(1--ak)6k >----f(JaYk)
2Ak

The following result estimates how the individual errors { k-ej}=o at each step
accumulate to a total error 6k at step k.

TI-IEORE 3.1. If, in the algorithm in 2, Xk+ is calculated according to criterion
A’ instead of (2.20), then

(3.9) f(Xk) <--__ O*k + 6k,

where {6k}k=o satisfies the difference equation
2

8k(3.10) 60=0, 6k+=(1--ak)6k+---k, k=0, 1,....

Proof We prove (3.9) and (3.10) by induction. Since f(xo)= Oo*, they are true for
k =0. Suppose (3.9) and (3.10) hold true for k. We will show that they also hold true
for k + 1. We have

O*k+l+(1--ak)6k >= Ck*k (from (3.8))

>= Ckk(Xk+l)---k (from Lemma 3.1)

f(Xk+l) q"k Xk+l Yk
z

2Ak’
which implies

1
f(x+l)+k IIx+l yII= o*+, / 6/+

This proves the theorem. 13
Note that Lemma 2.1 still holds true, so that (2.3) is valid. Combining (2.3) and

Theorem 3.1 results in the following theorem.
THEOREM 3.2. In the modified proximal point algorithm in which the point Xk is

calculated according to criterion A’, we havefor any x R", the convergence rate estimate

f(Xk) f(x) <-- fig (tC0(X) f(x)) + 6k,

where {6k} satisfies the difference equation (3.10). In particular, we have the convergence
rate estimate

(3.11) f(Xk) f* < flk(f(Xo) f* +A X,))2
p(Xo’ " 6k"

From (3.11) we see that in order for the modified algorithm to converge, we must
have 6k + 0. In the next result, we obtain bounds on

LEMMA 3.3. The solution to the difference equation (3.10) is given by

(3.12) 6k =’" j=o

Moreover,

(3.13)
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Assume { k}k=0 is an increasing sequence or, more generally, that there exists a constant
M > 0 such that

(3.14) A <- MA; whenever <-j,

and that for some o- > 0

(3.15) =O(1/k), k=l,9.,...;

that is, there is a constant c > 0 such that ek <= C/ k for all k >-_ 1. Then

(3.16) ,k= O(k21,i).
Proof. Since 1-c9=fl;+//3;, for any j->0, (3.10) can be written as ;/=

(/3;///3;); + e}/(2)t;). Dividing this equality by/3;+, and rearranging its terms, we
obtain

(3.17) j+l _j=’/,j
j+ flj 2flj+l"

Summing (3.17) for j 0, 1,..., k-1, and noting go =0, we obtain (3.12).
Inequality (3.13) is obtained from (3.12) by using the lower bound on/3;+1 given

in Lemma 2.2.
It remains to prove (3.16). If (3.14) is true, then k=O =oO. Thus there exists

a constant c > 0 such that 1 +vc- X=o c2=o-We deduce from (3.13)that
there are constants c > 0 (not the same constant c above) and > 0 such that

k-1 k-1 )2/X,=o(3.18) <c;= e;k 2;=o ]
e

k2

If e satisfies (3.15), there exists a constant > 0 such that

-1

k3-2"X (je;) - dt-
;=o Jo 3-2

Using this estimate in (3.18) proves (3.16).
The theorem below, which summarizes the results of this section, gives the

convergence rate estimates for the proximal point with errors. It is obtained from
Theorem 3.2 and Lemmas 2.2 and 3.3.
TOEM 3.3. Consider a proximal point algorithm that differs from the one stated

in 2 only in that the point x is approximately calculated according to criterion A’ with
an error e. Assume that errors {e} satisfy condition (3.15) for some >, and that
parameters {A} are chosen according to condition (3.14). en, for any feasible x e R",

In particular,

and if r >=-,

f(xk)-f*=O( 1 )
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Remark 3.1. Theorem 3.3 can be compared with results in Rockafellar [18] (see
also Br6zis and Lions [3, pp. 343]). Rockafellar proves that under condition A’ or
condition (3.5) (which he calls condition A) together with the condition

(3.19) , ek < 0,
k=0

the classical proximal point algorithm converges for a maximal monotone operator.
In [3] and [18] convergence means that Xk-X* to some solution of the maximal
monotone operator. Rockafellar shows that (3.19) is a necessary and sufficient condition
for convergence. Our sense of convergence is different from the one in [3] and [18]
in that we require only that f(x)of*. However, our condition (3.15) on {ek} is
somewhat weaker than (3.19) and we are able to prove the convergence rates in Theorem
3.3. It is interesting to note that such convergence rates for f(Xk)--f* are not currently
available for the inexact minimization version of the classical proximal minimization
algorithm.

4. Further properties of the algorithms. In this section, we develop monotonic
versions of the algorithms presented in 2 and 3. We also show that all algorithms
minimize f even if f has no minimizers or is unbounded from below.

The proximal point algorithm developed in the previous sections need not be
monotonic, that is, we may have f(Xk+)>f(Xk). Here we present monotonic versions
of the algorithms and discuss their convergence properties.

We obtain the monotonic version of the algorithm in 2 simply by replacing the
equation defining Xk+ in (2.24) with the following:

,t+1 JxkYk, Xk+1 arg min {f(k+1 ), f(Xk }.

THE MONOTONIC PROXIMAL POINT ALGORITHM.
Initialization. Choose a feasible starting point Xo R" (f(xo)< ), and constants

Ao > 0 and A > 0. Define Vo := Xo, Ao := A.
Step k, k _-> 0"
(a) Choose Ak > 0, and set

x/(AkAk) + 4AkAk AkAk
Olk 2

(b) Define

Yk (1 ak)Xk + akVk,

’k+l JxkYk := arg zR"min f(z)+k z- Ykll

x+1 arg min {f(gg+1 ), f(x },

1
vk+.l v+(x+l-y),

k

A+I=(1-a)Ak.

It is easy to verify that the algorithm stated above possesses the same global
convergence rate estimates as the original version in 2. The statement and the
properties of the algorithm of 3 are similar.

The next result shows that the algorithms in this paper minimize f in the case
when f has no minimizers or is even unbounded from below.
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THEOREM 4.1. Supposefhas no minimizers or is unboundedfrom below. The original
proximal point algorithms in 2 and 3, and their monotonic versions discussed above,
minimize f, that is,

(4.1) lim f(Xk) inf f(x).
k->o R

Proof. Since the algorithm in 2 is a special case of the algorithm in 3, we prove
(4.1) only for the latter. The proofs of (4.1) for the monotonic versions are similar.

We first consider the case f*>-o. Suppose e > 0 is given. Let x be a point
satisfying f(x)-f* <-_ e/2. If k is large enough, from (3.23) we obtain f(Xk)--f(x) <-

el2. Thus f(Xk)--f*<- e, and (4.1) holds true.
Iff*--c, let M be an arbitrary number and xM be a point satisfying f(xM) <-_ M.

If k is large enough, from (3.23) we have f(Xk)--f(xM) <--e. Thus f(Xk)<----M + e and
(4.1) holds true.

5. Concluding remarks. In this paper, we presented new proximal point algorithms
for the convex minimization problem (1.1). We presented an exact minimization
algorithm in 2, and an inexact minimization algorithm in 3. The algorithm in 3
is important in practice, since the exact minimization of the auxiliary function that
occurs at each step is impractical, and may in fact be almost as difficult to solve as
the original minimization problem. We demonstrated the convergence of our algorithms
and supplied global convergence rates for them. These rates are faster than the rates
the author obtained [7] for the classical proximal point algorithm. Thus our algorithms
accelerate the classical proximal point algorithm.

The algorithms developed here are general enough to solve the general convex
program (1.4). When applied to the dual program (1.5), they give rise to the so-called
augmented Lagrangian methods discussed in Bertsekas [2], Rockafellar [19], and
others. In [8], the author applies the algorithm in 2 to linear programming and obtains
an algorithm that accelerates the augmented Lagrangian method of Polyak and
Tret’iakov 15]. As is true ofthe algorithm of Polyak and Treti’akov 15], the application
of the exact minimization algorithm in 2 to linear programming terminates in finitely
many iterations.

For simplicity’s sake we have kept our discussion to finite-dimensional Euclidean
spaces Rn, however our results and algorithms are valid in any Hilbert space. Thus
our algorithms may be applied to infinite-dimensional variational problems; see [4],
[5], [6] and [10].

6. Appendix. Another proximal point algorithm. In this appendix, we present a
second proximal point algorithm for problem (1.1). This algorithm uses ideas from
Nesterov [13], where the first optimal algorithm for smooth convex programming is
introduced.

The algorithm generates a sequence {Xk}k=o of approximations to an optimal point
x* R of problem (1.1), as well as an auxiliary sequence of points {Yk}=l.

THE SECOND PROXIMAL POINT ALGORITHM.
Initialization. Choose a point Xo Rn, and a constant A > 0. Define Yl := Xo, A :’-" ’,

and fll :- 1.
Step k, k_>-1. Choose Ak => Ak-1 and define

1 +x/1 +4fl(6.1) flk+ 2
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(6.2) Xk JakYk := arg min {f x + 1 }IIx

(6.3) Yk+l=Xk + /3k+1
(Xk--Xk-)+(Xk--Yk).

k+l
THEOREM 6.1. The proximal point algorithm stated above possesses the global

convergence rate estimate

1
(6.4) f(Xk)- min f(x)<

,,R" =X(k+l)2p(x’X*)2’

where X* is the set of minimizers off
Proof From (2.8) and (6.2), we have

Since f is convex, we have

Yi+ Xi+ Of(xi+,), i= O, 1,

(6.5)
1

f(xi) f(xi+) >-- "7--- (Yi+l Xi+l, xi Xi+l),
ai+l

1
x*(6.6) f(x*)--f(Xi+l)-i+(Yi+l--Xi+l, --Xi+l).

Note that (6.1) implies

(6.7) /i+1(i+1- 1)= f12i"
For brevity, we define W :=f(xi)-f(x*). Multiplying (6.5) by fl2 fl,+l(fli+- 1) and
(6.6) by fli+l, and using (6.7), we obtain

(6.8)
1]ff( W/- W/+I) (i+l(Yi+l- Xi+l), (i+1-1)(xi- Xi+l)),

,+1

(6.9)
1

i+1W/+l ->" "T-- (i+l(Yi+l- Xi+I), x$ Xi+l),
Ai+l

Adding (6.8) and (6.9), and using (6.7), we obtain

1
(6.10) fl 2 W+ >W/ 1 i+1 (i+l(Yi+l- Xi+I), i+l(Xi- Xi+I) "gt- X* Xi).

Using the polarization identity 4(x, y)= Ilx + yl]2- IIx-yll =, the scalar product term in
(6.10) can be expressed as

(6.11) 1/4[[fli+l(Xi+Yi+l--2Xi+l)+X*--Xil[2--1/4[lfli+l(Xi--Yi+l)+X*--Xi[[ 2.

Let us define

(6.12) 0i := fli+(xi Yi+) + x* xi,

Using (6.3), it is easy to show that

(6.13) O, fl,(X,_l + y,- 2x,) + x* x,-1,

i=0, 1,

i= 1,2,
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From (6.12) and (6.13), respectively, we see that the second term in (6.11) equals
and the first term in (6.11) equals 0i+l. Using these facts and the fact that hi+l => hi in
(6.10), we obtain

(6 14) /3 2 1 1
iW/

4Ai+ //i+1+ O,+l 2 o, =

Summing (6.14) for i= 1,..., k-1, we obtain

1 1 1
W1 Wk o, 2_ o, 112.

Since h h and 1, we obtain from the last inequality,

1
(6.a5)

Using (6.6) with i= 0, and noting Xo ya, we have

1
Wl (y- Xl, x*- Xl)

1
(6 16)

4h
IIx*+y-2xll= 1- Ilx* xoll 2

1

4A O1 llx* xoll = (using(6.13))

Thus, from (6.15) and (6.16), we obtain

1
-x* 2(6.17) fl Wk IJXo

It is easy to show by induction that flk(k+l)/2. Since x*X* is arbitrary, the
theorem follows from (6.17).

Acknowledgments. The author is grateful to Dr. Nesterov for providing him with
a copy of 14]. The author also thanks a referee for helpful remarks.
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A NECESSARY AND SUFFICIENT CONDITION FOR A
CONSTRAINED MINIMUM*

J. WARGAt

Abstract. Let U be an open subset of Rn, X a compact semi-analytic subset of U, (fo,f)" U->I xl"
analytic, and Of(X). It is proven that a point Xo X minimizes fo(x) subject to f(x)=O if and only if

Xo X minimizes fo(x)+ clf(x)l/N for all sufficiently large c and N. This reduces the constrained minimiz-
ation problem to a finite number of unconstrained problems.

Key words, constrained minimization, real analytic functions, semi-analytic sets, numerical procedures

AMS(MOS) subject classifications. 26E05, 90C30

We consider the problem of minimizing fo(x) on X subject to the constraint
f(x)=O, where X is a compact subset of En, fo’X->R, and f:X-->lm. Let I’l denote
the euclidean norm in Ek. It is easy to verify that, if (fo, f) is continuous, then a point
Xo yields this constrained minimum if and only iff(xo) 0 and there exists a nondecreas-
ing continuous "penalty" function h’[0, )- [0, ) such that h(0) 0 and Xo minimizes
the scalar function fo(x)+ h(If(x)l). As suggested by a referee, this assertion follows
directly from the choice of

h(r)-sup{fo(Xo)-fo(x)llf(x)l<=r} Vr>-O.

In the general case, the determination of an appropriate function h(.) may be more
difficult than solving the original problem. It turns out, however, that if the functions
fo and f are analytic and the set X is defined by a finite number of analytic equalities
and inequalities, which we shall henceforth assume to be the case, then we can define
a "universal" form of a "penalty" function h(.) independent of either (fo,f) or Xo.

Let B(x, r) denote the closed euclidean ball of center x and radius r. A semi-analytic
set in I" is one defined by an analytic equality or inequality or obtained from such
sets by applying a finite number of elementary set operations (unions, intersections,
and set-differences). Theorem 1 below provides a global necessary and sufficient
condition for constrained minimum and justifies a global optimization procedure for
reducing the constrained minimization problem to a finite sequence of unconstrained
minimization problems. The Corollary ofTheorem 1 defines a "universal" exact penalty
function for finite-dimensional local optimization problems defined by analytic func-
tions.

THEOREM 1. Let U be an open subset of I", X a compact semi-analytic subset of
U, (fo, f U --> xm analytic, and 0 f(X). Then there exist N* { 1, 2,... } and c* > 0
such that, for every choice of real numbers N >= N* and c >-_ c*, Xo minimizes fo(x) on X
subject to f(x)=O if and only if xo minimizes fo(x)+ clf(x)l/ on X. Furthermore, if u,
3/> O, f(x*) O, and x* minimizes fo(x) + ,lf(x)l /, then x* minimizes fo(x) on X
subject to f x O.

A global optimization procedure. We assume that, for u 1, 2,..., we have a
procedure for finding a set of points in X that minimize the function

x - (x):-fo(x)/ .If(x)l ’/" x - .
* Received by the editors January 14, 1991" accepted for publication (in revised form) September 10,

1991. This work was partially supported by National Science Foundation grant DMS 8619002.

" Department of Mathematics, Northeastern University, Boston, Massachusetts 02115.
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We determine My for u 1, 2,... until, for some integer /z and u #, each point
x’/ yields f(x’)= 0. At this point we terminate the iteration.

It follows from Theorem 1 that the iteration will terminate for some integer/
(not exceeding max {N*, c*} + 1), and that each point x’ t, also yields the minimum
offo(x) subject to f(x) 0. Furthermore, if each M contains all the minima of o(x),
then M, is the set of all the points in X that yield the constrained minimum.
COROLLARY. Let UcR" be open, (fo,f): U -ffm analytic, andf(xo)=O. Then xo U

minimizesfo(x) locally subject tof(x) 0 ifand only ifxo minimizesfo(x)- 1/log (If(x)l)
locally, where 1/log 0 is defined as O. More precisely, there exists r, > 0 such that

fo(Xo) min {fo(x)Ix /(Xo, rl),f(x)= 0}

if and only if there exists r2 > 0 such that

fo(Xo) min {fo(x)- 1/log (If(x)l)lx (Xo, r)}.

Remarks. (i) The assumption that (fo,f) is analytic cannot be replaced by (fo,f)
C. Let

X=[-1,1]2, fo(xl,x2)=-x2, f(x,,x2)=e-I/X+x.
Then, for any c > 0 and N {1, 2,... },

fo(x,, 0) l/[log (f(xl, 0))] ’/3 < 1/log (f(x,, 0)) < -c[f(x,, 0)]

for all sufficiently small ]x[.
(ii) The assumption that X is compact cannot be dropped. Let

X , fo(x,, x)= xax, f(x, x)= x,.

Then 0 minimizes fo(x, x2) subject to f(x,, x2)= 0, but (fo,f)(2) is dense in
The proof of Theorem 1 follows from a generalization by Hironaka [1] of an

inequality of Lojasiewicz. We refer to a subset of R" as subanalytic if it is the image
of a semi-analytic set under a proper analytic map.

INEQUALITY III (see 1, Ineq. III, p. 9.5]). Let A and B be closed subanalytic subsets
of " such that A c B # f. Then, for each compact subset K of ", we can find
N {1, 2,... } and C > 0 such that, for all x K,

C(dist (x, A)+ dist (x, B))_-> dist (x, A n B) v.
Proof of Theorem 1. Let

a := inf (fo(x)lx X,f(x)= 0},

= {x xlf(x)= 0, fo(x)= a}.

Since X is compact, 0f(X), and (fo,f) is continuous, the set is nonempty. Let

A=(fo,f)(X), B=(-c,a]x{0}cxR", K=[minfo(X),a]x{O}.

Then A and B (which are images of compact semi-analytic sets under analytic maps)
are closed subanalytic sets in x" and A c B (a, 0). It follows, by Inequality III,
that there exist C > 0 and N’ {1, 2,...} such that

C(dist(y,A)+dist(y,B))>=dist(y, AcB)’ VyK.

Now let x X be such that fo(x)< a, and let y (fo(x), 0). Then

dist(y,A)<-If(x)l, dist(y,B)=0, dist(y, AcB)=a-fo(x),
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and, by (.),

Clf(x)l >- C(dist (y, A) + dist (y, B)) => dist (y, A n B)N’= [a -fo(x)] N’.
Let Xl . It follows, setting c’ C 1/1’, that

fo(x,)-fo(x) <= c’V(x)l ’/t’

if fo(x) <fo(xl), and thus

(**) fo(x)+ c’]f(x)l/’>-fo(xl)=fo(xl)+ c’]f(x)l/’ V x X.

Let

ql(x) := fo(x) + c’lf(x)l /’,
M= 1 +max {If(x)llx x}, c* c’M1/’ N* > c* N*=N,c= ,andN- .Then

c’lf(x)l /’’- c’M’/’’lf(x)/Ml/’<- c[f(x)l /’ V x X.

It follows that

,(x)<-_q,(x):-fo(x)/clf(x)l/ V xX.

Thus, by (**), each point xl S minimizes both qq(x) and (x) on X, proving the
"only if" part of our assertion.

Now let Xo minimize 4,(x) on X, and let Xa SE Since xl also minimizes ,(x), we
have

fo(x,) (x,)= h(Xo)=fo(Xo) + c[f(Xo)l 1/.
Now Xl minimizes l(X) and therefore

fo(X1) I(X,) < I(XO) < (XO) =fo(X1);
hence fo(x)= q,,(Xo) and therefore

fo(x,) --fo(Xo)+ c’lf(xo)l ’/ --fo(Xo)+ clf(xo)l ’/.
If f(X)= {0}, then our theorem is trivially satisfied. Otherwise, M > 1 and therefore
c > c’. It follows then from the last relation that f(xo)=0 and fo(Xo)=fo(xl). Thus Xo
minimizes fo(x) on X subject to f(x) O.

Finally, assume that v, 3’ > O,f(x*) =0, and x* minimizes ,#(x):=fo(x) + ,lf(x)l/
on X. Then, if x’ X and f(x’)= O, we have

fo(x*) p(x*) =< q(x’) =fo(x’).
Thus x* minimizes fo(x) subject to f(x) 0. l’1

Proofofthe corollary. The "if" part is obvious. Now assume that there exists rl > 0
such that

fo(Xo) min {fo(x)lx (Xo, rl), f(x) 0}.

Then, by Theorem 1, there exist c > 0 and N {1, 2,... } such that

fo(x)+ clf(x)l/ >--fo(Xo) Vx X := B(Xo, r).
Since limy_.o yl1/ log (lyl)= 0 and f is continuous, we may find r’, rE > 0 such that
-clyl/ >- 1/log (lyl) if lyl-<- r’, and If(x)l-<- r’ if x /(Xo, rE). Then

fo(x)- 1/log (If(x)l) >-fo(xo) -fo(xo)- 1/log (If(xo)l) x /(Xo, r=). t3
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DIAGONAL MATRIX SCALING AND LINEAR PROGRAMMING*

LEONID KHACHIYAN" AND BAHMAN KALANTARI

Abstract. A positive semidefinite symmetric matrix either has a nontrivial nonnegative zero or can be
scaled by a positive diagonal matrix into a doubly quasi-stochastic matrix. This paper describes a simple
path-following Newton algorithm of the complexity O(x/-ff L) iterations to either scale an n x n matrix or

give a nontrivial nonnegative zero. The latter problem is well known to be equivalent to linear programming.

Key words, diagonal matrix scaling, linear programming, path-following Newton’s methods

AMS(MOS) subject classification. 90C05

I. Introduction.

I.I. Scaling. We consider the following problem of diagonal matrix scaling: Given
an n x n symmetric positive semidefinite matrix A, either find a positive diagonal matrix
X, which scales A into a doubly quasi-stochastic matrix

XAXe e, X diag (Xl,..., xn) > 0,

or prove that A is not scalable. Here e (1,..., 1)
Letting x=(xl,...,xn) r, x-=(1/x,..., 1/x), the problem can be written as

(1.1) Ax-x-l=O, x>0.

1.2. Bounds on solutions. Scaling and linear programming. Let

1.2) / min {xrAx lx S+},
2 1/2where S/- Ix--> 0, Ilxll / 1} is the intersection of the unit

n-dimensional Euclidean sphere with the nonnegative orthant. It is known ], [2] that

(1.3) a positive semidefinite matrix A is scalable if and only if tz > O.

In fact, as we prove in the Appendix, the "only if" part of this statement can be
strengthened as follows: Ifx> 0 scales a positive semidefinite matrix A (see (1.1)) then

(1.4) n- _-< Ilxll2 ,_-< n.

The "if" part will follow from the algorithm to be described.
Without loss of generality we assume henceforth that n-> 4 and

(1.5) IIAel[<- n.

In 2 and 3 we describe a path-following Newton’s method for solving the scaling
problem (1.1). The method generates a sequence of positive points 0,. :k with the
following properties.

* Received by the editors June 4, 1990; accepted for publication (in revised form) September 12, 1991.
t Department of Computer Science, Rutgers University, New Brunswick, New Jersey and Computing

Center, Russian Academy of Sciences, 117418 Moscow, Russia. This research was performed while the
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If A is scalable, then in at most k (4v/-ff+ 1)In (10n2/) iterations we determine
the scalability of A and in an additional s iterations scale A with accuracy 2s-2 digits:

(1.6) 2+,aJ+,e ell--<
If A is not scalable, the sequence of projected points
converges to a zero of the quadratic form xTAx over S/:

A _-<10n2exp -4x/-ff+l
As usual, if the entries of A are rational and/x > 0, then/x-> 2- where L is the

binary length of the input. So the number of Newton’s iterations of the method does
not exceed O(v/-ffL). The computational cost of each iteration is O(n(rankA))
arithmetic operations.

Observe that the problem of computing a zero of a positive semidefinite quadratic
form over S/ is well known to be equivalent to the general linear programming problem
(see, e.g., [1]). Therefore, the scaling problem (1.1) is somewhat more general than
linear programming, and for the latter problem we obtain the same bound as in [5].

2. Newton’s system and region of quadratic convergence. Instead of (1.1), it is
convenient to consider a slightly more general problem of computing a positive zero
of the mapping

F(x) b + Ax x-,
where b is a fixed n-dimensional vector. Since F(x + y) F(x) + Ay + X-2y + higher
order terms in y, the following linear system

(2.1) (X-2+A)y=x-l-Ax-b

defines Newton’s vector y for a point x > 0. Multiplying this system by X, we get

(2.2) E + XAX)X-ly e XAXe Xb,

where E diag (e) is the identity matrix. Letting

(2.3) z X-ly, A XAX, bx Xb,

(2.2) can be written as

(2.4) (E + A)z e-Ae- b.

Comparing (2.4) to the system (2.1) written at x e, we see that (2.4) coincides with
the latter system after the transformation (2.3).

Let

x’= Newton (F, x) x + y X(e+ z)

be the vector obtained as a result of one Newton’s iteration at a point x> 0. To
guarantee the positiveness of x’ it suffices to require Ilzll < 1. On the other hand, since

A is positive semidefinite, it follows from (2.4) that

(2.5) Ilzll=ll(E+Ax)-’(e-Axe-bx)ll<-_lle-Ae-bxll.
Therefore, the conditions

(2.6) x>0, Ile-ee-bxll<l
imply that x’= Newton F, x) is positive.
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It is also easy to see that under the assumption (2.6) each Newton’s iteration
quadratically decreases the norm of the right-hand side of (2.4)"

(2.7) lie Ax,e bx,II <= lie Axe bxll 2.

Indeed, letting Z =diag (z), we have

X’ diag (X(e+ z)) (E + Z)X= X(E + Z),

Ax,e X’AX’e (E + Z)Ax(E + Z)e (E + Z)Ax(e+ z).

From (2.4), Ax(e+z)=e-z-bx. Thus

Ax,e (E + Z)(e- z- bx) e-Zz-(E + Z)bx e-Zz- bx,.

Hence

[[e-ax,e- bx,[[ IlZzl[ (z/. ./ z4,) /=- Ilzll4.
But [[z[14 -< Ilzll=-Ilzll, so that (2.7) follows from (2.5).

It follows from (2.5) and (2.7) that for an arbitrary starting point Xo from the
region (2.6) the norm of Newton’s vectors Zo, zl,..., Zk quadratically converges to 0.
Hence the sequence of Newton’s iterates Xk (E + Zk)(E + Zk-1) (E + Zo)xo quad-
ratically converges. Clearly, the limit x of this sequence is nonnegative and satisfies
the system of equations XAXe + Xb e. Now it is easily seen from this system that
all the components of x are positive. Thus, in the region x > 0, IlAxe+ bx-ell < 1,
Newton’s method is well defined and quadratically converges to a positive zero of the
system of equations b + Ax x-1 O.

In particular, if the region x > O, I[Axe- ell < 1, is nonempty, a positive semidefinite
matrix A can be scaled into a doubly quasi-stochastic matrix.

3. Path-following method for scaling. Consider the family of mappings

Ft(x) tb + tAx x-, x > O,

defined for each value of from 1 to O. Set

to=l, xo=e and b=e-Ae, 6=1/2.
Clearly,

(3.1) tkXkAXke + tkXkb e <= 6

for k 0, since in this case the left-hand side of (3.1) equals zero. Suppose that (3.1)
holds for some k -> 0 and tk (0, 1 ]. By (2.7), we can apply Newton’s method to Ftk at
Xk, and in one iteration compute a new positive vector Xk+ satisfying

(3.2) tkXk+ AXk+ e + tkXk+ b ell-<- 6z.

Now we want to decrease and obtain (3.1) for k + 1 with a smaller value tk/l tk Uk.
This can be done if

ukllXg+,mx+,e + xg+, b II--< ,
But (3.2) implies
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SO we can put

I---/ -4+----tk+ tk 1
lie

The last equality follows from --1/2. Letting

t/x+,

we obtain a sequence of positive points o, ,..., satisfying the condition (3.2)

Ae+ /b e J(3.3)

with

(3.4) tk--<--exp --4V/-ff+
At each iteration of the path-following method we check the condition

(3.5) ’kake e <= 1/4.
If (3.5) holds, we conclude that A is scalable. In this case, using k as a starting point
for solving with Newton’s method F(x)= Ax- x-1= O, we can scale A in s iterations
with accuracy (1.6). This completes the description of the method.

4. Convergence. Suppose that (3.5) does not hold, i.e., we cannot scale A until at
least the kth iteration. Then it follows from (3.3) that tl/-IIbll _->1/2, and so the norm
of k is large:

II; II--> (211bll tL/=) -,(4.1)

Let

SCk fkA.f(ke / k/2Xkb e.

From (3.3) we know that II:kll--_<1/4, Hence

(4.2) eTk T^k AXk + tlk/2b n [lell ]lk ,
This implies (1.7)"

Xk Xk n +/4 tL/=llbll
I1

a
I1 I1 = I1

The above inequalities follow from (4.2), (4.1), the assumption that n 4, (1.5), and
(3.4), respectively. Thus, if =min {xrAxlx S+} > 0, in at most (4+ 1) In (10n/)
iterations we obtain (3.4) and scale A.. Celgeems. The scaling problem (1.1) for matrices with nonnegative
entries has been a problem of interest since at least the early sixties (see, e.g., [6]).
The relevance of positive semidefinite matrix scaling to linear programming via the
characterization (1.3) was given in [1] and [2]. As shown above, the posititive semi-
definite case provides a convenient elementary format for describing an O( L)
Newton iteration method for linear programming.
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As was observed in [3], any solution to the scaling probem (1.1) is a stationary
point of the logarithmic barrier function f(x)=1/2xrAx-Yi=l In xi. An alternative way
to scale a positive semidefinite matrix is to apply Newton’s method (say, with line
search) directly to minimize f(x). In this case it is easy to show (and it also follows
from the one-self-concordance off(x); see [4, 1 ]) that outside the region of quadratic
convergence each Newton’s iteration decreases f by a constant factor. If f(x) attains
its minimum value f. over x->0, then A is scalable and (1.4), (1.5) imply f(e)-f.<=
n In (1!/x) O(nL). In this case, starting the iterations from e, we enter the region of
quadratic convergence in O(nL) iterations. Otherwise, from 2 min {f(tx)[ (0, )}
n In k(x)+ n(1-1n n), where k(x) xrAx/(xl x,,)2/" is Karmarkar’s potential
function, we get k(x)/n<=exp (-1 +2f(x)/n). Since f(x) is reduced by a constant
factor at each iteration and xAx/llxllZ<-k(x)/n, it follows that, by projecting the
iterates of such a potential reduction method onto the unit sphere, we can compute
in O(nL) iterations a zero of xrAx over S/ with an accuracy of 2-L.

Appendix. Suppose that x>0 scales A (see (1.1)). Multiplying (1.1) by x, we get
xTAx xTx-1-- n. Since x/llxll s/, the second of the inequalities (1.4) follows from
the definition (1.2)

x x /
p,_-< A -ilx[12.

To prove the first of the inequalities (1.4), observe that if B is a positive semidefinite
and doubly quasi-stochastic matrix, then from Be e it follows that the minimum of
the quadratic form yrBy over the simplex {y e R [y _-> 0, ery n} is attained at the
point y e and equals n. Hence min {yrByly S/}>= n-. Applying the last inequality
to the doubly quasi-stochastic matrix B XAX, we get

n- < min { yrXaXy[y S+} =< x = min { y 7rAy[y S+} x , -<- x
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